-
1
-
-
33746649741
-
What primary microcephaly can tell us about brain growth
-
J. Cox, A. P. Jackson, J. Bond, and C. G. Woods, "What primary microcephaly can tell us about brain growth," Trends in Molecular Medicine, vol. 12, no. 8, pp. 358-366, 2006
-
(2006)
Trends in Molecular Medicine
, vol.12
, Issue.8
, pp. 358-366
-
-
Cox, J.1
Jackson, A.P.2
Bond, J.3
Woods, C.G.4
-
2
-
-
79958276783
-
Autosomal recessive primary microcephaly (MCPH): Clinical manifestations, genetic heterogeneity and mutation continuum
-
S. Mahmood, W. Ahmad, andM. J. Hassan, "Autosomal recessive primary microcephaly (MCPH): clinical manifestations, genetic heterogeneity and mutation continuum," Orphanet Journal of Rare Diseases, vol. 6, no. 1, article 39, 2011
-
(2011)
Orphanet Journal of Rare Diseases
, vol.6
, Issue.1
-
-
Mahmood, S.1
Ahmad, W.2
Hassan, M.J.3
-
3
-
-
84883099931
-
Investigating microcephaly
-
C. G. Woods and A. Parker, "Investigating microcephaly," Archives ofDisease in Childhood, vol. 98,no. 9, pp. 707-713, 2013
-
(2013)
Archives OfDisease in Childhood
, vol.98
, Issue.9
, pp. 707-713
-
-
Woods, C.G.1
Parker, A.2
-
4
-
-
17644399484
-
Autosomal recessive primary microcephaly (MCPH): A review of clinical,molecular, and evolutionary findings
-
C. G. Woods, J. Bond, and W. Enard, "Autosomal recessive primary microcephaly (MCPH): a review of clinical,molecular, and evolutionary findings," The American Journal of Human Genetics, vol. 76, no. 5, pp. 717-728, 2005
-
(2005)
The American Journal of Human Genetics
, vol.76
, Issue.5
, pp. 717-728
-
-
Woods, C.G.1
Bond, J.2
Enard, W.3
-
5
-
-
84876792803
-
Microcephaly
-
S. Passemard, A. M. Kaindl, and A. Verloes, "Microcephaly," in Handbook of Clinical Neurology, vol. 111, pp. 129-141, 2013
-
(2013)
Handbook of Clinical Neurology
, vol.111
, pp. 129-141
-
-
Passemard, S.1
Kaindl, A.M.2
Verloes, A.3
-
6
-
-
70349667037
-
Expanding the clinical and neuroradiologic phenotype of primary microcephaly due to ASPM mutations
-
S. Passemard, L. Titomanlio,M. Elmaleh et al., "Expanding the clinical and neuroradiologic phenotype of primary microcephaly due to ASPM mutations," Neurology, vol. 73, no. 12, pp. 962-969, 2009
-
(2009)
Neurology
, vol.73
, Issue.12
, pp. 962-969
-
-
Passemard, S.1
Titomanlio, L.2
Elmaleh, M.3
-
7
-
-
0035066971
-
Molecular genetics of human microcephaly
-
G. H. Mochida and C. A. Walsh, "Molecular genetics of human microcephaly," Current Opinion in Neurology, vol. 14, no. 2, pp. 151-156, 2001
-
(2001)
Current Opinion in Neurology
, vol.14
, Issue.2
, pp. 151-156
-
-
Mochida, G.H.1
Walsh, C.A.2
-
8
-
-
84880584798
-
Meier-Gorlin syndrome and Wolf-Hirschhorn syndrome: Two developmental disorders highlighting the importance of efficient DNA replication for normal development and neurogenesis
-
C. Kerzendorfer, R. Colnaghi, I. Abramowicz, G. Carpenter, and M. O'Driscoll, "Meier-Gorlin syndrome and Wolf-Hirschhorn syndrome: two developmental disorders highlighting the importance of efficient DNA replication for normal development and neurogenesis,"DNA Repair, vol. 12,no. 8, pp. 637-644, 2013
-
(2013)
DNA Repair
, vol.12
, Issue.8
, pp. 637-644
-
-
Kerzendorfer, C.1
Colnaghi, R.2
Abramowicz, I.3
Carpenter, G.4
O'driscoll, M.5
-
9
-
-
70350228242
-
Primarymicrocephaly: Do all roads lead to Rome?
-
G. K. ThorntonandC. G. Woods, "Primarymicrocephaly: do all roads lead to Rome" Trends in Genetics, vol. 25, no. 11, pp. 501-510, 2009
-
(2009)
Trends in Genetics
, vol.25
, Issue.11
, pp. 501-510
-
-
Thorntonandc, G.K.1
Woods, G.2
-
10
-
-
77949275798
-
Many roads lead to primary autosomal recessive microcephaly
-
A. M. Kaindl, S. Passemard, P. Kumar et al., "Many roads lead to primary autosomal recessive microcephaly," Progress in Neurobiology, vol. 90, no. 3, pp. 363-383, 2010
-
(2010)
Progress in Neurobiology
, vol.90
, Issue.3
, pp. 363-383
-
-
Kaindl, A.M.1
Passemard, S.2
Kumar, P.3
-
11
-
-
80053642194
-
Mechanisms and pathways of growth failure in primordial dwarfism
-
A. Klingseisen and A. P. Jackson, "Mechanisms and pathways of growth failure in primordial dwarfism," Genes and Development, vol. 25, no. 19, pp. 2011-2024, 2011
-
(2011)
Genes and Development
, vol.25
, Issue.19
, pp. 2011-2024
-
-
Klingseisen, A.1
Jackson, A.P.2
-
12
-
-
33751256255
-
Microcephalin: A causal link between impaired damage response signalling and microcephaly
-
M. O'Driscoll, A. P. Jackson, and P. A. Jeggo, "Microcephalin: a causal link between impaired damage response signalling and microcephaly," Cell Cycle, vol. 5, no. 20, pp. 2339-2344, 2006
-
(2006)
Cell Cycle
, vol.5
, Issue.20
, pp. 2339-2344
-
-
O'driscoll, M.1
Jackson, A.P.2
Jeggo, P.A.3
-
13
-
-
0036302105
-
Identification of microcephalin, a protein implicated in determining the size of the human brain
-
A. P. Jackson, H. Eastwood, S. M. Bell et al., "Identification of microcephalin, a protein implicated in determining the size of the human brain,"TheAmerican Journal ofHumanGenetics, vol. 71, no. 1, pp. 136-142, 2002
-
(2002)
TheAmerican Journal OfHumanGenetics
, vol.71
, Issue.1
, pp. 136-142
-
-
Jackson, A.P.1
Eastwood, H.2
Bell, S.M.3
-
14
-
-
0036787796
-
ASPM is a major determinant of cerebral cortical size
-
J. Bond, E. Roberts, G. H. Mochida et al., "ASPM is a major determinant of cerebral cortical size," Nature Genetics, vol. 32, no. 2, pp. 316-320, 2002
-
(2002)
Nature Genetics
, vol.32
, Issue.2
, pp. 316-320
-
-
Bond, J.1
Roberts, E.2
Mochida, G.H.3
-
15
-
-
20144386602
-
A centrosomal mechanism involving CDK5RAP2 and CENPJ controls brain size
-
J. Bond, E. Roberts, K. Springell et al., "A centrosomal mechanism involving CDK5RAP2 and CENPJ controls brain size," Nature Genetics, vol. 37, pp. 353-355, 2005
-
(2005)
Nature Genetics
, vol.37
, pp. 353-355
-
-
Bond, J.1
Roberts, E.2
Springell, K.3
-
16
-
-
78049336070
-
WDR62 is associated with the spindle pole and is mutated in human microcephaly
-
A. K. Nicholas, M. Khurshid, J. Désir et al., "WDR62 is associated with the spindle pole and is mutated in human microcephaly," Nature Genetics, vol. 42, no. 11, pp. 1010-1014, 2010
-
(2010)
Nature Genetics
, vol.42
, Issue.11
, pp. 1010-1014
-
-
Nicholas, A.K.1
Khurshid, M.2
Désir, J.3
-
17
-
-
84876926861
-
CDK5RAP2 expression during murine and human brain development correlates with pathology in primary autosomal recessive microcephaly
-
L. Issa, N. Kraemer, C. H. Rickert et al., "CDK5RAP2 expression during murine and human brain development correlates with pathology in primary autosomal recessive microcephaly," Cerebral Cortex, vol. 23, no. 9, pp. 2245-2260, 2013
-
(2013)
Cerebral Cortex
, vol.23
, Issue.9
, pp. 2245-2260
-
-
Issa, L.1
Kraemer, N.2
Rickert, C.H.3
-
18
-
-
27544465968
-
Symmetric versus asymmetric cell division during neurogenesis in the developing vertebrate central nervous system
-
W. B. Huttner and Y. Kosodo, "Symmetric versus asymmetric cell division during neurogenesis in the developing vertebrate central nervous system," Current Opinion in Cell Biology, vol. 17, no. 6, pp. 648-657, 2005
-
(2005)
Current Opinion in Cell Biology
, vol.17
, Issue.6
, pp. 648-657
-
-
Huttner, W.B.1
Kosodo, Y.2
-
19
-
-
84860228903
-
An oblique view on the role of spindle orientation in vertebrate neurogenesis
-
E. Peyre and X. Morin, "An oblique view on the role of spindle orientation in vertebrate neurogenesis," Development Growth and Differentiation, vol. 54, no. 3, pp. 287-305, 2012
-
(2012)
Development Growth and Differentiation
, vol.54
, Issue.3
, pp. 287-305
-
-
Peyre, E.1
Morin, X.2
-
20
-
-
84910062118
-
The cell biology of neurogenesis: Toward an understanding of the development and evolution of the neocortex
-
E. Taverna, M. Gotz, and W. B. Huttner, "The cell biology of neurogenesis: toward an understanding of the development and evolution of the neocortex," Annual Review of Cell and Developmental Biology, vol. 30, 2014
-
(2014)
Annual Review of Cell and Developmental Biology
, vol.30
-
-
Taverna, E.1
Gotz, M.2
Huttner, W.B.3
-
21
-
-
53049092469
-
Making bigger brains-the evolution of neural-progenitor-cell division
-
J. L. Fish, C. Dehay, H. Kennedy, and W. B. Huttner, "Making bigger brains-the evolution of neural-progenitor-cell division," Journal of Cell Science, vol. 121, no. 17, pp. 2783-2793, 2008
-
(2008)
Journal of Cell Science
, vol.121
, Issue.17
, pp. 2783-2793
-
-
Fish, J.L.1
Dehay, C.2
Kennedy, H.3
Huttner, W.B.4
-
22
-
-
33645229452
-
Microcephalin encodes a centrosomal protein
-
X. Zhong, G. P. Pfeifer, and X. Xu, "Microcephalin encodes a centrosomal protein," Cell Cycle, vol. 5, no. 4, pp. 457-458, 2006
-
(2006)
Cell Cycle
, vol.5
, Issue.4
, pp. 457-458
-
-
Zhong, X.1
Pfeifer, G.P.2
Xu, X.3
-
23
-
-
78049332008
-
Mutations in WDR62, encoding a centrosome-associated protein, cause microcephaly with simplified gyri and abnormal cortical architecture
-
T. W. Yu, G. H. Mochida, D. J. Tischfield et al., "Mutations in WDR62, encoding a centrosome-associated protein, cause microcephaly with simplified gyri and abnormal cortical architecture," Nature Genetics, vol. 42, no. 11, pp. 1015-1020, 2010
-
(2010)
Nature Genetics
, vol.42
, Issue.11
, pp. 1015-1020
-
-
Yu, T.W.1
Mochida, G.H.2
Tischfield, D.J.3
-
24
-
-
25444493202
-
The abnormal spindle-like, microcephaly-associated (ASPM) gene encodes a centrosomal protein
-
X. Zhong, L. Liu, A. Zhao, G. P. Pfeifer, and X. Xu, "The abnormal spindle-like, microcephaly-associated (ASPM) gene encodes a centrosomal protein," Cell Cycle, vol. 4, no. 9, pp. 1227-1229, 2005
-
(2005)
Cell Cycle
, vol.4
, Issue.9
, pp. 1227-1229
-
-
Zhong, X.1
Liu, L.2
Zhao, A.3
Pfeifer, G.P.4
Xu, X.5
-
25
-
-
62649118818
-
Mutations in STIL, encoding a pericentriolar and centrosomal protein, cause primary microcephaly
-
A. Kumar, S. C. Girimaji, M. R. Duvvari, and S. H. Blanton, "Mutations in STIL, encoding a pericentriolar and centrosomal protein, cause primary microcephaly," The American Journal of Human Genetics, vol. 84, no. 2, pp. 286-290, 2008
-
(2008)
The American Journal of Human Genetics
, vol.84
, Issue.2
, pp. 286-290
-
-
Kumar, A.1
Girimaji, S.C.2
Duvvari, M.R.3
Blanton, S.H.4
-
26
-
-
84860757548
-
A truncating mutation of CEP135 causes primary microcephaly and disturbed centrosomal function
-
M. S. Hussain, S. M. Baig, S. Neumann et al., "A truncating mutation of CEP135 causes primary microcephaly and disturbed centrosomal function,"The American Journal of Human Genetics, vol. 90, no. 5, pp. 871-878, 2012
-
(2012)
The American Journal of Human Genetics
, vol.90
, Issue.5
, pp. 871-878
-
-
Hussain, M.S.1
Baig, S.M.2
Neumann, S.3
-
27
-
-
77955068270
-
Mutations in centrosomal protein CEP152 in primary microcephaly families linked to MCPH4
-
D. L. Guernsey, H. Jiang, J. Hussin et al., "Mutations in centrosomal protein CEP152 in primary microcephaly families linked to MCPH4," American Journal of Human Genetics, vol. 87, no. 1, pp. 40-51, 2010
-
(2010)
American Journal of Human Genetics
, vol.87
, Issue.1
, pp. 40-51
-
-
Guernsey, D.L.1
Jiang, H.2
Hussin, J.3
-
28
-
-
80054978334
-
A primary microcephaly protein complex forms a ring around parental centrioles
-
J.-H. Sir, A. R. Barr, A. K. Nicholas et al., "A primary microcephaly protein complex forms a ring around parental centrioles," Nature Genetics, vol. 43, no. 11, pp. 1147-1153, 2011
-
(2011)
Nature Genetics
, vol.43
, Issue.11
, pp. 1147-1153
-
-
Sir, J.-H.1
Barr, A.R.2
Nicholas, A.K.3
-
29
-
-
84888783947
-
CDK6 associates with the centrosome during mitosis and is mutated in a large pakistani familywith primarymicrocephaly
-
M. S. Hussain, S. M. Baig, S. Neumann et al., "CDK6 associates with the centrosome during mitosis and is mutated in a large pakistani familywith primarymicrocephaly," HumanMolecular Genetics, vol. 22, no. 25, pp. 5199-5214, 2013
-
(2013)
HumanMolecular Genetics
, vol.22
, Issue.25
, pp. 5199-5214
-
-
Hussain, M.S.1
Baig, S.M.2
Neumann, S.3
-
30
-
-
46449134670
-
The centrosome is a polyfunctional multiprotein cell complex
-
I. B. Alieva and R. E. Uzbekov, "The centrosome is a polyfunctional multiprotein cell complex," Biochemistry, vol. 73, no. 6, pp. 626-643, 2008
-
(2008)
Biochemistry
, vol.73
, Issue.6
, pp. 626-643
-
-
Alieva, I.B.1
Uzbekov, R.E.2
-
31
-
-
84856290771
-
The centrosome in cells and organisms
-
M. Bornens, "The centrosome in cells and organisms," Science, vol. 335, no. 6067, pp. 422-426, 2012
-
(2012)
Science
, vol.335
, Issue.6067
, pp. 422-426
-
-
Bornens, M.1
-
32
-
-
77954040650
-
Centrioles: Active players or passengers during mitosis?
-
A. Debec, W. Sullivan, and M. Bettencourt-Dias, "Centrioles: active players or passengers during mitosis" Cellular and Molecular Life Sciences, vol. 67, no. 13, pp. 2173-2194, 2010
-
(2010)
Cellular and Molecular Life Sciences
, vol.67
, Issue.13
, pp. 2173-2194
-
-
Debec, A.1
Sullivan, W.2
Bettencourt-Dias, M.3
-
33
-
-
70350771277
-
Centrioles, centrosomes, and cilia in health and disease
-
E. A. Nigg and J. W. Raff, "Centrioles, centrosomes, and cilia in health and disease," Cell, vol. 139, no. 4, pp. 663-678, 2009
-
(2009)
Cell
, vol.139
, Issue.4
, pp. 663-678
-
-
Nigg, E.A.1
Raff, J.W.2
-
34
-
-
84901940697
-
CP110 and its network of partners coordinately regulate cilia assembly
-
W. Y. Tsang and B. D. Dynlacht, "CP110 and its network of partners coordinately regulate cilia assembly," Cilia, vol. 2, no. 1, article 9, 2013
-
(2013)
Cilia
, vol.2
, Issue.1
-
-
Tsang, W.Y.1
Dynlacht, B.D.2
-
35
-
-
84919733129
-
Centrosome dysfunction and senescence: Coincidence or causality?
-
D. Hossain and W. Y. Tsang, "Centrosome dysfunction and senescence: coincidence or causality" Journal of Aging Science, vol. 1, p. 113, 2013
-
(2013)
Journal of Aging Science
, vol.1
, pp. 113
-
-
Hossain, D.1
Tsang, W.Y.2
-
36
-
-
0035873385
-
It takes two to tango: Understanding how centrosome duplication is regulated throughout the cell cycle
-
E. H. Hinchcliffe and G. Sluder, ""It takes two to tango": understanding how centrosome duplication is regulated throughout the cell cycle," Genes and Development, vol. 15, no. 10, pp. 1167-1181, 2001
-
(2001)
Genes and Development
, vol.15
, Issue.10
, pp. 1167-1181
-
-
Hinchcliffe, E.H.1
Sluder, G.2
-
37
-
-
80053553994
-
The centrosome cycle: Centriole biogenesis, duplication and inherent asymmetries
-
E. A. Nigg and T. Stearns, "The centrosome cycle: centriole biogenesis, duplication and inherent asymmetries," Nature Cell Biology, vol. 13, no. 10, pp. 1154-1160, 2011
-
(2011)
Nature Cell Biology
, vol.13
, Issue.10
, pp. 1154-1160
-
-
Nigg, E.A.1
Stearns, T.2
-
38
-
-
0034565442
-
Centrosomematuration
-
R. E. Palazzo, J. M. Vogel, B. J. Schnackenberg,D. R. Hull, and X. Wu, "Centrosomematuration," Current Topics inDevelopmental Biology, vol. 49, pp. 449-470, 1999
-
(1999)
Current Topics InDevelopmental Biology
, vol.49
, pp. 449-470
-
-
Palazzo, R.E.1
Vogel, J.M.2
Schnackenberg, B.J.3
Hull, D.R.4
Wu, X.5
-
39
-
-
84875220184
-
Showme your license, please: Deregulation of centriole duplicationmechanisms that promote amplification
-
C. W. Brownlee andG. C. Rogers, "Showme your license, please: deregulation of centriole duplicationmechanisms that promote amplification," Cellular and Molecular Life Sciences, vol. 70, no. 6, pp. 1021-1034, 2013
-
(2013)
Cellular and Molecular Life Sciences
, vol.70
, Issue.6
, pp. 1021-1034
-
-
Brownlee, C.W.1
Rogers, C.2
-
40
-
-
0032231397
-
Primary autosomal recessive microcephaly (MCPH1) maps to chromosome 8p22-pter
-
A. P. Jackson, D. P. McHale, D. A. Campbell et al., "Primary autosomal recessive microcephaly (MCPH1) maps to chromosome 8p22-pter,"The American Journal of Human Genetics, vol. 63, no. 2, pp. 541-546, 1998
-
(1998)
The American Journal of Human Genetics
, vol.63
, Issue.2
, pp. 541-546
-
-
Jackson, A.P.1
McHale, D.P.2
Campbell, D.A.3
-
41
-
-
84898006415
-
Emerging roles of MCPH1: Expedition from primary microcephaly to cancer
-
T. Venkatesh and P. S. Suresh, "Emerging roles of MCPH1: expedition from primary microcephaly to cancer," European Journal of Cell Biology, vol. 93, no. 3, pp. 98-105, 2014
-
(2014)
European Journal of Cell Biology
, vol.93
, Issue.3
, pp. 98-105
-
-
Venkatesh, T.1
Suresh, P.S.2
-
42
-
-
37848999008
-
Distinct BRCT domains in Mcph1/Brit1 mediate ionizing radiationinduced focus formation and centrosomal localization
-
L. J. Jeffers, B. J. Coull, S. J. Stack, andC. G. Morrison, "Distinct BRCT domains in Mcph1/Brit1 mediate ionizing radiationinduced focus formation and centrosomal localization," Oncogene, vol. 27, no. 1, pp. 139-144, 2008
-
(2008)
Oncogene
, vol.27
, Issue.1
, pp. 139-144
-
-
Jeffers, L.J.1
Coull, B.J.2
Stack, S.J.3
Morrison, C.G.4
-
43
-
-
51049100399
-
MCPH1/BRIT1 cooperates with E2F1 in the activation of checkpoint, DNA repair and apoptosis
-
S.-Z. Yang, F.-T. Lin, andW.-C. Lin, "MCPH1/BRIT1 cooperates with E2F1 in the activation of checkpoint, DNA repair and apoptosis," EMBO Reports, vol. 9, no. 9, pp. 907-915, 2008
-
(2008)
EMBO Reports
, vol.9
, Issue.9
, pp. 907-915
-
-
Yang, S.-Z.1
Lin, F.-T.2
Lin, W.-C.3
-
44
-
-
70349916401
-
BRITI/MCPHI is a multifunctional DNA damage responsive protein mediating DNA repairassociated chromatin remodeling
-
G. Peng and S.-Y. Lin, "BRITI/MCPHI is a multifunctional DNA damage responsive protein mediating DNA repairassociated chromatin remodeling," Cell Cycle, vol. 8, no. 19, pp. 3071-3072, 2009
-
(2009)
Cell Cycle
, vol.8
, Issue.19
, pp. 3071-3072
-
-
Peng, G.1
Lin, S.-Y.2
-
45
-
-
67650034511
-
BRIT1/MCPH1 links chromatin remodelling to DNA damage response
-
G. Peng, E.-K. Yim, H. Dai et al., "BRIT1/MCPH1 links chromatin remodelling to DNA damage response," Nature Cell Biology, vol. 11, no. 7, pp. 865-872, 2009
-
(2009)
Nature Cell Biology
, vol.11
, Issue.7
, pp. 865-872
-
-
Peng, G.1
Yim, E.-K.2
Dai, H.3
-
46
-
-
57649223685
-
Microcephalin/MCPH1 associates with the condensin II complex to function in homologous recombination repair
-
J. L. Wood, Y. Liang, K. Li, and J. Chen, "Microcephalin/MCPH1 associates with the condensin II complex to function in homologous recombination repair," Journal of Biological Chemistry, vol. 283, no. 43, pp. 29586-29592, 2008
-
(2008)
Journal of Biological Chemistry
, vol.283
, Issue.43
, pp. 29586-29592
-
-
Wood, J.L.1
Liang, Y.2
Li, K.3
Chen, J.4
-
47
-
-
32244446843
-
Misregulated chromosome condensation in MCPH1 primary microcephaly is mediated by condensin II
-
M. Trimborn, D. Schindler, H. Neitzel, and T. Hirano, "Misregulated chromosome condensation in MCPH1 primary microcephaly is mediated by condensin II," Cell Cycle, vol. 5, no. 3, pp. 322-326, 2006
-
(2006)
Cell Cycle
, vol.5
, Issue.3
, pp. 322-326
-
-
Trimborn, M.1
Schindler, D.2
Neitzel, H.3
Hirano, T.4
-
48
-
-
67649576600
-
Microcephalin and pericentrin regulate mitotic entry via centrosome-associated Chk1
-
A. Tibelius, J. Marhold, H. Zentgraf et al., "Microcephalin and pericentrin regulate mitotic entry via centrosome-associated Chk1," Journal of Cell Biology, vol. 185, no. 7, pp. 1149-1157, 2009
-
(2009)
Journal of Cell Biology
, vol.185
, Issue.7
, pp. 1149-1157
-
-
Tibelius, A.1
Marhold, J.2
Zentgraf, H.3
-
49
-
-
80455177095
-
MCPH1 regulates the neuroprogenitor division mode by coupling the centrosomal cycle with mitotic entry through the Chk1-Cdc25 pathway
-
R. Gruber, Z. Zhou, M. Sukchev, T. Joerss, P.-O. Frappart, and Z.-Q. Wang, "MCPH1 regulates the neuroprogenitor division mode by coupling the centrosomal cycle with mitotic entry through the Chk1-Cdc25 pathway," Nature Cell Biology, vol. 13, no. 11, pp. 1325-1334, 2011
-
(2011)
Nature Cell Biology
, vol.13
, Issue.11
, pp. 1325-1334
-
-
Gruber, R.1
Zhou, Z.2
Sukchev, M.3
Joerss, T.4
Frappart, P.-O.5
Wang, Z.-Q.6
-
50
-
-
76749170775
-
BRIT1/MCPH1 is essential for mitotic and meiotic recombination DNA repair and maintaining genomic stability in mice
-
Y. Liang, H. Gao, S.-Y. Lin et al., "BRIT1/MCPH1 is essential for mitotic and meiotic recombination DNA repair and maintaining genomic stability in mice," PLoS Genetics, vol. 6, no. 1, Article ID e1000826, 2010
-
(2010)
PLoS Genetics
, vol.6
, Issue.1
-
-
Liang, Y.1
Gao, H.2
Lin, S.-Y.3
-
51
-
-
77949532680
-
Establishment of a mouse model with misregulated chromosome condensation due to defective Mcph1 function
-
M. Trimborn, M. Ghani, D. J. Walther et al., "Establishment of a mouse model with misregulated chromosome condensation due to defective Mcph1 function," PLoS ONE, vol. 5, no. 2, Article ID e9242, 2010
-
(2010)
PLoS ONE
, vol.5
, Issue.2
-
-
Trimborn, M.1
Ghani, M.2
Walther, D.J.3
-
52
-
-
84880643551
-
DNA damage response in microcephaly development of MCPH1 mouse model
-
Z. W. Zhou, A. Tapias, C. Bruhn, R. Gruber, M. Sukchev, and Z. Q. Wang, "DNA damage response in microcephaly development of MCPH1 mouse model," DNA Repair, vol. 12, no. 8, pp. 645-655, 2013
-
(2013)
DNA Repair
, vol.12
, Issue.8
, pp. 645-655
-
-
Zhou, Z.W.1
Tapias, A.2
Bruhn, C.3
Gruber, R.4
Sukchev, M.5
Wang, Z.Q.6
-
53
-
-
78049336905
-
Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations
-
K. Bilgüvar, A. K. Öztürk, A. Louvi et al., "Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations," Nature, vol. 467, no. 7312, pp. 207-210, 2010
-
(2010)
Nature
, vol.467
, Issue.7312
, pp. 207-210
-
-
Bilgüvar, K.1
Öztürk, A.K.2
Louvi, A.3
-
54
-
-
84857112591
-
WDR62 missense mutation in a consanguineous family with primary microcephaly
-
C. A. Bacino, L. A. Arriola, J. Wiszniewska, and P. E. Bonnen, "WDR62 missense mutation in a consanguineous family with primary microcephaly,"American Journal ofMedicalGeneticsA, vol. 158, no. 3, pp. 622-625, 2012
-
(2012)
American Journal OfMedicalGeneticsA
, vol.158
, Issue.3
, pp. 622-625
-
-
Bacino, C.A.1
Arriola, L.A.2
Wiszniewska, J.3
Bonnen, P.E.4
-
55
-
-
84871986000
-
WD40-repeat protein 62 is a JNK-phosphorylated spindle pole protein required for spindle maintenance and timely mitotic progression
-
M. A. Bogoyevitch, Y. Y. C. Yeap, Z. Qu et al., "WD40-repeat protein 62 is a JNK-phosphorylated spindle pole protein required for spindle maintenance and timely mitotic progression," Journal of Cell Science, vol. 125, no. 21, pp. 5096-5109, 2012
-
(2012)
Journal of Cell Science
, vol.125
, Issue.21
, pp. 5096-5109
-
-
Bogoyevitch, M.A.1
Yeap, Y.Y.C.2
Qu, Z.3
-
56
-
-
84887368897
-
Abnormal centrosome and spindle morphology in a patient with autosomal recessive primary microcephaly type 2 due to compound heterozygous WDR62 genemutation
-
H. G. Farag, S. Froehler, K. Oexle et al., "Abnormal centrosome and spindle morphology in a patient with autosomal recessive primary microcephaly type 2 due to compound heterozygous WDR62 genemutation," Orphanet Journal of Rare Diseases, vol. 8, no. 1, article 178, 2013
-
(2013)
Orphanet Journal of Rare Diseases
, vol.8
, Issue.1
-
-
Farag, H.G.1
Froehler, S.2
Oexle, K.3
-
57
-
-
0035940962
-
Cell cycle regulation of c-Jun Nterminal kinase activity at the centrosomes
-
R. A. MacCorkle-Chosnek, A. VanHooser, D. W. Goodrich, B. R. Brinkley, and T.-H. Tan, "Cell cycle regulation of c-Jun Nterminal kinase activity at the centrosomes," Biochemical and Biophysical Research Communications, vol. 289, no. 1, pp. 173-180, 2001
-
(2001)
Biochemical and Biophysical Research Communications
, vol.289
, Issue.1
, pp. 173-180
-
-
Maccorkle-Chosnek, R.A.1
Vanhooser, A.2
Goodrich, D.W.3
Brinkley, B.R.4
Tan, T.-H.5
-
58
-
-
84896984490
-
Microcephalyassociated protein WDR62 regulates neurogenesis through JNK1 in the developing neocortex
-
D. Xu, F. Zhang, Y. Wang, Y. Sun, and Z. Xu, "Microcephalyassociated protein WDR62 regulates neurogenesis through JNK1 in the developing neocortex," Cell Reports, vol. 6, no. 1, pp. 104-116, 2014
-
(2014)
Cell Reports
, vol.6
, Issue.1
, pp. 104-116
-
-
Xu, D.1
Zhang, F.2
Wang, Y.3
Sun, Y.4
Xu, Z.5
-
59
-
-
84897955397
-
Microcephaly models in the developing zebrafish retinal neuroepithelium point to an underlying defect in metaphase progression
-
C. Novorol, J. Burkhardt, K. J. Wood et al., "Microcephaly models in the developing zebrafish retinal neuroepithelium point to an underlying defect in metaphase progression," Open Biology, vol. 3, no. 10, Article ID130065, 2013
-
(2013)
Open Biology
, vol.3
, Issue.10
-
-
Novorol, C.1
Burkhardt, J.2
Wood, K.J.3
-
60
-
-
84901765986
-
Microcephaly disease gene Wdr62 regulates mitotic progression of embryonic neural stem cells and brain size
-
J.-F. Chen, Y. Zhang, J. Wilde, K. C. Hansen, F. Lai, and L. Niswander, "Microcephaly disease gene Wdr62 regulates mitotic progression of embryonic neural stem cells and brain size," Nature Communications, vol. 5, article 3885, 2014
-
(2014)
Nature Communications
, vol.5
-
-
Chen, J.-F.1
Zhang, Y.2
Wilde, J.3
Hansen, K.C.4
Lai, F.5
Niswander, L.6
-
61
-
-
78650484299
-
Centrosomal protein of 192 kDa (Cep192) promotes centrosome-driven spindle assembly by engaging in organelle-specific Aurora A activation
-
V. Joukov, A. De Nicolo, A. Rodriguez, J. C. Walter, and D. M. Livingston, "Centrosomal protein of 192 kDa (Cep192) promotes centrosome-driven spindle assembly by engaging in organelle-specific Aurora A activation," Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 49, pp. 21022-21027, 2010
-
(2010)
Proceedings of the National Academy of Sciences of the United States of America
, vol.107
, Issue.49
, pp. 21022-21027
-
-
Joukov, V.1
De Nicolo, A.2
Rodriguez, A.3
Walter, J.C.4
Livingston, D.M.5
-
62
-
-
38749152785
-
CDK5RAP2 is a pericentriolar protein that functions in centrosomal attachment of the tubulin ring complex
-
K.-W. Fong, Y.-K. Choi, J. B. Rattner, and R. Z. Qi, "CDK5RAP2 is a pericentriolar protein that functions in centrosomal attachment of the tubulin ring complex," Molecular Biology of the Cell, vol. 19, no. 1, pp. 115-125, 2008
-
(2008)
Molecular Biology of the Cell
, vol.19
, Issue.1
, pp. 115-125
-
-
Fong, K.-W.1
Choi, Y.-K.2
Rattner, J.B.3
Qi, R.Z.4
-
63
-
-
78650115459
-
CDK5RAP2 stimulates microtubule nucleation by the tubulin ring complex
-
Y.-K. Choi, P. Liu, S. K. Sze, C. Dai, and R. Z. Qi, "CDK5RAP2 stimulates microtubule nucleation by the tubulin ring complex," Journal of Cell Biology, vol. 191, no. 6, pp. 1089-1095, 2010
-
(2010)
Journal of Cell Biology
, vol.191
, Issue.6
, pp. 1089-1095
-
-
Choi, Y.-K.1
Liu, P.2
Sze, S.K.3
Dai, C.4
Qi, R.Z.5
-
64
-
-
84863037821
-
PLK1 phosphorylation of pericentrin initiates centrosome maturation at the onset of mitosis
-
K. Lee and K. Rhee, "PLK1 phosphorylation of pericentrin initiates centrosome maturation at the onset of mitosis," Journal of Cell Biology, vol. 195, no. 7, pp. 1093-1101, 2011
-
(2011)
Journal of Cell Biology
, vol.195
, Issue.7
, pp. 1093-1101
-
-
Lee, K.1
Rhee, K.2
-
65
-
-
84897101480
-
Importance of the CEP215-pericentrin interaction for centrosome maturation during mitosis
-
S. Kim and K. Rhee, "Importance of the CEP215-pericentrin interaction for centrosome maturation during mitosis," PLoS ONE, vol. 9, no. 1,Article ID e87016, 2014
-
(2014)
PLoS ONE
, vol.9
, Issue.1
-
-
Kim, S.1
Rhee, K.2
-
66
-
-
79960921403
-
Cdk5rap2 exposes the centrosomal root of microcephaly syndromes
-
T. L. Megraw, J. T. Sharkey, and R. S. Nowakowski, "Cdk5rap2 exposes the centrosomal root of microcephaly syndromes," Trends in Cell Biology, vol. 21, no. 8, pp. 470-480, 2011
-
(2011)
Trends in Cell Biology
, vol.21
, Issue.8
, pp. 470-480
-
-
Megraw, T.L.1
Sharkey, J.T.2
Nowakowski, R.S.3
-
67
-
-
77955962579
-
CDK5RAP2 regulates centriole engagement and cohesion in mice
-
J. A. Barrera, L.-R. Kao, R. E. Hammer, J. Seemann, J. L. Fuchs, and T. L. Megraw, "CDK5RAP2 regulates centriole engagement and cohesion in mice," Developmental Cell, vol. 18, no. 6, pp. 913-926, 2010
-
(2010)
Developmental Cell
, vol.18
, Issue.6
, pp. 913-926
-
-
Barrera, J.A.1
Kao, L.-R.2
Hammer, R.E.3
Seemann, J.4
Fuchs, J.L.5
Megraw, T.L.6
-
68
-
-
38349078475
-
Cep68 and Cep215 (Cdk5rap2) are required for centrosome cohesion
-
S. Graser, Y.-D. Stierhof, and E. A. Nigg, "Cep68 and Cep215 (Cdk5rap2) are required for centrosome cohesion," Journal of Cell Science, vol. 120, no. 24, pp. 4321-4331, 2007
-
(2007)
Journal of Cell Science
, vol.120
, Issue.24
, pp. 4321-4331
-
-
Graser, S.1
Stierhof, Y.-D.2
Nigg, E.A.3
-
69
-
-
65949102982
-
CDK5RAP2 is required for spindle checkpoint function
-
X. Zhang,D. Liu, S. Lv et al., "CDK5RAP2 is required for spindle checkpoint function," Cell Cycle, vol. 8, no. 8, pp. 1206-1216, 2009
-
(2009)
Cell Cycle
, vol.8
, Issue.8
, pp. 1206-1216
-
-
Zhang, X.1
Liu, D.2
Lv, S.3
-
70
-
-
77952681049
-
Cdk5rap2 interacts with pericentrin to maintain the neural progenitor pool in the developing neocortex
-
J. J. Buchman, H.-C. Tseng, Y. Zhou, C. L. Frank, Z. Xie, and L.-H. Tsai, "Cdk5rap2 interacts with pericentrin to maintain the neural progenitor pool in the developing neocortex," Neuron, vol. 66, no. 3, pp. 386-402, 2010
-
(2010)
Neuron
, vol.66
, Issue.3
, pp. 386-402
-
-
Buchman, J.J.1
Tseng, H.-C.2
Zhou, Y.3
Frank, C.L.4
Xie, Z.5
Tsai, L.-H.6
-
71
-
-
77952201222
-
Cdk5rap2 regulates centrosome function and chromosome segregation in neuronal progenitors
-
S. B. Lizarraga, S. P. Margossian, M. H. Harris et al., "Cdk5rap2 regulates centrosome function and chromosome segregation in neuronal progenitors," Development, vol. 137, no. 11, pp. 1907-1917, 2010
-
(2010)
Development
, vol.137
, Issue.11
, pp. 1907-1917
-
-
Lizarraga, S.B.1
Margossian, S.P.2
Harris, M.H.3
-
72
-
-
84870323152
-
Kinetochore KMN network gene CASC5 mutated in primary microcephaly
-
A. Genin, J. Desir, N. Lambert et al., "Kinetochore KMN network gene CASC5 mutated in primary microcephaly," Human Molecular Genetics, vol. 21, no. 24, pp. 5306-5317, 2012
-
(2012)
Human Molecular Genetics
, vol.21
, Issue.24
, pp. 5306-5317
-
-
Genin, A.1
Desir, J.2
Lambert, N.3
-
73
-
-
39449096363
-
KNL1 and the CENP-H/I/K complex coordinately direct kinetochore assembly in vertebrates
-
I. M. Cheeseman, T. Hori, T. Fukagawa, and A. Desai, "KNL1 and the CENP-H/I/K complex coordinately direct kinetochore assembly in vertebrates," Molecular Biology of the Cell, vol. 19, no. 2, pp. 587-594, 2008
-
(2008)
Molecular Biology of the Cell
, vol.19
, Issue.2
, pp. 587-594
-
-
Cheeseman, I.M.1
Hori, T.2
Fukagawa, T.3
Desai, A.4
-
74
-
-
80855128195
-
Structure of a Blinkin-BUBR1 complex reveals an interaction crucial for kinetochore-mitotic checkpoint regulation via an unanticipated binding Site
-
V. M. Bolanos-Garcia, T. Lischetti, D. Matak-Vinkovic et al., "Structure of a Blinkin-BUBR1 complex reveals an interaction crucial for kinetochore-mitotic checkpoint regulation via an unanticipated binding Site," Structure, vol. 19,no. 11-12, pp. 1691-1700, 2011
-
(2011)
Structure
, vol.19
, Issue.11-12
, pp. 1691-1700
-
-
Bolanos-Garcia, V.M.1
Lischetti, T.2
Matak-Vinkovic, D.3
-
75
-
-
84859983402
-
Structural analysis reveals features of the spindle checkpoint kinase Bub1-kinetochore subunit Knl1 interaction
-
V. Krenn, A. Wehenkel, X. Li, S. Santaguida, and A. Musacchio, "Structural analysis reveals features of the spindle checkpoint kinase Bub1-kinetochore subunit Knl1 interaction," Journal of Cell Biology, vol. 196, no. 4, pp. 451-467, 2012
-
(2012)
Journal of Cell Biology
, vol.196
, Issue.4
, pp. 451-467
-
-
Krenn, V.1
Wehenkel, A.2
Li, X.3
Santaguida, S.4
Musacchio, A.5
-
76
-
-
35649019314
-
Human Blinkin/ AF15q14 is required for chromosome alignment and the mitotic checkpoint through direct interaction with Bub1 and BubR1
-
T. Kiyomitsu, C. Obuse, and M. Yanagida, " Human Blinkin/ AF15q14 is required for chromosome alignment and the mitotic checkpoint through direct interaction with Bub1 and BubR1," Developmental Cell, vol. 13, no. 5, pp. 663-676, 2007
-
(2007)
Developmental Cell
, vol.13
, Issue.5
, pp. 663-676
-
-
Kiyomitsu, T.1
Obuse, C.2
Yanagida, M.3
-
77
-
-
84875599678
-
TheKMNprotein network-Chief conductors of the kinetochore orchestra
-
D. Varma and E. D. Salmon, "TheKMNprotein network-Chief conductors of the kinetochore orchestra," Journal of Cell Science, vol. 125, no. 24, pp. 5927-5936, 2012
-
(2012)
Journal of Cell Science
, vol.125
, Issue.24
, pp. 5927-5936
-
-
Varma, D.1
Salmon, E.D.2
-
78
-
-
0242607170
-
Protein-truncating mutations in ASPM cause variable reduction in brain size
-
J. Bond, S. Scott, D. J. Hampshire et al., "Protein-truncating mutations in ASPM cause variable reduction in brain size," The American Journal of Human Genetics, vol. 73, no. 5, pp. 1170-1177, 2003
-
(2003)
The American Journal of Human Genetics
, vol.73
, Issue.5
, pp. 1170-1177
-
-
Bond, J.1
Scott, S.2
Hampshire, D.J.3
-
79
-
-
4844225810
-
Genetic analysis of primary microcephaly in Indian families: Novel ASPM mutations
-
A. Kumar, S. H. Blanton, M. Babu, M. Markandaya, and S. C. Girimaji, "Genetic analysis of primary microcephaly in Indian families: novel ASPM mutations," Clinical Genetics, vol. 66, no. 4, pp. 341-348, 2004
-
(2004)
Clinical Genetics
, vol.66
, Issue.4
, pp. 341-348
-
-
Kumar, A.1
Blanton, S.H.2
Babu, M.3
Markandaya, M.4
Girimaji, S.C.5
-
80
-
-
2442686701
-
A translocation breakpoint disrupts the ASPM gene in a patient with primary microcephaly
-
B. Pichon, S. Vankerckhove,G. Bourrouillou, L. Duprez, andM. J. Abramowicz, "A translocation breakpoint disrupts the ASPM gene in a patient with primary microcephaly," European Journal of Human Genetics, vol. 12, no. 5, pp. 419-421, 2004
-
(2004)
European Journal of Human Genetics
, vol.12
, Issue.5
, pp. 419-421
-
-
Pichon, B.1
Vankerckhove, S.2
Bourrouillou, G.3
Duprez, L.4
Abramowicz, M.J.5
-
81
-
-
24944465271
-
ASPM mutations identified in patients with primary microcephaly and seizures
-
J. Shen, W. Eyaid, G. H. Mochida et al., "ASPM mutations identified in patients with primary microcephaly and seizures," Journal of Medical Genetics, vol. 42, no. 9, pp. 725-729, 2005
-
(2005)
Journal of Medical Genetics
, vol.42
, Issue.9
, pp. 725-729
-
-
Shen, J.1
Eyaid, W.2
Mochida, G.H.3
-
82
-
-
33646417060
-
Genetic studies of autosomal recessive primary microcephaly in 33 Pakistani families: Novel sequence variants in ASPMgene
-
A. Gul, M. J. Hassan, S. Mahmood et al., "Genetic studies of autosomal recessive primary microcephaly in 33 Pakistani families: novel sequence variants in ASPMgene," Neurogenetics, vol. 7, no. 2, pp. 105-110, 2006
-
(2006)
Neurogenetics
, vol.7
, Issue.2
, pp. 105-110
-
-
Gul, A.1
Hassan, M.J.2
Mahmood, S.3
-
83
-
-
34548550321
-
Novel protein-truncating mutations in the ASPM gene in families with autosomal recessive primary microcephaly
-
A. Gul, M. Tariq, M. N. Khan, M. J. Hassan, G. Ali, and W. Ahmad, "Novel protein-truncating mutations in the ASPM gene in families with autosomal recessive primary microcephaly," Journal of Neurogenetics, vol. 21, no. 3, pp. 153-163, 2007
-
(2007)
Journal of Neurogenetics
, vol.21
, Issue.3
, pp. 153-163
-
-
Gul, A.1
Tariq, M.2
Khan, M.N.3
Hassan, M.J.4
Ali, G.5
Ahmad, W.6
-
84
-
-
44449112275
-
Primary microcephaly with ASPM mutation shows simplified cortical gyration with antero-posterior gradient pre-and post-natally
-
J. Desir,M. Cassart, P. David, P. van Bogaert, andM. Abramowicz, "Primary microcephaly with ASPM mutation shows simplified cortical gyration with antero-posterior gradient pre-and post-natally," The American Journal of Medical Genetics Part A, vol. 146, no. 11, pp. 1439-1443, 2008
-
(2008)
The American Journal of Medical Genetics Part A
, vol.146
, Issue.11
, pp. 1439-1443
-
-
Desir, J.1
Cassart, M.2
David, P.3
Van Bogaert, P.4
Abramowicz, M.5
-
85
-
-
66849135267
-
Compound heterozygous aspmmutations in pakistaniMCPHfamilies
-
F. Muhammad, S. M. Baig, L. Hansen et al., "Compound heterozygous aspmmutations in pakistaniMCPHfamilies,"The American Journal of MedicalGenetics Part A, vol. 149, no. 5, pp. 926-930, 2009
-
(2009)
The American Journal of MedicalGenetics Part A
, vol.149
, Issue.5
, pp. 926-930
-
-
Muhammad, F.1
Baig, S.M.2
Hansen, L.3
-
86
-
-
65949089612
-
The molecular landscape of ASPM mutations in primary microcephaly
-
A. K. Nicholas, E. A. Swanson, J. J. Cox et al., "The molecular landscape of ASPM mutations in primary microcephaly," Journal of Medical Genetics, vol. 46, no. 4, pp. 249-253, 2009
-
(2009)
Journal of Medical Genetics
, vol.46
, Issue.4
, pp. 249-253
-
-
Nicholas, A.K.1
Swanson, E.A.2
Cox, J.J.3
-
87
-
-
67650594943
-
Compound heterozygous ASPM mutations associated with microcephaly and simplified cortical gyration in a consanguineous Algerian family
-
A. Saadi, G. Borck, N. Boddaert et al., "Compound heterozygous ASPM mutations associated with microcephaly and simplified cortical gyration in a consanguineous Algerian family," European Journal ofMedical Genetics, vol. 52, no. 4, pp. 180-184, 2009
-
(2009)
European Journal OfMedical Genetics
, vol.52
, Issue.4
, pp. 180-184
-
-
Saadi, A.1
Borck, G.2
Boddaert, N.3
-
88
-
-
78649634667
-
A clinical andmolecular genetic study of 112 Iranian familieswith primary microcephaly
-
H. Darvish, S. Esmaeeli-Nieh, G. B. Monajemi et al., "A clinical andmolecular genetic study of 112 Iranian familieswith primary microcephaly," Journal of Medical Genetics, vol. 47, no. 12, pp. 823-828, 2010
-
(2010)
Journal of Medical Genetics
, vol.47
, Issue.12
, pp. 823-828
-
-
Darvish, H.1
Esmaeeli-Nieh, S.2
Monajemi, G.B.3
-
89
-
-
77952930630
-
Mutation analysis of theASPMgene in 18 Pakistani families with autosomal recessive primary microcephaly
-
R. Kousar, H. Nawaz, M. Khurshid et al., "Mutation analysis of theASPMgene in 18 Pakistani families with autosomal recessive primary microcephaly," Journal of Child Neurology, vol. 25, no. 6, pp. 715-720, 2010
-
(2010)
Journal of Child Neurology
, vol.25
, Issue.6
, pp. 715-720
-
-
Kousar, R.1
Nawaz, H.2
Khurshid, M.3
-
90
-
-
0033659637
-
Primary autosomal recessive microcephaly: MCPH5 maps to 1q25-q32
-
C. R. Jamieson, J.-P. Fryns, J. Jacobs, G. Matthijs, and M. J. Abramowicz, "Primary autosomal recessive microcephaly: MCPH5 maps to 1q25-q32," The American Journal of Human Genetics, vol. 67, no. 6, pp. 1575-1577, 2000
-
(2000)
The American Journal of Human Genetics
, vol.67
, Issue.6
, pp. 1575-1577
-
-
Jamieson, C.R.1
Fryns, J.-P.2
Jacobs, J.3
Matthijs, G.4
Abramowicz, M.J.5
-
91
-
-
33746659376
-
CP110 cooperates with two calcium-binding proteins to regulate cytokinesis and genome stability
-
W. Y. Tsang, A. Spektor, D. J. Luciano et al., "CP110 cooperates with two calcium-binding proteins to regulate cytokinesis and genome stability,"Molecular Biology of the Cell, vol. 17, no. 8, pp. 3423-3434, 2006
-
(2006)
Molecular Biology of the Cell
, vol.17
, Issue.8
, pp. 3423-3434
-
-
Tsang, W.Y.1
Spektor, A.2
Luciano, D.J.3
-
92
-
-
77958577298
-
Human ASPM participates in spindle organisation, spindle orientation and cytokinesis
-
J. Higgins, C. Midgley, A. M. Bergh et al., "Human ASPM participates in spindle organisation, spindle orientation and cytokinesis," BMC Cell Biology, vol. 11, article 85, 2010
-
(2010)
BMC Cell Biology
, vol.11
-
-
Higgins, J.1
Midgley, C.2
Bergh, A.M.3
-
93
-
-
33745883798
-
Aspm specifically maintains symmetric proliferative divisions of neuroepithelial cells
-
J. L. Fish, Y. Kosodo, W. Enard, S. Paabo, and W. B. Huttner, "Aspm specifically maintains symmetric proliferative divisions of neuroepithelial cells," Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 27, pp. 10438-10443, 2006
-
(2006)
Proceedings of the National Academy of Sciences of the United States of America
, vol.103
, Issue.27
, pp. 10438-10443
-
-
Fish, J.L.1
Kosodo, Y.2
Enard, W.3
Paabo, S.4
Huttner, W.B.5
-
94
-
-
0025115595
-
Mutations at the asp locus of Drosophila lead to multiple free centrosomes in syncytial embryos, but restrict centrosome duplication in larval neuroblasts
-
C. Gonzalez, R. D. C. Saunders, J. Casal et al., "Mutations at the asp locus of Drosophila lead to multiple free centrosomes in syncytial embryos, but restrict centrosome duplication in larval neuroblasts," Journal of Cell Science, vol. 96, no. 4, pp. 605-616, 1990
-
(1990)
Journal of Cell Science
, vol.96
, Issue.4
, pp. 605-616
-
-
Gonzalez, C.1
Saunders, R.D.C.2
Casal, J.3
-
95
-
-
0036500492
-
A requirement for the abnormal spindle protein to organise microtubules of the central spindle for cytokinesis in Drosophila
-
M. G. Riparbelli, G. Callaini, D. M. Glover, and M. do Carmo Avides, "A requirement for the abnormal spindle protein to organise microtubules of the central spindle for cytokinesis in Drosophila," Journal of Cell Science, vol. 115, no. 5, pp. 913-922, 2002
-
(2002)
Journal of Cell Science
, vol.115
, Issue.5
, pp. 913-922
-
-
Riparbelli, M.G.1
Callaini, G.2
Glover, D.M.3
Do Carmo Avides, M.4
-
96
-
-
78049310300
-
Mutations in mouse Aspm (abnormal spindle-like microcephaly associated) cause not only microcephaly but also major defects in the germline
-
J. N. Pulvers, J. Bryk, J. L. Fish et al., "Mutations in mouse Aspm (abnormal spindle-like microcephaly associated) cause not only microcephaly but also major defects in the germline," Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 38, pp. 16595-16600, 2010
-
(2010)
Proceedings of the National Academy of Sciences of the United States of America
, vol.107
, Issue.38
, pp. 16595-16600
-
-
Pulvers, J.N.1
Bryk, J.2
Fish, J.L.3
-
97
-
-
0025122399
-
Abnormal meiotic spindles cause a cascade of defects during spermatogenesis in asp males of Drosophila
-
J. Casal, C. Gonzalez, F. Wandosell, J. Avila, and P. Ripoll, "Abnormal meiotic spindles cause a cascade of defects during spermatogenesis in asp males of Drosophila," Development, vol. 108, no. 2, pp. 251-260, 1990
-
(1990)
Development
, vol.108
, Issue.2
, pp. 251-260
-
-
Casal, J.1
Gonzalez, C.2
Wandosell, F.3
Avila, J.4
Ripoll, P.5
-
98
-
-
84904514346
-
Disruption of Aspm causes microcephaly with abnormal neuronal differentiation
-
A. Fujimori, K. Itoh, S. Goto et al., "Disruption of Aspm causes microcephaly with abnormal neuronal differentiation," Brain and Development, vol. 36, no. 8, pp. 661-669, 2014
-
(2014)
Brain and Development
, vol.36
, Issue.8
, pp. 661-669
-
-
Fujimori, A.1
Itoh, K.2
Goto, S.3
-
99
-
-
84869029058
-
The microtubule-associated protein ASPM regulates spindle assembly and meiotic progression in mouse oocytes
-
X.-L. Xu, W. Ma, Y.-B. Zhu et al., "The microtubule-associated protein ASPM regulates spindle assembly and meiotic progression in mouse oocytes," PLoS ONE, vol. 7, no. 11, Article ID e49303, 2012
-
(2012)
PLoS ONE
, vol.7
, Issue.11
-
-
Xu, X.-L.1
Ma, W.2
Zhu, Y.-B.3
-
100
-
-
25444514085
-
The microcephaly ASPM gene is expressed in proliferating tissues and encodes for a mitotic spindle protein
-
N. Kouprina, A. Pavlicek,N. K. Collins et al., "The microcephaly ASPM gene is expressed in proliferating tissues and encodes for a mitotic spindle protein," Human Molecular Genetics, vol. 14, no. 15, pp. 2155-2165, 2005
-
(2005)
Human Molecular Genetics
, vol.14
, Issue.15
, pp. 2155-2165
-
-
Kouprina, N.1
Pavlicek, A.2
Collins, N.K.3
-
101
-
-
48749130712
-
Expression analysis of the autosomal recessive primary microcephaly genesMCPH1 (microcephalin) andMCPH5 (ASPM, abnormal spindle-like, microcephaly associated) in human malignant gliomas
-
C. Hagemann, J. Anacker, S. Gerngras et al., "Expression analysis of the autosomal recessive primary microcephaly genesMCPH1 (microcephalin) andMCPH5 (ASPM, abnormal spindle-like, microcephaly associated) in human malignant gliomas," Oncology Reports, vol. 20, no. 2, pp. 301-308, 2008
-
(2008)
Oncology Reports
, vol.20
, Issue.2
, pp. 301-308
-
-
Hagemann, C.1
Anacker, J.2
Gerngras, S.3
-
102
-
-
51049115975
-
ASPM is a novel marker for vascular invasion, early recurrence, and poor prognosis of hepatocellular carcinoma
-
S.-Y. Lin, H.-W. Pan, S.-H. Liu et al., "ASPM is a novel marker for vascular invasion, early recurrence, and poor prognosis of hepatocellular carcinoma," Clinical Cancer Research, vol. 14, no. 15, pp. 4814-4820, 2008
-
(2008)
Clinical Cancer Research
, vol.14
, Issue.15
, pp. 4814-4820
-
-
Lin, S.-Y.1
Pan, H.-W.2
Liu, S.-H.3
-
103
-
-
84901377246
-
Deregulation of microcephalin and ASPM expression are correlated with epithelial ovarian cancer progression
-
R. Alsiary, A. Brüning-Richardson, J. Bond, E. E. Morrison, N. Wilkinson, and S. M. Bell, "Deregulation of microcephalin and ASPM expression are correlated with epithelial ovarian cancer progression," PLoS ONE, vol. 9, no. 5,Article ID e97059, 2014
-
(2014)
PLoS ONE
, vol.9
, Issue.5
-
-
Alsiary, R.1
Brüning-Richardson, A.2
Bond, J.3
Morrison, E.E.4
Wilkinson, N.5
Bell, S.M.6
-
104
-
-
84862765284
-
Towards a molecular architecture of centriole assembly
-
P. Gönczy, "Towards a molecular architecture of centriole assembly," Nature Reviews Molecular Cell Biology, vol. 13, no. 7, pp. 425-435, 2012
-
(2012)
Nature Reviews Molecular Cell Biology
, vol.13
, Issue.7
, pp. 425-435
-
-
Gönczy, P.1
-
105
-
-
24144463731
-
Centrosome duplication and nematodes: Recent insights from an old relationship
-
S. Leidel and P. Gönczy, "Centrosome duplication and nematodes: recent insights from an old relationship," Developmental Cell, vol. 9, no. 3, pp. 317-325, 2005
-
(2005)
Developmental Cell
, vol.9
, Issue.3
, pp. 317-325
-
-
Leidel, S.1
Gönczy, P.2
-
106
-
-
34547420857
-
Plk4-induced centriole biogenesis in human cells
-
J. Kleylein-Sohn, J. Westendorf, M. le Clech, R. Habedanck, Y.-D. Stierhof, and E. A. Nigg, "Plk4-induced centriole biogenesis in human cells," Developmental Cell, vol. 13, no. 2, pp. 190-202, 2007
-
(2007)
Developmental Cell
, vol.13
, Issue.2
, pp. 190-202
-
-
Kleylein-Sohn, J.1
Westendorf, J.2
Le Clech, M.3
Habedanck, R.4
Stierhof, Y.-D.5
Nigg, E.A.6
-
107
-
-
84880720569
-
Human cep192 and cep152 cooperate in plk4 recruitment and centriole duplication
-
K. F. Sonnen, A. M. Gabryjonczyk, E. Anselm, E. A. Nigg, and Y. D. Stierhof, "Human cep192 and cep152 cooperate in plk4 recruitment and centriole duplication," Journal of Cell Science, vol. 126, no. 14, pp. 3223-3233, 2013
-
(2013)
Journal of Cell Science
, vol.126
, Issue.14
, pp. 3223-3233
-
-
Sonnen, K.F.1
Gabryjonczyk, A.M.2
Anselm, E.3
Nigg, E.A.4
Stierhof, Y.D.5
-
108
-
-
84890282862
-
Hierarchical recruitment of Plk4 and regulation of centriole biogenesis by two centrosomal scaffolds, Cep192 and Cep152
-
T.-S. Kim, J.-E. Park, A. Shukla et al., "Hierarchical recruitment of Plk4 and regulation of centriole biogenesis by two centrosomal scaffolds, Cep192 and Cep152," Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 50, pp. E4849-E4857, 2013
-
(2013)
Proceedings of the National Academy of Sciences of the United States of America
, vol.110
, Issue.50
, pp. E4849-E4857
-
-
Kim, T.-S.1
Park, J.-E.2
Shukla, A.3
-
109
-
-
78349243322
-
Cep152 interacts with Plk4 and is required for centriole duplication
-
E. M. Hatch, A. Kulukian, A. J. Holland, D. W. Cleveland, and T. Stearns, "Cep152 interacts with Plk4 and is required for centriole duplication," Journal of Cell Biology, vol. 191, no. 4, pp. 721-729, 2010
-
(2010)
Journal of Cell Biology
, vol.191
, Issue.4
, pp. 721-729
-
-
Hatch, E.M.1
Kulukian, A.2
Holland, A.J.3
Cleveland, D.W.4
Stearns, T.5
-
110
-
-
78349263512
-
Cep152 acts as a scaffold for recruitment of Plk4 and CPAP to the centrosome
-
O. Cizmecioglu, M. Arnold, R. Bahtz et al., "Cep152 acts as a scaffold for recruitment of Plk4 and CPAP to the centrosome," Journal of Cell Biology, vol. 191, no. 4, pp. 731-739, 2010
-
(2010)
Journal of Cell Biology
, vol.191
, Issue.4
, pp. 731-739
-
-
Cizmecioglu, O.1
Arnold, M.2
Bahtz, R.3
-
111
-
-
77957982182
-
Asterless is a scaffold for the onset of centriole assembly
-
N. S. Dzhindzhev, Q. D. Yu, K. Weiskopf et al., "Asterless is a scaffold for the onset of centriole assembly," Nature, vol. 467, no. 7316, pp. 714-718, 2010
-
(2010)
Nature
, vol.467
, Issue.7316
, pp. 714-718
-
-
Dzhindzhev, N.S.1
Yu, Q.D.2
Weiskopf, K.3
-
112
-
-
79952280152
-
Structures of SAS-6 suggest its organization in centrioles
-
M. van Breugel, M. Hirono, A. Andreeva et al., "Structures of SAS-6 suggest its organization in centrioles," Science, vol. 331, no. 6021, pp. 1196-1199, 2011
-
(2011)
Science
, vol.331
, Issue.6021
, pp. 1196-1199
-
-
Van Breugel, M.1
Hirono, M.2
Andreeva, A.3
-
113
-
-
79651473154
-
Structural basis of the 9-fold symmetry of centrioles
-
D. Kitagawa, I. Vakonakis, N. Olieric et al., "Structural basis of the 9-fold symmetry of centrioles," Cell, vol. 144, no. 3, pp. 364-375, 2011
-
(2011)
Cell
, vol.144
, Issue.3
, pp. 364-375
-
-
Kitagawa, D.1
Vakonakis, I.2
Olieric, N.3
-
114
-
-
84869236675
-
SAS-6 coiled-coil structure and interaction with SAS-5 suggest a regulatory mechanism in C. Elegans centriole assembly
-
R. Qiao, G. Cabral, M. M. Lettman, A. Dammermann, and G. Dong, "SAS-6 coiled-coil structure and interaction with SAS-5 suggest a regulatory mechanism in C. elegans centriole assembly," The EMBO Journal, vol. 31, no. 22, pp. 4334-4347, 2012
-
(2012)
The EMBO Journal
, vol.31
, Issue.22
, pp. 4334-4347
-
-
Qiao, R.1
Cabral, G.2
Lettman, M.M.3
Dammermann, A.4
Dong, G.5
-
115
-
-
84877804830
-
Direct binding of SAS-6 to ZYG-1 recruits SAS-6 to the mother centriole for cartwheel assembly
-
M. Lettman, Y. Wong, V. Viscardi et al., "Direct binding of SAS-6 to ZYG-1 recruits SAS-6 to the mother centriole for cartwheel assembly," Developmental Cell, vol. 25, no. 3, pp. 284-298, 2013
-
(2013)
Developmental Cell
, vol.25
, Issue.3
, pp. 284-298
-
-
Lettman, M.1
Wong, Y.2
Viscardi, V.3
-
116
-
-
33748440647
-
Sequential protein recruitment in C. Elegans centriole formation
-
M. Delattre, C. Canard, and P. Gönczy, "Sequential protein recruitment in C. elegans centriole formation," Current Biology, vol. 16, no. 18, pp. 1844-1849, 2006
-
(2006)
Current Biology
, vol.16
, Issue.18
, pp. 1844-1849
-
-
Delattre, M.1
Canard, C.2
Gönczy, P.3
-
117
-
-
33845250249
-
Centriole assembly in Caenorhabditis elegans
-
L. Pelletier, E. O'Toole, A. Schwager, A. A. Hyman, and T. Müller-Reichert, "Centriole assembly in Caenorhabditis elegans," Nature, vol. 444, no. 7119, pp. 619-623, 2006
-
(2006)
Nature
, vol.444
, Issue.7119
, pp. 619-623
-
-
Pelletier, L.1
O'toole, E.2
Schwager, A.3
Hyman, A.A.4
Müller-Reichert, T.5
-
118
-
-
82455187961
-
The human microcephaly protein STIL interacts with CPAP and is required for procentriole formation
-
C. J. C. Tang, S. Y. Lin, W. B. Hsu et al., "The human microcephaly protein STIL interacts with CPAP and is required for procentriole formation," The EMBO Journal, vol. 30, no. 23, pp. 4790-4804, 2011
-
(2011)
The EMBO Journal
, vol.30
, Issue.23
, pp. 4790-4804
-
-
Tang, C.J.C.1
Lin, S.Y.2
Hsu, W.B.3
-
119
-
-
2542483497
-
Identification of a novel microtubule-destabilizing motif in CPAP that binds to tubulin heterodimers and inhibits microtubule assembly
-
L.-Y. Hung, H.-L. Chen, C.-W. Chang, B.-R. Li, and T. K. Tang, "Identification of a novel microtubule-destabilizing motif in CPAP that binds to tubulin heterodimers and inhibits microtubule assembly,"Molecular Biology of the Cell, vol. 15, no. 6, pp. 2697-2706, 2004
-
(2004)
Molecular Biology of the Cell
, vol.15
, Issue.6
, pp. 2697-2706
-
-
Hung, L.-Y.1
Chen, H.-L.2
Chang, C.-W.3
Li, B.-R.4
Tang, T.K.5
-
120
-
-
48849104246
-
Functional characterization of the microtubulebinding and-destabilizing domains of CPAP and d-SAS-4
-
W.-B. Hsu, L.-Y. Hung, C.-J. C. Tang, C.-L. Su, Y. Chang, and T. K. Tang, "Functional characterization of the microtubulebinding and-destabilizing domains of CPAP and d-SAS-4," Experimental Cell Research, vol. 314, no. 14, pp. 2591-2602, 2008
-
(2008)
Experimental Cell Research
, vol.314
, Issue.14
, pp. 2591-2602
-
-
Hsu, W.-B.1
Hung, L.-Y.2
Tang, C.-J.C.3
Su, C.-L.4
Chang, Y.5
Tang, T.K.6
-
121
-
-
84880703323
-
CEP120 and SPICE1 cooperate with CPAP in centriole elongation
-
D. Comartin, G. D. Gupta, E. Fussner et al., "CEP120 and SPICE1 cooperate with CPAP in centriole elongation," Current Biology, vol. 23, no. 14, pp. 1360-1366, 2013
-
(2013)
Current Biology
, vol.23
, Issue.14
, pp. 1360-1366
-
-
Comartin, D.1
Gupta, G.D.2
Fussner, E.3
-
122
-
-
84880773554
-
CEP120 interacts with CPAP and positively regulates centriole elongation
-
Y.-N. Lin, C.-T. Wu, Y.-C. Lin et al., "CEP120 interacts with CPAP and positively regulates centriole elongation," Journal of Cell Biology, vol. 202, no. 2, pp. 211-219, 2013
-
(2013)
Journal of Cell Biology
, vol.202
, Issue.2
, pp. 211-219
-
-
Lin, Y.-N.1
Wu, C.-T.2
Lin, Y.-C.3
-
123
-
-
84876416327
-
Human microcephaly protein CEP135 binds to hSAS-6 and CPAP, and is required for centriole assembly
-
Y. C. Lin, C. W. Chang,W. B. Hsu et al., "Human microcephaly protein CEP135 binds to hSAS-6 and CPAP, and is required for centriole assembly," The EMBO Journal, vol. 32, no. 8, pp. 1141-1154, 2013
-
(2013)
The EMBO Journal
, vol.32
, Issue.8
, pp. 1141-1154
-
-
Lin, Y.C.1
Chang, C.W.2
Hsu, W.B.3
-
124
-
-
67349279485
-
CPAP is a cell-cycle regulated protein that controls centriole length
-
C.-J. C. Tang, R.-H. Fu, K.-S. Wu, W.-B. Hsu, and T. K. Tang, "CPAP is a cell-cycle regulated protein that controls centriole length," Nature Cell Biology, vol. 11, no. 7, pp. 825-831, 2009
-
(2009)
Nature Cell Biology
, vol.11
, Issue.7
, pp. 825-831
-
-
Tang, C.-J.C.1
Fu, R.-H.2
Wu, K.-S.3
Hsu, W.-B.4
Tang, T.K.5
-
125
-
-
67349233018
-
Control of centriole length by CPAP and CP110
-
T. I. Schmidt, J. Kleylein-Sohn, J. Westendorf et al., "Control of centriole length by CPAP and CP110," Current Biology, vol. 19, no. 12, pp. 1005-1011, 2009
-
(2009)
Current Biology
, vol.19
, Issue.12
, pp. 1005-1011
-
-
Schmidt, T.I.1
Kleylein-Sohn, J.2
Westendorf, J.3
-
126
-
-
67349228738
-
Overly long centrioles and defective cell division upon excess of the SAS-4-related protein CPAP
-
G. Kohlmaier, J. Loncarek, X. Meng et al., "Overly long centrioles and defective cell division upon excess of the SAS-4-related protein CPAP," Current Biology, vol. 19, no. 12, pp. 1012-1018, 2009
-
(2009)
Current Biology
, vol.19
, Issue.12
, pp. 1012-1018
-
-
Kohlmaier, G.1
Loncarek, J.2
Meng, X.3
-
127
-
-
28844477797
-
Depletion of CPAP by RNAi disrupts centrosome integrity and induces multipolar spindles
-
J.-H. Cho, C.-J. Chang, C.-Y. Chen, and T. K. Tang, "Depletion of CPAP by RNAi disrupts centrosome integrity and induces multipolar spindles," Biochemical and Biophysical Research Communications, vol. 339, no. 3, pp. 742-747, 2006
-
(2006)
Biochemical and Biophysical Research Communications
, vol.339
, Issue.3
, pp. 742-747
-
-
Cho, J.-H.1
Chang, C.-J.2
Chen, C.-Y.3
Tang, T.K.4
-
128
-
-
79959547445
-
Sas-4 provides a scaffold for cytoplasmic complexes and tethers them in a centrosome
-
J. Gopalakrishnan, V. Mennella, S. Blachon et al., "Sas-4 provides a scaffold for cytoplasmic complexes and tethers them in a centrosome," Nature Communications, vol. 2, article 359, 2011
-
(2011)
Nature Communications
, vol.2
-
-
Gopalakrishnan, J.1
Mennella, V.2
Blachon, S.3
-
129
-
-
0033800738
-
Protein 4. 1 R-135 interacts with a novel centrosomal protein (CPAP) which is associated with the tubulin complex
-
L.-Y. Hung, C.-J. C. Tang, and T. K. Tang, "Protein 4. 1 R-135 interacts with a novel centrosomal protein (CPAP) which is associated with the tubulin complex," Molecular and Cellular Biology, vol. 20, no. 20, pp. 7813-7825, 2000
-
(2000)
Molecular and Cellular Biology
, vol.20
, Issue.20
, pp. 7813-7825
-
-
Hung, L.-Y.1
Tang, C.-J.C.2
Tang, T.K.3
-
130
-
-
84864884285
-
Tubulin nucleotide status controls Sas-4-dependent pericentriolarmaterial recruitment
-
J. Gopalakrishnan, Y.-C. Chim, A. Ha et al., "Tubulin nucleotide status controls Sas-4-dependent pericentriolarmaterial recruitment," Nature Cell Biology, vol. 14, no. 8, pp. 865-873, 2012
-
(2012)
Nature Cell Biology
, vol.14
, Issue.8
, pp. 865-873
-
-
Gopalakrishnan, J.1
Chim, Y.-C.2
Ha, A.3
-
131
-
-
84895759250
-
Human-specific hypomethylation of CENPJ, a key brain size regulator
-
L. Shi, Q. Lin, and B. Su, "Human-specific hypomethylation of CENPJ, a key brain size regulator," Molecular Biology and Evolution, vol. 31, no. 3, pp. 594-604, 2014
-
(2014)
Molecular Biology and Evolution
, vol.31
, Issue.3
, pp. 594-604
-
-
Shi, L.1
Lin, Q.2
Su, B.3
-
132
-
-
84870715883
-
Disruption of mouse Cenpj, a regulator of centriole biogenesis, phenocopies Seckel syndrome
-
R. E. McIntyre, P. L. Chavali, O. Ismail et al., "Disruption of mouse Cenpj, a regulator of centriole biogenesis, phenocopies Seckel syndrome," PLoS Genetics, vol. 8, no. 11, Article ID e1003022, 2012
-
(2012)
PLoS Genetics
, vol.8
, Issue.11
-
-
McIntyre, R.E.1
Chavali, P.L.2
Ismail, O.3
-
133
-
-
79953748137
-
Step to CEP152: Uncovering a new mutation implicated in Seckel syndrome
-
S. Ladha, "Step to CEP152: uncovering a new mutation implicated in Seckel syndrome," Clinical Genetics, vol. 79, no. 5, pp. 428-430, 2011
-
(2011)
Clinical Genetics
, vol.79
, Issue.5
, pp. 428-430
-
-
Ladha, S.1
-
134
-
-
84861401641
-
STIL is required for centriole duplication in human cells
-
J. Vulprecht, A. David, A. Tibelius et al., "STIL is required for centriole duplication in human cells," Journal of Cell Science, vol. 125, no. 5, pp. 1353-1362, 2012
-
(2012)
Journal of Cell Science
, vol.125
, Issue.5
, pp. 1353-1362
-
-
Vulprecht, J.1
David, A.2
Tibelius, A.3
-
135
-
-
84861414443
-
Cellcycle-regulated expression of STIL controls centriole number in human cells
-
C. Arquint, K. F. Sonnen, Y.-D. Stierhof, and E. A. Nigg, "Cellcycle-regulated expression of STIL controls centriole number in human cells," Journal of Cell Science, vol. 125, no. 5, pp. 1342-1352, 2012
-
(2012)
Journal of Cell Science
, vol.125
, Issue.5
, pp. 1342-1352
-
-
Arquint, C.1
Sonnen, K.F.2
Stierhof, Y.-D.3
Nigg, E.A.4
-
136
-
-
31144463968
-
The Polo kinase Plk4 functions in centriole duplication
-
R. Habedanck, Y.-D. Stierhof, C. J. Wilkinson, and E. A. Nigg, "The Polo kinase Plk4 functions in centriole duplication," Nature Cell Biology, vol. 7, no. 11, pp. 1140-1146, 2005
-
(2005)
Nature Cell Biology
, vol.7
, Issue.11
, pp. 1140-1146
-
-
Habedanck, R.1
Stierhof, Y.-D.2
Wilkinson, C.J.3
Nigg, E.A.4
-
137
-
-
13944278891
-
SAS-6 defines a protein family required for centrosome duplication in C. Elegans and in human cells
-
S. Leidel, M. Delattre, L. Cerutti, K. Baumer, and P. Gönczy, "SAS-6 defines a protein family required for centrosome duplication in C. elegans and in human cells," Nature Cell Biology, vol. 7, no. 2, pp. 115-125, 2005
-
(2005)
Nature Cell Biology
, vol.7
, Issue.2
, pp. 115-125
-
-
Leidel, S.1
Delattre, M.2
Cerutti, L.3
Baumer, K.4
Gönczy, P.5
-
138
-
-
84856770762
-
Spindle positioning in human cells relies on proper centriole formation and on the microcephaly proteins CPAP and STIL
-
D. Kitagawa, G. Kohlmaier, D. Keller et al., "Spindle positioning in human cells relies on proper centriole formation and on the microcephaly proteins CPAP and STIL," Journal of Cell Science, vol. 124, no. 22, pp. 3884-3893, 2011
-
(2011)
Journal of Cell Science
, vol.124
, Issue.22
, pp. 3884-3893
-
-
Kitagawa, D.1
Kohlmaier, G.2
Keller, D.3
-
139
-
-
34547897627
-
The zebra fish cassiopeia mutant reveals that SIL is required for mitotic spindle organization
-
K. L. Pfaff, C. T. Straub, K. Chiang, D. M. Bear, Y. Zhou, and L. I. Zon, "The zebra fish cassiopeia mutant reveals that SIL is required for mitotic spindle organization," Molecular and Cellular Biology, vol. 27, no. 16, pp. 5887-5897, 2007
-
(2007)
Molecular and Cellular Biology
, vol.27
, Issue.16
, pp. 5887-5897
-
-
Pfaff, K.L.1
Straub, C.T.2
Chiang, K.3
Bear, D.M.4
Zhou, Y.5
Zon, L.I.6
-
140
-
-
0033578069
-
The SIL gene is required formouse embryonic axial development and left-right specification
-
S. Izraeli, L. A. Lowe, V. L. Bertness et al., "The SIL gene is required formouse embryonic axial development and left-right specification," Nature, vol. 399, no. 6737, pp. 691-694, 1999
-
(1999)
Nature
, vol.399
, Issue.6737
, pp. 691-694
-
-
Izraeli, S.1
Lowe, L.A.2
Bertness, V.L.3
-
141
-
-
56249109443
-
A novel function of CEP135 as a platform protein of C-NAP1 for its centriolar localization
-
K. Kim, S. Lee, J. Chang, and K. Rhee, "A novel function of CEP135 as a platform protein of C-NAP1 for its centriolar localization," Experimental Cell Research, vol. 314, no. 20, pp. 3692-3700, 2008
-
(2008)
Experimental Cell Research
, vol.314
, Issue.20
, pp. 3692-3700
-
-
Kim, K.1
Lee, S.2
Chang, J.3
Rhee, K.4
-
142
-
-
84884910067
-
CEP proteins: The knights of centrosome dynasty
-
A. Kumar, V. Rajendran, R. Sethumadhavan, and R. Purohit, "CEP proteins: the knights of centrosome dynasty," Protoplasma, vol. 250, no. 5, pp. 965-983, 2013
-
(2013)
Protoplasma
, vol.250
, Issue.5
, pp. 965-983
-
-
Kumar, A.1
Rajendran, V.2
Sethumadhavan, R.3
Purohit, R.4
-
143
-
-
84883311901
-
Abnormal centrosomal structure and duplication in Cep135-deficient vertebrate cells
-
B. Inanç, M. Pütz, P. Lalor et al., "Abnormal centrosomal structure and duplication in Cep135-deficient vertebrate cells," Molecular Biology of the Cell, vol. 24,no. 17, pp. 2645-2654, 2013
-
(2013)
Molecular Biology of the Cell
, vol.24
, Issue.17
, pp. 2645-2654
-
-
Inanç, B.1
Pütz, M.2
Lalor, P.3
-
144
-
-
84865103367
-
BLD10/CEP135 is a microtubule-associated protein that controls the formation of the flagellum central microtubule pair
-
Z. Carvalho-Santos, P. Machado, I. Alvarez-Martins et al., "BLD10/CEP135 is a microtubule-associated protein that controls the formation of the flagellum central microtubule pair," Developmental Cell, vol. 23, no. 2, pp. 412-424, 2012
-
(2012)
Developmental Cell
, vol.23
, Issue.2
, pp. 412-424
-
-
Carvalho-Santos, Z.1
Machado, P.2
Alvarez-Martins, I.3
-
145
-
-
84871251253
-
Drosophila Cep135/Bld10 maintains proper centriole structure but is dispensable for cartwheel formation
-
H. Roque, A. Wainman, J. Richens, K. Kozyrska,A. Franz, and J. W. Raff, "Drosophila Cep135/Bld10 maintains proper centriole structure but is dispensable for cartwheel formation," Journal of Cell Science, vol. 125, no. 23, pp. 5881-5886, 2012
-
(2012)
Journal of Cell Science
, vol.125
, Issue.23
, pp. 5881-5886
-
-
Roque, H.1
Wainman, A.2
Richens, J.3
Kozyrska, K.4
Franz, A.5
Raff, J.W.6
-
146
-
-
2942633899
-
Bld10p, a novel protein essential for basal body assembly in Chlamydomonas: Localization to the cartwheel, the first ninefold symmetrical structure appearing during assembly
-
K. Matsuura, P. A. Lefebvre, R. Kamiya, and M. Hirono, "Bld10p, a novel protein essential for basal body assembly in Chlamydomonas: localization to the cartwheel, the first ninefold symmetrical structure appearing during assembly," Journal of Cell Biology, vol. 165, no. 5, pp. 663-671, 2004
-
(2004)
Journal of Cell Biology
, vol.165
, Issue.5
, pp. 663-671
-
-
Matsuura, K.1
Lefebvre, P.A.2
Kamiya, R.3
Hirono, M.4
-
147
-
-
35348893241
-
Bld10p constitutes the cartwheel-spoke tip and stabilizes the 9-fold symmetry of the centriole
-
M. Hiraki, Y. Nakazawa, R. Kamiya, and M. Hirono, "Bld10p constitutes the cartwheel-spoke tip and stabilizes the 9-fold symmetry of the centriole," Current Biology, vol. 17, no. 20, pp. 1778-1783, 2007
-
(2007)
Current Biology
, vol.17
, Issue.20
, pp. 1778-1783
-
-
Hiraki, M.1
Nakazawa, Y.2
Kamiya, R.3
Hirono, M.4
-
148
-
-
77951062449
-
Basal body duplication in paramecium: The key role of Bld10 in assembly and stability of the Cartwheel
-
M. Jerka-Dziadosz, D. Gogendeau, C. Klotz, J. Cohen, J. Beisson, and F. Koll, "Basal body duplication in paramecium: the key role of Bld10 in assembly and stability of the Cartwheel," Cytoskeleton, vol. 67, no. 3, pp. 161-171, 2010
-
(2010)
Cytoskeleton
, vol.67
, Issue.3
, pp. 161-171
-
-
Jerka-Dziadosz, M.1
Gogendeau, D.2
Klotz, C.3
Cohen, J.4
Beisson, J.5
Koll, F.6
-
149
-
-
84871211229
-
Bld10/Cep135 stabilizes basal bodies to resist cilia-generated forces
-
B. A. Bayless, T. H. Giddings Jr., M. Winey, and C. G. Pearson, "Bld10/Cep135 stabilizes basal bodies to resist cilia-generated forces," Molecular Biology of the Cell, vol. 23, no. 24, pp. 4820-4832, 2012
-
(2012)
Molecular Biology of the Cell
, vol.23
, Issue.24
, pp. 4820-4832
-
-
Bayless, B.A.1
Giddings, T.H.2
Winey, M.3
Pearson, C.G.4
-
150
-
-
66249106747
-
Drosophila Bld10 is a centriolar protein that regulates centriole, basal body, and motile cilium assembly
-
V. Mottier-Pavie and T. L. Megraw, "Drosophila Bld10 is a centriolar protein that regulates centriole, basal body, and motile cilium assembly," Molecular Biology of the Cell, vol. 20, no. 10, pp. 2605-2614, 2009
-
(2009)
Molecular Biology of the Cell
, vol.20
, Issue.10
, pp. 2605-2614
-
-
Mottier-Pavie, V.1
Megraw, T.L.2
-
151
-
-
78651248502
-
CEP152 is a genome maintenance protein disrupted in Seckel syndrome
-
E. Kalay, G. Yigit, Y. Aslan et al., "CEP152 is a genome maintenance protein disrupted in Seckel syndrome," Nature Genetics, vol. 43, no. 1, pp. 23-26, 2011
-
(2011)
Nature Genetics
, vol.43
, Issue.1
, pp. 23-26
-
-
Kalay, E.1
Yigit, G.2
Aslan, Y.3
-
152
-
-
84873716036
-
Building a centriole
-
T. Avidor-Reiss and J. Gopalakrishnan, "Building a centriole," Current Opinion in Cell Biology, vol. 25, no. 1, pp. 72-77, 2013
-
(2013)
Current Opinion in Cell Biology
, vol.25
, Issue.1
, pp. 72-77
-
-
Avidor-Reiss, T.1
Gopalakrishnan, J.2
-
153
-
-
84880791304
-
Cep63 and cep152 cooperate to ensure centriole duplication
-
N. J. Brown, M. Marjanovic, J. Lüders, T. H. Stracker, and V. Costanzo, "Cep63 and cep152 cooperate to ensure centriole duplication," PLoS ONE, vol. 8, no. 7,Article ID e69986, 2013
-
(2013)
PLoS ONE
, vol.8
, Issue.7
-
-
Brown, N.J.1
Marjanovic, M.2
Lüders, J.3
Stracker, T.H.4
Costanzo, V.5
-
154
-
-
84873409469
-
Selective chemical crosslinking reveals a Cep57-Cep63-Cep152 centrosomal complex
-
G. Lukinavicius, D. Lavogina, M. Orpinell et al., "Selective chemical crosslinking reveals a Cep57-Cep63-Cep152 centrosomal complex," Current Biology, vol. 23, no. 3, pp. 265-270, 2013
-
(2013)
Current Biology
, vol.23
, Issue.3
, pp. 265-270
-
-
Lukinavicius, G.1
Lavogina, D.2
Orpinell, M.3
-
155
-
-
65549170452
-
Identification and characterization of a novel nuclear protein complex involved in nuclear hormone receptor-mediated gene regulation
-
S. Garapaty, C.-F. Xu, P. Trojer, M. A. Mahajan, T. A. Neubert, and H. H. Samuels, "Identification and characterization of a novel nuclear protein complex involved in nuclear hormone receptor-mediated gene regulation," The Journal of Biological Chemistry, vol. 284, no. 12, pp. 7542-7552, 2009
-
(2009)
The Journal of Biological Chemistry
, vol.284
, Issue.12
, pp. 7542-7552
-
-
Garapaty, S.1
Xu, C.-F.2
Trojer, P.3
Mahajan, M.A.4
Neubert, T.A.5
Samuels, H.H.6
-
156
-
-
84870025256
-
Microcephaly gene links trithorax and REST/NRSF to control neural stemcell proliferation and differentiation
-
Y. J. Yang, A. E. Baltus, R. S. Mathew et al., "Microcephaly gene links trithorax and REST/NRSF to control neural stemcell proliferation and differentiation," Cell, vol. 151, no. 5, pp. 1097-1112, 2012
-
(2012)
Cell
, vol.151
, Issue.5
, pp. 1097-1112
-
-
Yang, Y.J.1
Baltus, A.E.2
Mathew, R.S.3
-
157
-
-
84877904456
-
Mutation in PHC1 implicates chromatin remodeling in primary microcephaly pathogenesis
-
S. Awad, M. S. Al-Dosari, N. Al-Yacoub et al., "Mutation in PHC1 implicates chromatin remodeling in primary microcephaly pathogenesis," Human Molecular Genetics, vol. 22, no. 11, pp. 2200-2213, 2013
-
(2013)
Human Molecular Genetics
, vol.22
, Issue.11
, pp. 2200-2213
-
-
Awad, S.1
Al-Dosari, M.S.2
Al-Yacoub, N.3
-
158
-
-
27844562705
-
Depletion of licensing inhibitor geminin causes centrosome overduplication and mitotic defects
-
K.-E. K. Tachibana, M. A. Gonzalez, G. Guarguaglini, E. A. Nigg, and R. A. Laskey, "Depletion of licensing inhibitor geminin causes centrosome overduplication and mitotic defects," EMBO Reports, vol. 6, no. 11, pp. 1052-1057, 2005
-
(2005)
EMBO Reports
, vol.6
, Issue.11
, pp. 1052-1057
-
-
Tachibana, K.-E.K.1
Gonzalez, M.A.2
Guarguaglini, G.3
Nigg, E.A.4
Laskey, R.A.5
-
159
-
-
64749095806
-
Geminin is partially localized to the centrosome and plays a role in proper centrosome duplication
-
F. Lu, R. Lan, H. Zhang, Q. Jiang, and C. Zhang, "Geminin is partially localized to the centrosome and plays a role in proper centrosome duplication," Biology of the Cell, vol. 101, no. 5, pp. 273-285, 2009
-
(2009)
Biology of the Cell
, vol.101
, Issue.5
, pp. 273-285
-
-
Lu, F.1
Lan, R.2
Zhang, H.3
Jiang, Q.4
Zhang, C.5
-
160
-
-
84880803198
-
Control of cell cycle transcription during G1 and S phases
-
C. Bertoli, J. M. Skotheim, and R. A. M. de Bruin, "Control of cell cycle transcription during G1 and S phases," Nature Reviews Molecular Cell Biology, vol. 14, no. 8, pp. 518-528, 2013
-
(2013)
Nature Reviews Molecular Cell Biology
, vol.14
, Issue.8
, pp. 518-528
-
-
Bertoli, C.1
Skotheim, J.M.2
De Bruin, R.A.M.3
-
161
-
-
0032485070
-
Active cdk6 complexes are predominantly nuclear and represent only a minority of the cdk6 in T cells
-
D. Mahony, D. A. Parry, and E. Lees, "Active cdk6 complexes are predominantly nuclear and represent only a minority of the cdk6 in T cells," Oncogene, vol. 16, no. 5, pp. 603-611, 1998
-
(1998)
Oncogene
, vol.16
, Issue.5
, pp. 603-611
-
-
Mahony, D.1
Parry, D.A.2
Lees, E.3
-
162
-
-
69749120549
-
Distinct subcellular distribution of cyclin dependent kinase 6
-
D. M. Kohrt, J. I. Crary, V. Gocheva, P. W. Hinds, and M. J. Grossel, "Distinct subcellular distribution of cyclin dependent kinase 6," Cell Cycle, vol. 8, no. 17, pp. 2837-2843, 2009
-
(2009)
Cell Cycle
, vol.8
, Issue.17
, pp. 2837-2843
-
-
Kohrt, D.M.1
Crary, J.I.2
Gocheva, V.3
Hinds, P.W.4
Grossel, M.J.5
-
163
-
-
0028823601
-
Anovel cytoplasmic substrate for cdk4 and cdk6 innormal and malignant epithelial derived cells
-
T. K. Kwon, M. A. Buchholz, E. W. Gabrielson, andA. A. Nordin, "Anovel cytoplasmic substrate for cdk4 and cdk6 innormal and malignant epithelial derived cells," Oncogene, vol. 11, no. 10, pp. 2077-2083, 1995
-
(1995)
Oncogene
, vol.11
, Issue.10
, pp. 2077-2083
-
-
Kwon, T.K.1
Buchholz, M.A.2
Gabrielson, E.W.3
Nordin, A.A.4
-
164
-
-
4444247138
-
Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6
-
M. Malumbres, R. Sotillo, D. Santamaría et al., "Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6," Cell, vol. 118, no. 4, pp. 493-504, 2004
-
(2004)
Cell
, vol.118
, Issue.4
, pp. 493-504
-
-
Malumbres, M.1
Sotillo, R.2
Santamará, D.3
-
165
-
-
84876786420
-
Pax6 Exerts regional control of cortical progenitor proliferation via direct repression of Cdk6 and Hypophosphorylation of pRb
-
D. Mi, C. Carr, P. A. Georgala et al., "Pax6 Exerts regional control of cortical progenitor proliferation via direct repression of Cdk6 and Hypophosphorylation of pRb," Neuron, vol. 78, no. 2, pp. 269-284, 2013
-
(2013)
Neuron
, vol.78
, Issue.2
, pp. 269-284
-
-
Mi, D.1
Carr, C.2
Georgala, P.A.3
-
166
-
-
79953794428
-
Cdk6-dependent regulation of G1 length controls adult neurogenesis
-
P. Beukelaers, R. Vandenbosch, N. Caron et al., "Cdk6-dependent regulation of G1 length controls adult neurogenesis," Stem Cells, vol. 29, no. 4, pp. 713-724, 2011
-
(2011)
Stem Cells
, vol.29
, Issue.4
, pp. 713-724
-
-
Beukelaers, P.1
Vandenbosch, R.2
Caron, N.3
-
167
-
-
38949087294
-
Mutations in the pericentrin (PCNT) gene cause primordial dwarfism
-
A. Rauch, C. T. Thiel, D. Schindler et al., "Mutations in the pericentrin (PCNT) gene cause primordial dwarfism," Science, vol. 319, no. 5864, pp. 816-819, 2008
-
(2008)
Science
, vol.319
, Issue.5864
, pp. 816-819
-
-
Rauch, A.1
Thiel, C.T.2
Schindler, D.3
-
168
-
-
84880332168
-
Centrosome amplification causes microcephaly
-
V. Marthiens, M. A. Rujano, C. Pennetier, S. Tessier, P. Paul-Gilloteaux, and R. Basto, "Centrosome amplification causes microcephaly," Nature Cell Biology, vol. 15, no. 7, pp. 731-740, 2013
-
(2013)
Nature Cell Biology
, vol.15
, Issue.7
, pp. 731-740
-
-
Marthiens, V.1
Rujano, M.A.2
Pennetier, C.3
Tessier, S.4
Paul-Gilloteaux, P.5
Basto, R.6
-
169
-
-
0032752596
-
The second locus for autosomal recessive primary microcephaly (MCPH2) maps to chromosome 19q13. 1-13. 2
-
E. Roberts, A. P. Jackson, A. C. Carradice et al., "The second locus for autosomal recessive primary microcephaly (MCPH2) maps to chromosome 19q13. 1-13. 2," European Journal of Human Genetics, vol. 7, no. 7, pp. 815-820, 1999
-
(1999)
European Journal of Human Genetics
, vol.7
, Issue.7
, pp. 815-820
-
-
Roberts, E.1
Jackson, A.P.2
Carradice, A.C.3
-
170
-
-
0033912946
-
A third novel locus for primary autosomal recessive microcephaly maps to chromosome 9q34
-
L. Moynihan, A. P. Jackson, E. Roberts et al., "A third novel locus for primary autosomal recessive microcephaly maps to chromosome 9q34," The American Journal of Human Genetics, vol. 66, no. 2, pp. 724-727, 2000
-
(2000)
The American Journal of Human Genetics
, vol.66
, Issue.2
, pp. 724-727
-
-
Moynihan, L.1
Jackson, A.P.2
Roberts, E.3
-
171
-
-
0033361792
-
Primary autosomal recessive microcephaly: Homozygosity mapping of MCPH4 to chromosome 15
-
C. R. Jamieson, C. Govaerts, and M. J. Abramowicz, "Primary autosomal recessive microcephaly: homozygosity mapping of MCPH4 to chromosome 15," The American Journal of Human Genetics, vol. 65, no. 5, pp. 1465-1469, 1999
-
(1999)
The American Journal of Human Genetics
, vol.65
, Issue.5
, pp. 1465-1469
-
-
Jamieson, C.R.1
Govaerts, C.2
Abramowicz, M.J.3
-
172
-
-
0033660432
-
A fifth locus for primary autosomal recessive microcephaly maps to chromosome 1q31
-
L. Pattison, Y. J. Crow, V. J. Deeble et al., "A fifth locus for primary autosomal recessive microcephaly maps to chromosome 1q31," American Journal of Human Genetics, vol. 67, no. 6, pp. 1578-1580, 2000.
-
(2000)
American Journal of Human Genetics
, vol.67
, Issue.6
, pp. 1578-1580
-
-
Pattison, L.1
Crow, Y.J.2
Deeble, V.J.3
|