메뉴 건너뛰기




Volumn 9, Issue AUGUST, 2015, Pages

Unsupervised learning of digit recognition using spike-timing-dependent plasticity

Author keywords

Classification; Digit recognition; Spiking neural network; STDP; Unsupervised learning

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPLEX NETWORKS; INTELLIGENT AGENTS; MAMMALS; NEURAL NETWORKS; NEURONS; PATTERN RECOGNITION; UNSUPERVISED LEARNING;

EID: 84940184638     PISSN: None     EISSN: 16625188     Source Type: Journal    
DOI: 10.3389/fncom.2015.00099     Document Type: Article
Times cited : (1336)

References (49)
  • 1
    • 84898967676 scopus 로고    scopus 로고
    • Temporally asymmetric hebbian learning, spike timing and neuronal response variability
    • Abbott, L., and Song, S. (1999). Temporally asymmetric hebbian learning, spike timing and neuronal response variability. Adv. Neural Inform. Process. Syst. 11, 69-75.
    • (1999) Adv. Neural Inform. Process. Syst , vol.11 , pp. 69-75
    • Abbott, L.1    Song, S.2
  • 2
    • 84895835403 scopus 로고    scopus 로고
    • Tunable low energy, compact and high performance neuromorphic circuit for spike-based synaptic plasticity
    • Azghadi, M. R., Iannella, N., Al-Sarawi, S., and Abbott, D. (2014). Tunable low energy, compact and high performance neuromorphic circuit for spike-based synaptic plasticity. PLoS ONE 9:e88326. doi: 10.1371/journal.pone.0088326
    • (2014) PLoS ONE , vol.9
    • Azghadi, M.R.1    Iannella, N.2    Al-Sarawi, S.3    Abbott, D.4
  • 3
    • 85015899515 scopus 로고    scopus 로고
    • The price of performance
    • Barroso, L. A. (2005). The price of performance. Queue 3, 48-53. doi: 10.1145/1095408.1095420
    • (2005) Queue , vol.3 , pp. 48-53
    • Barroso, L.A.1
  • 4
    • 84900521434 scopus 로고    scopus 로고
    • Neurogrid: A mixed-analog-digital multichip system for large-scale neural simulations
    • Benjamin, B. V., Gao, P., McQuinn, E., Choudhary, S., Chandrasekaran, A. R., Bussat, J., et al. (2014). Neurogrid: a mixed-analog-digital multichip system for large-scale neural simulations. Proc. IEEE 102, 699-716. doi: 10.1109/JPROC.2014.2313565
    • (2014) Proc. IEEE , vol.102 , pp. 699-716
    • Benjamin, B.V.1    Gao, P.2    McQuinn, E.3    Choudhary, S.4    Chandrasekaran, A.R.5    Bussat, J.6
  • 5
    • 84883397026 scopus 로고    scopus 로고
    • Categorization and decision-making in a neurobiologically plausible spiking network using a stdp-like learning rule
    • Beyeler, M., Dutt, N. D., and Krichmar, J. L. (2013). Categorization and decision-making in a neurobiologically plausible spiking network using a stdp-like learning rule. Neural Netw. 48, 109-124. doi: 10.1016/j.neunet.2013.07.012
    • (2013) Neural Netw , vol.48 , pp. 109-124
    • Beyeler, M.1    Dutt, N.D.2    Krichmar, J.L.3
  • 6
    • 0032535029 scopus 로고    scopus 로고
    • Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type
    • Bi, G.-Q., and Poo, M.-M. (1998). Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18, 10464-10472.
    • (1998) J. Neurosci , vol.18 , pp. 10464-10472
    • Bi, G.-Q.1    Poo, M.-M.2
  • 7
    • 84861765357 scopus 로고    scopus 로고
    • Extraction of temporally correlated features from dynamic vision sensors with spike-timing-dependent plasticity
    • Bichler, O., Querlioz, D., Thorpe, S. J., Bourgoin, J.-P., and Gamrat, C. (2012). Extraction of temporally correlated features from dynamic vision sensors with spike-timing-dependent plasticity. Neural Netw. 32, 339-348. doi: 10.1016/j.neunet.2012.02.022
    • (2012) Neural Netw , vol.32 , pp. 339-348
    • Bichler, O.1    Querlioz, D.2    Thorpe, S.J.3    Bourgoin, J.-P.4    Gamrat, C.5
  • 8
    • 36248934673 scopus 로고    scopus 로고
    • Learning real-world stimuli in a neural network with spike-driven synaptic dynamics
    • Brader, J. M., Senn, W., and Fusi, S. (2007). Learning real-world stimuli in a neural network with spike-driven synaptic dynamics. Neural Comput. 19, 2881-2912. doi: 10.1162/neco.2007.19.11.2881
    • (2007) Neural Comput , vol.19 , pp. 2881-2912
    • Brader, J.M.1    Senn, W.2    Fusi, S.3
  • 9
    • 84872575253 scopus 로고    scopus 로고
    • Learning feature representations with k-means
    • eds G. Montavon, G. B. Orr, and K. R. Müller (Berlin; Heidelberg: Springer)
    • Coates, A., and Ng, A. Y. (2012). "Learning feature representations with k-means," in Neural Networks: Tricks of the Trade, Vol. 7700, eds G. Montavon, G. B. Orr, and K. R. Müller (Berlin; Heidelberg: Springer), 561-580. doi: 10.1007/978-3-642-35289-8_30
    • (2012) Neural Networks: Tricks of the Trade , vol.7700 , pp. 561-580
    • Coates, A.1    Ng, A.Y.2
  • 10
    • 84908471912 scopus 로고    scopus 로고
    • Efficient implementation of stdp rules on spinnaker neuromorphic hardware
    • (Beijing: IEEE)
    • Diehl, P. U., and Cook, M. (2014). "Efficient implementation of stdp rules on spinnaker neuromorphic hardware," in Neural Networks (IJCNN), 2014 International Joint Conference on (Beijing: IEEE), 4288-4295.
    • (2014) Neural Networks (IJCNN), 2014 International Joint Conference on , pp. 4288-4295
    • Diehl, P.U.1    Cook, M.2
  • 12
    • 85135470835 scopus 로고
    • A growing neural gas network learns topologies
    • Fritzke, B. (1995). A growing neural gas network learns topologies. Adv. Neural Inform. Process. Syst. 7, 625-632.
    • (1995) Adv. Neural Inform. Process. Syst , vol.7 , pp. 625-632
    • Fritzke, B.1
  • 13
    • 84921798570 scopus 로고    scopus 로고
    • A framework for plasticity implementation on the spinnaker neural architecture
    • Galluppi, F., Lagorce, X., Stromatias, E., Pfeiffer, M., Plana, L. A., Furber, S. B., et al. (2014). A framework for plasticity implementation on the spinnaker neural architecture. Front. Neurosci. 8:429. doi: 10.3389/fnins.2014.00429
    • (2014) Front. Neurosci , vol.8 , pp. 429
    • Galluppi, F.1    Lagorce, X.2    Stromatias, E.3    Pfeiffer, M.4    Plana, L.A.5    Furber, S.B.6
  • 14
    • 0001353951 scopus 로고
    • The role of weight normalization in competitive learning
    • Goodhill, G. J., and Barrow, H. G. (1994). The role of weight normalization in competitive learning. Neural Comput. 6, 255-269. doi: 10.1162/neco.1994.6.2.255
    • (1994) Neural Comput , vol.6 , pp. 255-269
    • Goodhill, G.J.1    Barrow, H.G.2
  • 15
    • 84885847922 scopus 로고    scopus 로고
    • Brian: A simulator for spiking neural networks in python
    • Goodman, D., and Brette, R. (2008). Brian: a simulator for spiking neural networks in python. Front. Neuroinform. 2:5. doi: 10.3389/neuro.11.005.2008
    • (2008) Front. Neuroinform , vol.2 , pp. 5
    • Goodman, D.1    Brette, R.2
  • 16
    • 84877744982 scopus 로고    scopus 로고
    • Homeostatic plasticity in bayesian spiking networks as expectation maximization with posterior constraints
    • eds P. Bartlett, F. C. N. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger (Lake Tahoe, CA: Nips Foundation)
    • Habenschuss, S., Bill, J., and Nessler, B. (2012). "Homeostatic plasticity in bayesian spiking networks as expectation maximization with posterior constraints," in Advances in Neural Information Processing Systems, eds P. Bartlett, F. C. N. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger (Lake Tahoe, CA: Nips Foundation), 773-781.
    • (2012) Advances in Neural Information Processing Systems , pp. 773-781
    • Habenschuss, S.1    Bill, J.2    Nessler, B.3
  • 17
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton, G. E., and Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science 313, 504-507. doi: 10.1126/science.1127647
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 18
    • 84907384663 scopus 로고    scopus 로고
    • Improved margin multi-class classification using dendritic neurons with morphological learning
    • (Melbourne, VIC: IEEE)
    • Hussain, S., Liu, S.-C., and Basu, A. (2014). "Improved margin multi-class classification using dendritic neurons with morphological learning," in Circuits and Systems (ISCAS), 2014 IEEE International Symposium on (Melbourne, VIC: IEEE), 2640-2643.
    • (2014) Circuits and Systems (ISCAS), 2014 IEEE International Symposium on , pp. 2640-2643
    • Hussain, S.1    Liu, S.-C.2    Basu, A.3
  • 19
    • 33244465845 scopus 로고    scopus 로고
    • A vlsi array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity
    • Indiveri, G., Chicca, E., and Douglas, R. (2006). A vlsi array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity. Neural Netw. IEEE Trans. 17, 211-221. doi: 10.1109/TNN.2005.860850
    • (2006) Neural Netw. IEEE Trans , vol.17 , pp. 211-221
    • Indiveri, G.1    Chicca, E.2    Douglas, R.3
  • 20
    • 77950476261 scopus 로고    scopus 로고
    • Brain and high metabolic rate organ mass: Contributions to resting energy expenditure beyond fat-free mass
    • Javed, F., He, Q., Davidson, L. E., Thornton, J. C., Albu, J., Boxt, L., et al. (2010). Brain and high metabolic rate organ mass: contributions to resting energy expenditure beyond fat-free mass. Am. J. Clin. Nutr. 91, 907-912. doi: 10.3945/ajcn.2009.28512
    • (2010) Am. J. Clin. Nutr , vol.91 , pp. 907-912
    • Javed, F.1    He, Q.2    Davidson, L.E.3    Thornton, J.C.4    Albu, J.5    Boxt, L.6
  • 21
    • 84865066077 scopus 로고    scopus 로고
    • Ph.D. thesis, Diss., Eidgenössische Technische Hochschule ETH Zürich, Nr. 20194, 2012
    • Jug, F. (2012). On Competition and Learning in Cortical Structures. Ph.D. thesis, Diss., Eidgenössische Technische Hochschule ETH Zürich, Nr. 20194, 2012.
    • (2012) On Competition and Learning in Cortical Structures
    • Jug, F.1
  • 24
    • 0025489075 scopus 로고
    • The self-organizing map
    • Kohonen, T. (1990). The self-organizing map. Proc. IEEE 78, 1464-1480.
    • (1990) Proc. IEEE , vol.78 , pp. 1464-1480
    • Kohonen, T.1
  • 26
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document recognition. Proc. IEEE86, 2278-2324. doi: 10.1109/5.726791
    • (1998) Proc. IEEE , vol.86 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 28
    • 38849206826 scopus 로고    scopus 로고
    • A 128 × 128 120 db 15 μs latency asynchronous temporal contrast vision sensor
    • Lichtsteiner, P., Posch, C., and Delbruck, T. (2008). A 128 × 128 120 db 15 μs latency asynchronous temporal contrast vision sensor. Solid State Circ. IEEE J. 43, 566-576. doi: 10.1109/JSSC.2007.914337
    • (2008) Solid State Circ. IEEE J , vol.43 , pp. 566-576
    • Lichtsteiner, P.1    Posch, C.2    Delbruck, T.3
  • 29
    • 33847275584 scopus 로고    scopus 로고
    • Unsupervised learning of visual features through spike timing dependent plasticity
    • Masquelier, T., and Thorpe, S. J. (2007). Unsupervised learning of visual features through spike timing dependent plasticity.PLoS Comput. Biol. 3:e31. doi: 10.1371/journal.pcbi.0030031
    • (2007) PLoS Comput. Biol , vol.3
    • Masquelier, T.1    Thorpe, S.J.2
  • 30
    • 84922690195 scopus 로고    scopus 로고
    • A biological-realtime neuromorphic system in 28 nm CMOS using low-leakage switched capacitor circuits
    • [Epub ahead of print]
    • Mayr, C., Partzsch, J., Noack, M., Hanzsche, S., Scholze, S., Hoppner, S., et al. (2015). A biological-realtime neuromorphic system in 28 nm CMOS using low-leakage switched capacitor circuits. IEEE Trans. Biomed. Circuits Syst. doi: 10.1109/TBCAS.2014.2379294. [Epub ahead of print].
    • (2015) IEEE Trans. Biomed. Circuits Syst
    • Mayr, C.1    Partzsch, J.2    Noack, M.3    Hanzsche, S.4    Scholze, S.5    Hoppner, S.6
  • 33
    • 84905915006 scopus 로고    scopus 로고
    • A million spiking-neuron integrated circuit with a scalable communication network and interface
    • Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J., Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345, 668-673. doi: 10.1126/science.1254642
    • (2014) Science , vol.345 , pp. 668-673
    • Merolla, P.A.1    Arthur, J.V.2    Alvarez-Icaza, R.3    Cassidy, A.S.4    Sawada, J.5    Akopyan, F.6
  • 34
    • 34249703480 scopus 로고    scopus 로고
    • Spike-timing-dependent plasticity in balanced random networks
    • Morrison, A., Aertsen, A., and Diesmann, M. (2007). Spike-timing-dependent plasticity in balanced random networks. Neural Comput. 19, 1437-1467. doi: 10.1162/neco.2007.19.6.1437
    • (2007) Neural Comput , vol.19 , pp. 1437-1467
    • Morrison, A.1    Aertsen, A.2    Diesmann, M.3
  • 35
    • 84898035691 scopus 로고    scopus 로고
    • Event-driven contrastive divergence for spiking neuromorphic systems
    • Neftci, E., Das, S., Pedroni, B., Kreutz-Delgado, K., and Cauwenberghs, G. (2013). Event-driven contrastive divergence for spiking neuromorphic systems. Front. Neurosci. 7:272. doi: 10.3389/fnins.2013.00272
    • (2013) Front. Neurosci , vol.7 , pp. 272
    • Neftci, E.1    Das, S.2    Pedroni, B.3    Kreutz-Delgado, K.4    Cauwenberghs, G.5
  • 36
    • 84913549485 scopus 로고    scopus 로고
    • Minitaur, an event-driven fpga-based spiking network accelerator
    • Neil, D., and Liu, S.-C. (2014). Minitaur, an event-driven fpga-based spiking network accelerator. Very Large Scale Int. Syst. IEEE Trans. 22, 2621-2628. doi: 10.1109/TVLSI.2013.2294916
    • (2014) Very Large Scale Int. Syst. IEEE Trans , vol.22 , pp. 2621-2628
    • Neil, D.1    Liu, S.-C.2
  • 37
    • 84876928403 scopus 로고    scopus 로고
    • Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity
    • Nessler, B., Pfeiffer, M., Buesing, L., and Maass, W. (2013). Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity. PLoS Comput. Biol. 9:e1003037. doi: 10.1371/journal.pcbi.1003037
    • (2013) PLoS Comput. Biol , vol.9
    • Nessler, B.1    Pfeiffer, M.2    Buesing, L.3    Maass, W.4
  • 38
    • 84888811418 scopus 로고    scopus 로고
    • Real-time classification and sensor fusion with a spiking deep belief network
    • O'Connor, P., Neil, D., Liu, S.-C., Delbruck, T., and Pfeiffer, M. (2013). Real-time classification and sensor fusion with a spiking deep belief network. Front. Neurosci. 7:178. doi: 10.3389/fnins.2013.00178
    • (2013) Front. Neurosci , vol.7 , pp. 178
    • O'Connor, P.1    Neil, D.2    Liu, S.-C.3    Delbruck, T.4    Pfeiffer, M.5
  • 40
    • 84920548116 scopus 로고    scopus 로고
    • A 65k-neuron 73-mevents/s 22-pj/event asynchronous micro-pipelined integrate-and-fire array transceiver
    • (Lausanne: IEEE)
    • Park, J., Ha, S., Yu, T., Neftci, E., and Cauwenberghs, G. (2014). "A 65k-neuron 73-mevents/s 22-pj/event asynchronous micro-pipelined integrate-and-fire array transceiver," in Biomedical Circuits and Systems Conference (BioCAS) (Lausanne: IEEE).
    • (2014) Biomedical Circuits and Systems Conference (BioCAS)
    • Park, J.1    Ha, S.2    Yu, T.3    Neftci, E.4    Cauwenberghs, G.5
  • 41
    • 33748898872 scopus 로고    scopus 로고
    • Triplets of spikes in a model of spike timing-dependent plasticity
    • Pfister, J.-P., and Gerstner, W. (2006). Triplets of spikes in a model of spike timing-dependent plasticity. J. Neurosci. 26, 9673-9682. doi: 10.1523/JNEUROSCI.1425-06.2006
    • (2006) J. Neurosci , vol.26 , pp. 9673-9682
    • Pfister, J.-P.1    Gerstner, W.2
  • 43
    • 84877850976 scopus 로고    scopus 로고
    • Immunity to device variations in a spiking neural network with memristive nanodevices
    • Querlioz, D., Bichler, O., Dollfus, P., and Gamrat, C. (2013). Immunity to device variations in a spiking neural network with memristive nanodevices. Nanotechnol. IEEE Trans. 12, 288-295. doi: 10.1109/TNANO.2013.2250995
    • (2013) Nanotechnol. IEEE Trans , vol.12 , pp. 288-295
    • Querlioz, D.1    Bichler, O.2    Dollfus, P.3    Gamrat, C.4
  • 46
    • 84900482869 scopus 로고    scopus 로고
    • Spike-based synaptic plasticity in silicon: Design, implementation, application, and challenges
    • Rahimi Azghadi, M., Iannella, N., Al-Sarawi, S. F., Indiveri, G., and Abbott, D. (2014). Spike-based synaptic plasticity in silicon: Design, implementation, application, and challenges. Proc. IEEE 102, 717-737. doi: 10.1109/JPROC.2014.2314454
    • (2014) Proc. IEEE , vol.102 , pp. 717-737
    • Rahimi Azghadi, M.1    Iannella, N.2    Al-Sarawi, S.F.3    Indiveri, G.4    Abbott, D.5
  • 48
    • 0242300203 scopus 로고    scopus 로고
    • The other side of the engram: Experience-driven changes in neuronal intrinsic excitability
    • Zhang, W., and Linden, D. J. (2003). The other side of the engram: experience-driven changes in neuronal intrinsic excitability.Nat. Rev. Neurosci. 4, 885-900. doi: 10.1038/nrn1248
    • (2003) Nat. Rev. Neurosci , vol.4 , pp. 885-900
    • Zhang, W.1    Linden, D.J.2
  • 49
    • 84940039119 scopus 로고    scopus 로고
    • Feedforward categorization on AER motion events using cortex-like features in a spiking neural network
    • Zhao, B., Ding, R., Chen, S., Linares-Barranco, B., and Tang, H. (2014). Feedforward categorization on AER motion events using cortex-like features in a spiking neural network. IEEE Trans. Neural Netw. Learn. Sys. 54, 981-993. doi: 10.1109/TNNLS.2014.2362542
    • (2014) IEEE Trans. Neural Netw. Learn. Sys , vol.54 , pp. 981-993
    • Zhao, B.1    Ding, R.2    Chen, S.3    Linares-Barranco, B.4    Tang, H.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.