메뉴 건너뛰기




Volumn 2015-September, Issue , 2015, Pages

Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing

Author keywords

Accuracy; Handheld computers; Neuromorphics; Neurons; Robustness

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPUTER VISION; HAND HELD COMPUTERS; LEARNING SYSTEMS; NEURONS; PATTERN RECOGNITION; ROBUSTNESS (CONTROL SYSTEMS);

EID: 84951159868     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IJCNN.2015.7280696     Document Type: Conference Paper
Times cited : (1079)

References (35)
  • 1
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition, " Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, J.2    Bengio, Y.3    Haffner, P.4
  • 2
    • 78649669320 scopus 로고    scopus 로고
    • Deep, b ig, s imple neural nets for handwritten digit recognition
    • D. C. Ciresan, U. Meier, L. M. Gambardella, and J. Schmidhuber, "Deep, b ig, s imple neural nets for handwritten digit recognition, " Neural Computation, vol. 22, no. 12, pp. 3207-3220, 2010.
    • (2010) Neural Computation , vol.22 , Issue.12 , pp. 3207-3220
    • Ciresan, D.C.1    Meier, U.2    Gambardella, L.M.3    Schmidhuber, J.4
  • 4
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks, " in Proc. of NIPS, 2012, pp. 1097-1105.
    • (2012) Proc. of NIPS , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 6
    • 0019152630 scopus 로고
    • Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • K. Fukushima, "Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position, " Biological Cybernetics, vol. 36, no. 4, pp. 193-202, 1980.
    • (1980) Biological Cybernetics , vol.36 , Issue.4 , pp. 193-202
    • Fukushima, K.1
  • 7
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: An overview
    • J. Schmidhuber, "Deep learning in neural networks: An overview, " Neural Networks, vol. 61, pp. 85-117, 2015.
    • (2015) Neural Networks , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 8
    • 84905915006 scopus 로고    scopus 로고
    • A million spiking-neuron integrated circuit with a scalable communication network and interface
    • P. A. Merolla and others., "A million spiking-neuron integrated circuit with a scalable communication network and interface, " Science, vol. 345, no. 6197, pp. 668-673, 2014.
    • (2014) Science , vol.345 , Issue.6197 , pp. 668-673
    • Merolla, P.A.1
  • 9
    • 84900521434 scopus 로고    scopus 로고
    • Neurogrid: A mixed-analog-digital multichip system for large-scale neural simulations
    • B. V. Benjamin et al., "Neurogrid: A mixed-analog-digital multichip system for large-scale neural simulations, " Proceedings of the IEEE, vol. 102, no. 5, pp. 699-716, 2014.
    • (2014) Proceedings of the IEEE , vol.102 , Issue.5 , pp. 699-716
    • Benjamin, B.V.1
  • 11
    • 84913549485 scopus 로고    scopus 로고
    • Minitaur, an event-driven FPGA-based spiking network accelerator
    • D. Neil and S.-C. Liu, "Minitaur, an event-driven fpga-based spiking network accelerator, " IEEE Trans on Very Large Scale Integration (VLSl) Systems, vol. 22, no. 12, pp. 2621-2628, 2014.
    • (2014) IEEE Trans on Very Large Scale Integration (VLSl) Systems , vol.22 , Issue.12 , pp. 2621-2628
    • Neil, D.1    Liu, S.-C.2
  • 15
    • 38849206826 scopus 로고    scopus 로고
    • A 128x 128 120 db 15 f. J, s latency asynchronous temporal contrast vision sensor
    • P. Lichtsteiner, C. Posch, and T. Delbruck, "A 128x 128 120 db 15 f. J, s latency asynchronous temporal contrast vision sensor, " IEEE Journal of Solid-State Circuits, vol. 43, no. 2, pp. 566-576, 2008.
    • (2008) IEEE Journal of Solid-State Circuits , vol.43 , Issue.2 , pp. 566-576
    • Lichtsteiner, P.1    Posch, C.2    Delbruck, T.3
  • 17
    • 70349253937 scopus 로고    scopus 로고
    • CAVIAR: A 45k neuron, 5m synapse, 12g connects/s aer hardware sensory-processing-learningactuating system for high-speed visual object recognition and tracking
    • R. Serrano-Gotarredona and others., "CAVIAR: A 45k neuron, 5m synapse, 12g connects/s aer hardware sensory-processing-learningactuating system for high-speed visual object recognition and tracking, " IEEE Trans on Neural Networks, vol. 20, no. 9, pp. 14l7-1438, 2009.
    • (2009) IEEE Trans on Neural Networks , vol.20 , Issue.9 , pp. 14l7-1438
    • Serrano-Gotarredona, R.1
  • 20
    • 6344235224 scopus 로고    scopus 로고
    • On the computational power of circuits of spiking neurons
    • W. Maass and H. Markram, "On the computational power of circuits of spiking neurons, " Journal of Computer and System Sciences, vol. 69, no. 4, pp. 593-616, 2004.
    • (2004) Journal of Computer and System Sciences , vol.69 , Issue.4 , pp. 593-616
    • Maass, W.1    Markram, H.2
  • 21
    • 84884548464 scopus 로고    scopus 로고
    • Mapping from frame-driven to framefree event-driven vision systems by low-rate rate coding and coincidence processing-application to feedforward convnets
    • J. Perez-Carrasco and others., "Mapping from frame-driven to framefree event-driven vision systems by low-rate rate coding and coincidence processing-application to feedforward convnets, " IEEE Trans on Pattern Analysis and Machine Intelligence, vol. 35, no. 11, pp. 2706-2719, 2013.
    • (2013) IEEE Trans on Pattern Analysis and Machine Intelligence , vol.35 , Issue.11 , pp. 2706-2719
    • Perez-Carrasco, J.1
  • 22
    • 84950988629 scopus 로고    scopus 로고
    • Spiking deep convolutional neural networks for energy-efficient object recognition
    • Y. Cao, Y. Chen, and D. Khosla, "Spiking deep convolutional neural networks for energy-efficient object recognition, " International Journal of Computer Vision, pp. 1-13, 2014.
    • (2014) International Journal of Computer Vision , pp. 1-13
    • Cao, Y.1    Chen, Y.2    Khosla, D.3
  • 30
    • 84877850976 scopus 로고    scopus 로고
    • Immunity to device variations in a spiking neural network with memristive nanodevices
    • D. Querlioz, O. Bichler, P. Dollfus, and C. Gamrat, " Immunity to device variations in a spiking neural network with memristive nanodevices, " IEEE Trans on Nanotechnology, vol. 12, no. 3, pp. 288-295, 2013.
    • (2013) IEEE Trans on Nanotechnology , vol.12 , Issue.3 , pp. 288-295
    • Querlioz, D.1    Bichler, O.2    Dollfus, P.3    Gamrat, C.4
  • 31
    • 84940184638 scopus 로고    scopus 로고
    • Unsupervised learning of digit recognition using spike-timing-dependent plasticity
    • P. U. Diehl and M. Cook, "Unsupervised learning of digit recognition using spike-timing-dependent plasticity, " Frontiers in Computational Neuroscience, vol. 9, no. 99, 2015.
    • (2015) Frontiers in Computational Neuroscience , vol.9 , Issue.99
    • Diehl, P.U.1    Cook, M.2
  • 33
    • 36248934673 scopus 로고    scopus 로고
    • Learning real-world stimuli in a neural network with spike-driven synaptic dynamics
    • J. M. Brader, W. Senn, and S. Fusi, "Learning real-world stimuli in a neural network with spike-driven synaptic dynamics, " Neural Computation, vol. 19, no. 11, pp. 2881-2912, 2007.
    • (2007) Neural Computation , vol.19 , Issue.11 , pp. 2881-2912
    • Brader, J.M.1    Senn, W.2    Fusi, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.