-
1
-
-
1642553405
-
Bayesian integration in sensorimotor learning
-
K. P. Körding and D. M. Wolpert. Bayesian integration in sensorimotor learning. Nature, 427(6971):244-247, 2004.
-
(2004)
Nature
, vol.427
, Issue.6971
, pp. 244-247
-
-
Körding, K.P.1
Wolpert, D.M.2
-
2
-
-
40649090888
-
Bayesian learning of visual chunks by human observers
-
G. Orban, J. Fiser, R.N. Aslin, and M. Lengyel. Bayesian learning of visual chunks by human observers. Proceedings of the National Academy of Sciences, 105(7):2745-2750, 2008.
-
(2008)
Proceedings of the National Academy of Sciences
, vol.105
, Issue.7
, pp. 2745-2750
-
-
Orban, G.1
Fiser, J.2
Aslin, R.N.3
Lengyel, M.4
-
3
-
-
76749113376
-
Statistically optimal perception and learning: From behavior to neural representation
-
J. Fiser, P. Berkes, G. Orban, and M. Lengyel. Statistically optimal perception and learning: from behavior to neural representation. Trends in Cogn. Sciences, 14(3):119-130, 2010.
-
(2010)
Trends in Cogn. Sciences
, vol.14
, Issue.3
, pp. 119-130
-
-
Fiser, J.1
Berkes, P.2
Orban, G.3
Lengyel, M.4
-
4
-
-
78650972934
-
Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment
-
P. Berkes, G. Orban, M. Lengyel, and J. Fiser. Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment. Science, 331:83-87, 2011.
-
(2011)
Science
, vol.331
, pp. 83-87
-
-
Berkes, P.1
Orban, G.2
Lengyel, M.3
Fiser, J.4
-
5
-
-
33747688922
-
Optimal predictions in everyday cognition
-
T. L. Griffiths and J. B. Tenenbaum. Optimal predictions in everyday cognition. Psychological Science, 17(9):767-773, 2006.
-
(2006)
Psychological Science
, vol.17
, Issue.9
, pp. 767-773
-
-
Griffiths, T.L.1
Tenenbaum, J.B.2
-
6
-
-
69449087069
-
Multisensory integration: Psychophysics, neurophysiology and computation
-
D. E. Angelaki, Y. Gu, and G. C. DeAngelis. Multisensory integration: psychophysics, neurophysiology and computation. Current opinion in neurobiology, 19(4):452-458, 2009.
-
(2009)
Current Opinion in Neurobiology
, vol.19
, Issue.4
, pp. 452-458
-
-
Angelaki, D.E.1
Gu, Y.2
DeAngelis, G.C.3
-
7
-
-
37749042762
-
Bayesian spiking neurons I: Inference
-
S. Deneve. Bayesian spiking neurons I: Inference. Neural Computation, 20(1):91-117, 2008.
-
(2008)
Neural Computation
, vol.20
, Issue.1
, pp. 91-117
-
-
Deneve, S.1
-
8
-
-
70349235964
-
Belief propagation in networks of spiking neurons
-
A. Steimer, W. Maass, and R.J. Douglas. Belief propagation in networks of spiking neurons. Neural Computation, 21:2502-2523, 2009.
-
(2009)
Neural Computation
, vol.21
, pp. 2502-2523
-
-
Steimer, A.1
Maass, W.2
Douglas, R.J.3
-
9
-
-
81355133300
-
Neural dynamics as sampling: A model for stochastic computation in recurrent networks of spiking neurons
-
11
-
L. Buesing, J. Bill, B. Nessler, and W. Maass. Neural dynamics as sampling: A model for stochastic computation in recurrent networks of spiking neurons. PLoS Comput Biol, 7(11):e1002211, 11 2011.
-
(2011)
PLoS Comput Biol
, vol.7
, Issue.11
-
-
Buesing, L.1
Bill, J.2
Nessler, B.3
Maass, W.4
-
10
-
-
84855256984
-
Probabilistic inference in general graphical models through sampling in stochastic networks of spiking neurons
-
D. Pecevski, L. Buesing, and W. Maass. Probabilistic inference in general graphical models through sampling in stochastic networks of spiking neurons. PLoS Comput Biol, 7(12), 12 2011.
-
(2011)
PLoS Comput Biol
, vol.7
, Issue.12
, pp. 12
-
-
Pecevski, D.1
Buesing, L.2
Maass, W.3
-
11
-
-
37749055358
-
Bayesian spiking neurons II: Learning
-
S. Deneve. Bayesian spiking neurons II: Learning. Neural Computation, 20(1):118-145, 2008.
-
(2008)
Neural Computation
, vol.20
, Issue.1
, pp. 118-145
-
-
Deneve, S.1
-
12
-
-
79955090327
-
STDP enables spiking neurons to detect hidden causes of their inputs
-
MIT Press
-
B. Nessler, M. Pfeiffer, and W. Maass. STDP enables spiking neurons to detect hidden causes of their inputs. In Proc. of NIPS 2009, volume 22, pages 1357-1365. MIT Press, 2010.
-
(2010)
Proc. of NIPS 2009
, vol.22
, pp. 1357-1365
-
-
Nessler, B.1
Pfeiffer, M.2
Maass, W.3
-
13
-
-
85162350170
-
Sequence learning with hidden units in spiking neural networks
-
MIT Press
-
J. Brea, W. Senn, and J.-P. Pfister. Sequence learning with hidden units in spiking neural networks. In Proc. of NIPS 2011, volume 24, pages 1422-1430. MIT Press, 2012.
-
(2012)
Proc. of NIPS 2011
, vol.24
, pp. 1422-1430
-
-
Brea, J.1
Senn, W.2
Pfister, J.-P.3
-
14
-
-
85103867881
-
Variational learning for recurrent spiking networks
-
MIT Press
-
D. J. Rezende, D. Wierstra, and W. Gerstner. Variational learning for recurrent spiking networks. In Proc. of NIPS 2011, volume 24, pages 136-144. MIT Press, 2012.
-
(2012)
Proc. of NIPS 2011
, vol.24
, pp. 136-144
-
-
Rezende, D.J.1
Wierstra, D.2
Gerstner, W.3
-
15
-
-
84861110370
-
Feedforward inhibition and synaptic scaling-two sides of the same coin?
-
C. Keck, C. Savin, and J. Lücke. Feedforward inhibition and synaptic scaling-two sides of the same coin? PLoS Computational Biology, 8(3):e1002432, 2012.
-
(2012)
PLoS Computational Biology
, vol.8
, Issue.3
-
-
Keck, C.1
Savin, C.2
Lücke, J.3
-
16
-
-
79952512265
-
How to grow a mind: Statistics, structure, and abstraction
-
Joshua B. Tenenbaum, Charles Kemp, Thomas L. Griffiths, and Noah D. Goodman. How to grow a mind: Statistics, structure, and abstraction. Science, 331(6022):1279-1285, 2011.
-
(2011)
Science
, vol.331
, Issue.6022
, pp. 1279-1285
-
-
Tenenbaum, J.B.1
Kemp, C.2
Griffiths, T.L.3
Goodman, N.D.4
-
17
-
-
77955993002
-
A wafer-scale neuromorphic hardware system for large-scale neural modeling
-
J. Schemmel, D. Brüderle, A. Grübl, M. Hock, K. Meier, and S. Millner. A wafer-scale neuromorphic hardware system for large-scale neural modeling. Proc. of ISCAS'10, pages 1947-1950, 2010.
-
(2010)
Proc. of isCAS'10
, pp. 1947-1950
-
-
Schemmel, J.1
Brüderle, D.2
Grübl, A.3
Hock, M.4
Meier, K.5
Millner, S.6
-
18
-
-
0033360297
-
Plasticity in the intrinsic excitability of cortical pyramidal neurons
-
N.S. Desai, L.C. Rutherford, and G.G. Turrigiano. Plasticity in the intrinsic excitability of cortical pyramidal neurons. Nature Neuroscience, 2(6):515, 1999.
-
(1999)
Nature Neuroscience
, vol.2
, Issue.6
, pp. 515
-
-
Desai, N.S.1
Rutherford, L.C.2
Turrigiano, G.G.3
-
19
-
-
78649405204
-
Homeostatic plasticity and STDP: Keeping a neurons cool in a fluctuating world
-
A. Watt and N. Desai. Homeostatic plasticity and STDP: keeping a neurons cool in a fluctuating world. Frontiers in Synaptic Neuroscience, 2, 2010.
-
Frontiers in Synaptic Neuroscience
, vol.2
, pp. 2010
-
-
Watt, A.1
Desai, N.2
-
20
-
-
85162012703
-
Expectation maximization and posterior constraints
-
MIT Press
-
J. Graca, K. Ganchev, and B. Taskar. Expectation maximization and posterior constraints. In Proc. of NIPS 2007, volume 20. MIT Press, 2008.
-
(2008)
Proc. of NIPS 2007
, vol.20
-
-
Graca, J.1
Ganchev, K.2
Taskar, B.3
-
21
-
-
33745833056
-
Predicting spike timing of neocortical pyramidal neurons by simple threshold models
-
R. Jolivet, A. Rauch, HR Lüscher, and W. Gerstner. Predicting spike timing of neocortical pyramidal neurons by simple threshold models. Journal of Computational Neuroscience, 21:35-49, 2006.
-
(2006)
Journal of Computational Neuroscience
, vol.21
, pp. 35-49
-
-
Jolivet, R.1
Rauch, A.2
Lüscher, H.R.3
Gerstner, W.4
-
22
-
-
0032031687
-
A model of neuronal responses in visual area MT
-
E.P. Simoncelli and D.J. Heeger. A model of neuronal responses in visual area MT. Vision Research, 38(5):743-761, 1998.
-
(1998)
Vision Research
, vol.38
, Issue.5
, pp. 743-761
-
-
Simoncelli, E.P.1
Heeger, D.J.2
-
25
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. In Proceedings of the IEEE, volume 86, pages 2278-2324, 11 1998.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
|