메뉴 건너뛰기




Volumn 31, Issue 7, 2015, Pages 357-372

Unraveling the 3D genome: Genomics tools for multiscale exploration

Author keywords

Chromatin structure; Genome architecture; Genomics methods; Transcriptional regulation

Indexed keywords

AMINO ACID SEQUENCE; CHROMATIN; GENE STRUCTURE; GENOME; GENOMICS; HUMAN; NONHUMAN; NUCLEOSOME; PRIORITY JOURNAL; PROTEIN SECONDARY STRUCTURE; PROTEIN TERTIARY STRUCTURE; REVIEW; THREE DIMENSIONAL GENOME; TIME; TRANSCRIPTION REGULATION; ANIMAL; CONFORMATION; GENETIC EPIGENESIS; GENETICS; HUMAN GENOME; NUCLEOTIDE SEQUENCE; SOFTWARE; ULTRASTRUCTURE;

EID: 84937513337     PISSN: 01689525     EISSN: 13624555     Source Type: Journal    
DOI: 10.1016/j.tig.2015.03.010     Document Type: Review
Times cited : (55)

References (178)
  • 1
    • 2042437650 scopus 로고    scopus 로고
    • Initial sequencing and analysis of the human genome
    • Lander E.S., et al. Initial sequencing and analysis of the human genome. Nature 2001, 409:860-921.
    • (2001) Nature , vol.409 , pp. 860-921
    • Lander, E.S.1
  • 2
    • 7244245762 scopus 로고    scopus 로고
    • Finishing the euchromatic sequence of the human genome
    • Finishing the euchromatic sequence of the human genome. Nature 2004, 431:931-945. International Human Genome Sequencing Consortium.
    • (2004) Nature , vol.431 , pp. 931-945
  • 3
    • 84862732690 scopus 로고    scopus 로고
    • New insights into nucleosome and chromatin structure: an ordered state or a disordered affair?
    • Luger K., et al. New insights into nucleosome and chromatin structure: an ordered state or a disordered affair?. Nat. Rev. Mol. Cell Biol. 2012, 13:436-447.
    • (2012) Nat. Rev. Mol. Cell Biol. , vol.13 , pp. 436-447
    • Luger, K.1
  • 4
    • 84858440747 scopus 로고    scopus 로고
    • Metazoan promoters: emerging characteristics and insights into transcriptional regulation
    • Lenhard B., et al. Metazoan promoters: emerging characteristics and insights into transcriptional regulation. Nat. Rev. Genet. 2012, 13:233-245.
    • (2012) Nat. Rev. Genet. , vol.13 , pp. 233-245
    • Lenhard, B.1
  • 5
    • 84877836392 scopus 로고    scopus 로고
    • Mechanisms by which transcription factors gain access to target sequence elements in chromatin
    • Guertin M.J., Lis J.T. Mechanisms by which transcription factors gain access to target sequence elements in chromatin. Curr. Opin. Genet. Dev. 2013, 23:116-123.
    • (2013) Curr. Opin. Genet. Dev. , vol.23 , pp. 116-123
    • Guertin, M.J.1    Lis, J.T.2
  • 6
    • 79952184341 scopus 로고    scopus 로고
    • Chromatin accessibility pre-determines glucocorticoid receptor binding patterns
    • John S., et al. Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. Nat. Genet. 2011, 43:264-268.
    • (2011) Nat. Genet. , vol.43 , pp. 264-268
    • John, S.1
  • 7
    • 79960563344 scopus 로고    scopus 로고
    • Determinants and dynamics of genome accessibility
    • Bell O., et al. Determinants and dynamics of genome accessibility. Nat. Rev. Genet. 2011, 12:554-564.
    • (2011) Nat. Rev. Genet. , vol.12 , pp. 554-564
    • Bell, O.1
  • 8
    • 84865755978 scopus 로고    scopus 로고
    • The accessible chromatin landscape of the human genome
    • Thurman R.E., et al. The accessible chromatin landscape of the human genome. Nature 2012, 489:75-82.
    • (2012) Nature , vol.489 , pp. 75-82
    • Thurman, R.E.1
  • 9
    • 84899450857 scopus 로고    scopus 로고
    • Transcriptional enhancers: from properties to genome-wide predictions
    • Shlyueva D., et al. Transcriptional enhancers: from properties to genome-wide predictions. Nat. Rev. Genet. 2014, 15:272-286.
    • (2014) Nat. Rev. Genet. , vol.15 , pp. 272-286
    • Shlyueva, D.1
  • 10
    • 0019811465 scopus 로고
    • Expression of a beta-globin gene is enhanced by remote SV40 DNA sequences
    • Banerji J., et al. Expression of a beta-globin gene is enhanced by remote SV40 DNA sequences. Cell 1981, 27:299-308.
    • (1981) Cell , vol.27 , pp. 299-308
    • Banerji, J.1
  • 11
    • 84861529303 scopus 로고    scopus 로고
    • Enhancers as information integration hubs in development: lessons from genomics
    • Buecker C., Wysocka J. Enhancers as information integration hubs in development: lessons from genomics. Trends Genet. 2012, 28:276-284.
    • (2012) Trends Genet. , vol.28 , pp. 276-284
    • Buecker, C.1    Wysocka, J.2
  • 12
    • 84855297335 scopus 로고    scopus 로고
    • A decade of 3C technologies: insights into nuclear organization
    • de Wit E., de Laat W. A decade of 3C technologies: insights into nuclear organization. Genes Dev. 2012, 26:11-24.
    • (2012) Genes Dev. , vol.26 , pp. 11-24
    • de Wit, E.1    de Laat, W.2
  • 13
    • 84919949716 scopus 로고    scopus 로고
    • A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping
    • Rao S.S.P., et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 2014, 159:1665-1680.
    • (2014) Cell , vol.159 , pp. 1665-1680
    • Rao, S.S.P.1
  • 14
    • 84875190221 scopus 로고    scopus 로고
    • Genome architecture: domain organization of interphase chromosomes
    • Bickmore W.A., van Steensel B. Genome architecture: domain organization of interphase chromosomes. Cell 2013, 152:1270-1284.
    • (2013) Cell , vol.152 , pp. 1270-1284
    • Bickmore, W.A.1    van Steensel, B.2
  • 15
    • 84927759197 scopus 로고    scopus 로고
    • Assaying the epigenome in limited numbers of cells
    • Greenleaf W.J. Assaying the epigenome in limited numbers of cells. Methods 2015, 72:51-56.
    • (2015) Methods , vol.72 , pp. 51-56
    • Greenleaf, W.J.1
  • 16
    • 84856498057 scopus 로고    scopus 로고
    • DNA methylome analysis using short bisulfite sequencing data
    • Krueger F., et al. DNA methylome analysis using short bisulfite sequencing data. Nat. Methods 2012, 9:145-151.
    • (2012) Nat. Methods , vol.9 , pp. 145-151
    • Krueger, F.1
  • 17
    • 79952788617 scopus 로고    scopus 로고
    • Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling
    • Gu H., et al. Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nat. Protoc. 2011, 6:468-481.
    • (2011) Nat. Protoc. , vol.6 , pp. 468-481
    • Gu, H.1
  • 18
    • 84874194072 scopus 로고    scopus 로고
    • DNA methylation: roles in mammalian development
    • Smith Z.D., Meissner A. DNA methylation: roles in mammalian development. Nat. Rev. Genet. 2013, 14:204-220.
    • (2013) Nat. Rev. Genet. , vol.14 , pp. 204-220
    • Smith, Z.D.1    Meissner, A.2
  • 19
    • 84885012678 scopus 로고    scopus 로고
    • Oxidative bisulfite sequencing of 5-methylcytosine and 5-hydroxymethylcytosine
    • Booth M.J., et al. Oxidative bisulfite sequencing of 5-methylcytosine and 5-hydroxymethylcytosine. Nat. Protoc. 2013, 8:1841-1851.
    • (2013) Nat. Protoc. , vol.8 , pp. 1841-1851
    • Booth, M.J.1
  • 20
    • 84870620786 scopus 로고    scopus 로고
    • Tet-assisted bisulfite sequencing of 5-hydroxymethylcytosine
    • Yu M., et al. Tet-assisted bisulfite sequencing of 5-hydroxymethylcytosine. Nat. Protoc. 2012, 7:2159-2170.
    • (2012) Nat. Protoc. , vol.7 , pp. 2159-2170
    • Yu, M.1
  • 21
    • 80455144479 scopus 로고    scopus 로고
    • Pioneer transcription factors: establishing competence for gene expression
    • Zaret K.S., Carroll J.S. Pioneer transcription factors: establishing competence for gene expression. Genes Dev. 2011, 25:2227-2241.
    • (2011) Genes Dev. , vol.25 , pp. 2227-2241
    • Zaret, K.S.1    Carroll, J.S.2
  • 22
    • 34250369627 scopus 로고    scopus 로고
    • FAIRE (formaldehyde-assisted isolation of regulatory elements) isolates active regulatory elements from human chromatin
    • Giresi P.G., et al. FAIRE (formaldehyde-assisted isolation of regulatory elements) isolates active regulatory elements from human chromatin. Genome Res. 2007, 17:877-885.
    • (2007) Genome Res. , vol.17 , pp. 877-885
    • Giresi, P.G.1
  • 23
    • 63849308888 scopus 로고    scopus 로고
    • Global mapping of protein-DNA interactions in vivo by digital genomic footprinting
    • Hesselberth J.R., et al. Global mapping of protein-DNA interactions in vivo by digital genomic footprinting. Nat. Methods 2009, 6:283-289.
    • (2009) Nat. Methods , vol.6 , pp. 283-289
    • Hesselberth, J.R.1
  • 24
    • 30044449116 scopus 로고    scopus 로고
    • Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS)
    • Crawford G.E., et al. Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS). Genome Res. 2006, 16:123-131.
    • (2006) Genome Res. , vol.16 , pp. 123-131
    • Crawford, G.E.1
  • 25
    • 38649099445 scopus 로고    scopus 로고
    • High-resolution mapping and characterization of open chromatin across the genome
    • Boyle A.P., et al. High-resolution mapping and characterization of open chromatin across the genome. Cell 2008, 132:311-322.
    • (2008) Cell , vol.132 , pp. 311-322
    • Boyle, A.P.1
  • 26
    • 84888877924 scopus 로고    scopus 로고
    • Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position
    • Buenrostro J.D., et al. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 2013, 10:1213-1218.
    • (2013) Nat. Methods , vol.10 , pp. 1213-1218
    • Buenrostro, J.D.1
  • 27
    • 80053539409 scopus 로고    scopus 로고
    • Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity
    • Song L., et al. Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity. Genome Res. 2011, 21:1757-1767.
    • (2011) Genome Res. , vol.21 , pp. 1757-1767
    • Song, L.1
  • 28
    • 0023899769 scopus 로고
    • Nuclease hypersensitive sites in chromatin
    • Gross D.S., Garrard W.T. Nuclease hypersensitive sites in chromatin. Annu. Rev. Biochem. 1988, 57:159-197.
    • (1988) Annu. Rev. Biochem. , vol.57 , pp. 159-197
    • Gross, D.S.1    Garrard, W.T.2
  • 29
    • 84865708757 scopus 로고    scopus 로고
    • An expansive human regulatory lexicon encoded in transcription factor footprints
    • Neph S., et al. An expansive human regulatory lexicon encoded in transcription factor footprints. Nature 2012, 489:83-90.
    • (2012) Nature , vol.489 , pp. 83-90
    • Neph, S.1
  • 30
    • 84866361701 scopus 로고    scopus 로고
    • Circuitry and dynamics of human transcription factor regulatory networks
    • Neph S., et al. Circuitry and dynamics of human transcription factor regulatory networks. Cell 2012, 150:1274-1286.
    • (2012) Cell , vol.150 , pp. 1274-1286
    • Neph, S.1
  • 31
    • 84911470871 scopus 로고    scopus 로고
    • Conservation of trans-acting circuitry during mammalian regulatory evolution
    • Stergachis A.B., et al. Conservation of trans-acting circuitry during mammalian regulatory evolution. Nature 2014, 515:365-370.
    • (2014) Nature , vol.515 , pp. 365-370
    • Stergachis, A.B.1
  • 32
    • 84926203507 scopus 로고    scopus 로고
    • High-resolution digital profiling of the epigenome
    • Zentner G.E., Henikoff S. High-resolution digital profiling of the epigenome. Nat. Rev. Genet. 2014, 15:814-827.
    • (2014) Nat. Rev. Genet. , vol.15 , pp. 814-827
    • Zentner, G.E.1    Henikoff, S.2
  • 33
    • 84894651254 scopus 로고    scopus 로고
    • Coupling transcription factor occupancy to nucleosome architecture with DNase-FLASH
    • Vierstra J., et al. Coupling transcription factor occupancy to nucleosome architecture with DNase-FLASH. Nat. Methods 2014, 11:66-72.
    • (2014) Nat. Methods , vol.11 , pp. 66-72
    • Vierstra, J.1
  • 34
    • 22744432660 scopus 로고    scopus 로고
    • Genome-scale identification of nucleosome positions in S. cerevisiae
    • Yuan G-C., et al. Genome-scale identification of nucleosome positions in S. cerevisiae. Science 2005, 309:626-630.
    • (2005) Science , vol.309 , pp. 626-630
    • Yuan, G.-C.1
  • 35
    • 39749145198 scopus 로고    scopus 로고
    • Dynamic regulation of nucleosome positioning in the human genome
    • Schones D.E., et al. Dynamic regulation of nucleosome positioning in the human genome. Cell 2008, 132:887-898.
    • (2008) Cell , vol.132 , pp. 887-898
    • Schones, D.E.1
  • 36
    • 79959557189 scopus 로고    scopus 로고
    • Determinants of nucleosome organization in primary human cells
    • Valouev A., et al. Determinants of nucleosome organization in primary human cells. Nature 2011, 474:516-520.
    • (2011) Nature , vol.474 , pp. 516-520
    • Valouev, A.1
  • 37
    • 84870674869 scopus 로고    scopus 로고
    • Controls of nucleosome positioning in the human genome
    • Gaffney D.J., et al. Controls of nucleosome positioning in the human genome. PLoS Genet. 2012, 8:e1003036.
    • (2012) PLoS Genet. , vol.8 , pp. e1003036
    • Gaffney, D.J.1
  • 38
    • 84880051962 scopus 로고    scopus 로고
    • DNase-seq predicts regions of rotational nucleosome stability across diverse human cell types
    • Winter D.R., et al. DNase-seq predicts regions of rotational nucleosome stability across diverse human cell types. Genome Res. 2013, 23:1118-1129.
    • (2013) Genome Res. , vol.23 , pp. 1118-1129
    • Winter, D.R.1
  • 39
    • 70349312354 scopus 로고    scopus 로고
    • ChIP-seq: advantages and challenges of a maturing technology
    • Park P.J. ChIP-seq: advantages and challenges of a maturing technology. Nat. Rev. Genet. 2009, 10:669-680.
    • (2009) Nat. Rev. Genet. , vol.10 , pp. 669-680
    • Park, P.J.1
  • 40
    • 84865777819 scopus 로고    scopus 로고
    • ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia
    • Landt S.G., et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 2012, 22:1813-1831.
    • (2012) Genome Res. , vol.22 , pp. 1813-1831
    • Landt, S.G.1
  • 41
    • 5444240366 scopus 로고    scopus 로고
    • Native chromatin immunoprecipitation
    • Thorne A.W., et al. Native chromatin immunoprecipitation. Methods Mol. Biol. 2004, 287:21-44.
    • (2004) Methods Mol. Biol. , vol.287 , pp. 21-44
    • Thorne, A.W.1
  • 42
    • 84895072244 scopus 로고    scopus 로고
    • High-resolution mapping of transcription factor binding sites on native chromatin
    • Kasinathan S., et al. High-resolution mapping of transcription factor binding sites on native chromatin. Nat. Methods 2014, 11:203-209.
    • (2014) Nat. Methods , vol.11 , pp. 203-209
    • Kasinathan, S.1
  • 43
    • 84865790047 scopus 로고    scopus 로고
    • An integrated encyclopedia of DNA elements in the human genome
    • Project Consortium ENCODE. An integrated encyclopedia of DNA elements in the human genome. Nature 2012, 489:57-74.
    • (2012) Nature , vol.489 , pp. 57-74
  • 44
    • 84923362619 scopus 로고    scopus 로고
    • Integrative analysis of 111 reference human epigenomes
    • Roadmap Epigenomics Consortium, et al. Integrative analysis of 111 reference human epigenomes. Nature 2015, 518:317-330.
    • (2015) Nature , vol.518 , pp. 317-330
  • 45
    • 84899633396 scopus 로고    scopus 로고
    • Defining functional DNA elements in the human genome
    • Kellis M., et al. Defining functional DNA elements in the human genome. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:6131-6138.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 6131-6138
    • Kellis, M.1
  • 46
    • 84857707318 scopus 로고    scopus 로고
    • ChromHMM: automating chromatin-state discovery and characterization
    • Ernst J., Kellis M. ChromHMM: automating chromatin-state discovery and characterization. Nat. Methods 2012, 9:215-216.
    • (2012) Nat. Methods , vol.9 , pp. 215-216
    • Ernst, J.1    Kellis, M.2
  • 47
    • 84862785201 scopus 로고    scopus 로고
    • Unsupervised pattern discovery in human chromatin structure through genomic segmentation
    • Hoffman M.M., et al. Unsupervised pattern discovery in human chromatin structure through genomic segmentation. Nat. Methods 2012, 9:473-476.
    • (2012) Nat. Methods , vol.9 , pp. 473-476
    • Hoffman, M.M.1
  • 48
    • 84891808382 scopus 로고    scopus 로고
    • JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles
    • Mathelier A., et al. JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles. Nucleic Acids Res. 2014, 42:D142-D147.
    • (2014) Nucleic Acids Res. , vol.42 , pp. D142-D147
    • Mathelier, A.1
  • 49
    • 58149200952 scopus 로고    scopus 로고
    • UniPROBE: an online database of protein binding microarray data on protein-DNA interactions
    • Newburger D.E., Bulyk M.L. UniPROBE: an online database of protein binding microarray data on protein-DNA interactions. Nucleic Acids Res. 2009, 37:D77-D82.
    • (2009) Nucleic Acids Res. , vol.37 , pp. D77-D82
    • Newburger, D.E.1    Bulyk, M.L.2
  • 50
    • 0029960055 scopus 로고    scopus 로고
    • TRANSFAC: a database on transcription factors and their DNA binding sites
    • Wingender E., et al. TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic Acids Res. 1996, 24:238-241.
    • (1996) Nucleic Acids Res. , vol.24 , pp. 238-241
    • Wingender, E.1
  • 51
    • 84874381107 scopus 로고    scopus 로고
    • Genome-wide quantitative enhancer activity maps identified by STARR-seq
    • Arnold C.D., et al. Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science 2013, 339:1074-1077.
    • (2013) Science , vol.339 , pp. 1074-1077
    • Arnold, C.D.1
  • 52
    • 84925543087 scopus 로고    scopus 로고
    • Enhancer-core-promoter specificity separates developmental and housekeeping gene regulation
    • Zabidi M.A., et al. Enhancer-core-promoter specificity separates developmental and housekeeping gene regulation. Nature 2014, 518:556-559.
    • (2014) Nature , vol.518 , pp. 556-559
    • Zabidi, M.A.1
  • 53
    • 80054756754 scopus 로고    scopus 로고
    • Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions
    • Chu C., et al. Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol. Cell 2011, 44:667-678.
    • (2011) Mol. Cell , vol.44 , pp. 667-678
    • Chu, C.1
  • 54
    • 84890549512 scopus 로고    scopus 로고
    • High-resolution Xist binding maps reveal two-step spreading during X-chromosome inactivation
    • Simon M.D., et al. High-resolution Xist binding maps reveal two-step spreading during X-chromosome inactivation. Nature 2013, 504:465-469.
    • (2013) Nature , vol.504 , pp. 465-469
    • Simon, M.D.1
  • 55
    • 0022548649 scopus 로고
    • Structure of the 30nm chromatin fiber
    • Felsenfeld G., McGhee J.D. Structure of the 30nm chromatin fiber. Cell 1986, 44:375-377.
    • (1986) Cell , vol.44 , pp. 375-377
    • Felsenfeld, G.1    McGhee, J.D.2
  • 56
    • 84861956987 scopus 로고    scopus 로고
    • Chromatin organization - the 30nm fiber
    • Grigoryev S.A., Woodcock C.L. Chromatin organization - the 30nm fiber. Exp. Cell Res. 2012, 318:1448-1455.
    • (2012) Exp. Cell Res. , vol.318 , pp. 1448-1455
    • Grigoryev, S.A.1    Woodcock, C.L.2
  • 57
    • 79953163378 scopus 로고    scopus 로고
    • Chromatin higher-order structures and gene regulation
    • Li G., Reinberg D. Chromatin higher-order structures and gene regulation. Curr. Opin. Genet. Dev. 2011, 21:175-186.
    • (2011) Curr. Opin. Genet. Dev. , vol.21 , pp. 175-186
    • Li, G.1    Reinberg, D.2
  • 58
    • 84857340459 scopus 로고    scopus 로고
    • Toward convergence of experimental studies and theoretical modeling of the chromatin fiber
    • Schlick T., et al. Toward convergence of experimental studies and theoretical modeling of the chromatin fiber. J. Biol. Chem. 2012, 287:5183-5191.
    • (2012) J. Biol. Chem. , vol.287 , pp. 5183-5191
    • Schlick, T.1
  • 59
    • 77954819238 scopus 로고    scopus 로고
    • Chromatin structure: does the 30-nm fibre exist in vivo?
    • Maeshima K., et al. Chromatin structure: does the 30-nm fibre exist in vivo?. Curr. Opin. Cell Biol. 2010, 22:291-297.
    • (2010) Curr. Opin. Cell Biol. , vol.22 , pp. 291-297
    • Maeshima, K.1
  • 60
    • 84872975354 scopus 로고    scopus 로고
    • Chromatin structure outside and inside the nucleus
    • Ghirlando R., Felsenfeld G. Chromatin structure outside and inside the nucleus. Biopolymers 2013, 99:225-232.
    • (2013) Biopolymers , vol.99 , pp. 225-232
    • Ghirlando, R.1    Felsenfeld, G.2
  • 62
    • 33645281420 scopus 로고    scopus 로고
    • The long and the short of it: linker histone H1 is required for metaphase chromosome compaction
    • Maresca T.J., Heald R. The long and the short of it: linker histone H1 is required for metaphase chromosome compaction. Cell Cycle 2006, 5:589-591.
    • (2006) Cell Cycle , vol.5 , pp. 589-591
    • Maresca, T.J.1    Heald, R.2
  • 63
    • 84899570718 scopus 로고    scopus 로고
    • Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units
    • Song F., et al. Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units. Science 2014, 344:376-380.
    • (2014) Science , vol.344 , pp. 376-380
    • Song, F.1
  • 64
    • 84876285368 scopus 로고    scopus 로고
    • A conformational switch in HP1 releases auto-inhibition to drive heterochromatin assembly
    • Canzio D., et al. A conformational switch in HP1 releases auto-inhibition to drive heterochromatin assembly. Nature 2013, 496:377-381.
    • (2013) Nature , vol.496 , pp. 377-381
    • Canzio, D.1
  • 65
    • 0042357071 scopus 로고    scopus 로고
    • Chromatin compaction by human MeCP2. Assembly of novel secondary chromatin structures in the absence of DNA methylation
    • Georgel P.T., et al. Chromatin compaction by human MeCP2. Assembly of novel secondary chromatin structures in the absence of DNA methylation. J. Biol. Chem. 2003, 278:32181-32188.
    • (2003) J. Biol. Chem. , vol.278 , pp. 32181-32188
    • Georgel, P.T.1
  • 66
    • 9444244427 scopus 로고    scopus 로고
    • Chromatin compaction by a Polycomb group protein complex
    • Francis N.J., et al. Chromatin compaction by a Polycomb group protein complex. Science 2004, 306:1574-1577.
    • (2004) Science , vol.306 , pp. 1574-1577
    • Francis, N.J.1
  • 67
    • 84881166117 scopus 로고    scopus 로고
    • Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes
    • Narlikar G.J., et al. Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell 2013, 154:490-503.
    • (2013) Cell , vol.154 , pp. 490-503
    • Narlikar, G.J.1
  • 68
    • 48249103503 scopus 로고    scopus 로고
    • Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure
    • Routh A., et al. Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:8872-8877.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 8872-8877
    • Routh, A.1
  • 69
    • 84855457949 scopus 로고    scopus 로고
    • A unique H2A histone variant occupies the transcriptional start site of active genes
    • Soboleva T.A., et al. A unique H2A histone variant occupies the transcriptional start site of active genes. Nat. Struct. Mol. Biol. 2012, 19:25-30.
    • (2012) Nat. Struct. Mol. Biol. , vol.19 , pp. 25-30
    • Soboleva, T.A.1
  • 70
    • 48449106172 scopus 로고    scopus 로고
    • 30nm chromatin fibre decompaction requires both H4-K16 acetylation and linker histone eviction
    • Robinson P.J.J., et al. 30nm chromatin fibre decompaction requires both H4-K16 acetylation and linker histone eviction. J. Mol. Biol. 2008, 381:816-825.
    • (2008) J. Mol. Biol. , vol.381 , pp. 816-825
    • Robinson, P.J.J.1
  • 71
    • 77950342430 scopus 로고    scopus 로고
    • Highly compacted chromatin formed in vitro reflects the dynamics of transcription activation in vivo
    • Li G., et al. Highly compacted chromatin formed in vitro reflects the dynamics of transcription activation in vivo. Mol. Cell 2010, 38:41-53.
    • (2010) Mol. Cell , vol.38 , pp. 41-53
    • Li, G.1
  • 72
    • 0034007256 scopus 로고    scopus 로고
    • Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase
    • van Steensel B., Henikoff S. Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nat. Biotechnol. 2000, 18:424-428.
    • (2000) Nat. Biotechnol. , vol.18 , pp. 424-428
    • van Steensel, B.1    Henikoff, S.2
  • 73
    • 78650191745 scopus 로고    scopus 로고
    • Local geometry and elasticity in compact chromatin structure
    • Koslover E.F., et al. Local geometry and elasticity in compact chromatin structure. Biophys. J. 2010, 99:3941-3950.
    • (2010) Biophys. J. , vol.99 , pp. 3941-3950
    • Koslover, E.F.1
  • 74
    • 80054774248 scopus 로고    scopus 로고
    • Evidence for short-range helical order in the 30-nm chromatin fibers of erythrocyte nuclei
    • Scheffer M.P., et al. Evidence for short-range helical order in the 30-nm chromatin fibers of erythrocyte nuclei. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:16992-16997.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 16992-16997
    • Scheffer, M.P.1
  • 75
    • 58149401194 scopus 로고    scopus 로고
    • Analysis of cryo-electron microscopy images does not support the existence of 30-nm chromatin fibers in mitotic chromosomes in situ
    • Eltsov M., et al. Analysis of cryo-electron microscopy images does not support the existence of 30-nm chromatin fibers in mitotic chromosomes in situ. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:19732-19737.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 19732-19737
    • Eltsov, M.1
  • 76
    • 84868690351 scopus 로고    scopus 로고
    • Open and closed domains in the mouse genome are configured as 10-nm chromatin fibres
    • Fussner E., et al. Open and closed domains in the mouse genome are configured as 10-nm chromatin fibres. EMBO Rep. 2012, 13:992-996.
    • (2012) EMBO Rep. , vol.13 , pp. 992-996
    • Fussner, E.1
  • 77
    • 80052422187 scopus 로고    scopus 로고
    • Histone acetylation and the maintenance of chromatin compaction by Polycomb repressive complexes
    • Eskeland R., et al. Histone acetylation and the maintenance of chromatin compaction by Polycomb repressive complexes. Cold Spring Harb. Symp. Quant. Biol. 2010, 75:71-78.
    • (2010) Cold Spring Harb. Symp. Quant. Biol. , vol.75 , pp. 71-78
    • Eskeland, R.1
  • 78
    • 84859421494 scopus 로고    scopus 로고
    • Human mitotic chromosomes consist predominantly of irregularly folded nucleosome fibres without a 30-nm chromatin structure
    • Nishino Y., et al. Human mitotic chromosomes consist predominantly of irregularly folded nucleosome fibres without a 30-nm chromatin structure. EMBO J. 2012, 31:1644-1653.
    • (2012) EMBO J. , vol.31 , pp. 1644-1653
    • Nishino, Y.1
  • 79
    • 78650919361 scopus 로고    scopus 로고
    • Living without 30nm chromatin fibers
    • Fussner E., et al. Living without 30nm chromatin fibers. Trends Biochem. Sci. 2011, 36:1-6.
    • (2011) Trends Biochem. Sci. , vol.36 , pp. 1-6
    • Fussner, E.1
  • 80
    • 84901840684 scopus 로고    scopus 로고
    • Chromatin fiber polymorphism triggered by variations of DNA linker lengths
    • Collepardo-Guevara R., Schlick T. Chromatin fiber polymorphism triggered by variations of DNA linker lengths. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:8061-8066.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 8061-8066
    • Collepardo-Guevara, R.1    Schlick, T.2
  • 81
    • 36749101388 scopus 로고    scopus 로고
    • A variable topology for the 30-nm chromatin fibre
    • Wu C., et al. A variable topology for the 30-nm chromatin fibre. EMBO Rep. 2007, 8:1129-1134.
    • (2007) EMBO Rep. , vol.8 , pp. 1129-1134
    • Wu, C.1
  • 82
    • 0028221098 scopus 로고
    • The three-dimensional architecture of chromatin in situ: electron tomography reveals fibers composed of a continuously variable zig-zag nucleosomal ribbon
    • Horowitz R.A., et al. The three-dimensional architecture of chromatin in situ: electron tomography reveals fibers composed of a continuously variable zig-zag nucleosomal ribbon. J. Cell Biol. 1994, 125:1-10.
    • (1994) J. Cell Biol. , vol.125 , pp. 1-10
    • Horowitz, R.A.1
  • 83
    • 0037083376 scopus 로고    scopus 로고
    • Capturing chromosome conformation
    • Dekker J., et al. Capturing chromosome conformation. Science 2002, 295:1306-1311.
    • (2002) Science , vol.295 , pp. 1306-1311
    • Dekker, J.1
  • 84
    • 84870317191 scopus 로고    scopus 로고
    • 3C-based technologies to study the shape of the genome
    • de Laat W., Dekker J. 3C-based technologies to study the shape of the genome. Methods 2012, 58:189-191.
    • (2012) Methods , vol.58 , pp. 189-191
    • de Laat, W.1    Dekker, J.2
  • 85
    • 0036923833 scopus 로고    scopus 로고
    • Looping and interaction between hypersensitive sites in the active beta-globin locus
    • Tolhuis B., et al. Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol. Cell 2002, 10:1453-1465.
    • (2002) Mol. Cell , vol.10 , pp. 1453-1465
    • Tolhuis, B.1
  • 86
    • 0141730403 scopus 로고    scopus 로고
    • The beta-globin nuclear compartment in development and erythroid differentiation
    • Palstra R-J., et al. The beta-globin nuclear compartment in development and erythroid differentiation. Nat. Genet. 2003, 35:190-194.
    • (2003) Nat. Genet. , vol.35 , pp. 190-194
    • Palstra, R.-J.1
  • 87
    • 33750212321 scopus 로고    scopus 로고
    • Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C)
    • Simonis M., et al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat. Genet. 2006, 38:1348-1354.
    • (2006) Nat. Genet. , vol.38 , pp. 1348-1354
    • Simonis, M.1
  • 88
    • 33750203582 scopus 로고    scopus 로고
    • Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions
    • Zhao Z., et al. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat. Genet. 2006, 38:1341-1347.
    • (2006) Nat. Genet. , vol.38 , pp. 1341-1347
    • Zhao, Z.1
  • 89
    • 33749400168 scopus 로고    scopus 로고
    • Chromosome conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements
    • Dostie J., et al. Chromosome conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res. 2006, 16:1299-1309.
    • (2006) Genome Res. , vol.16 , pp. 1299-1309
    • Dostie, J.1
  • 90
    • 84895832107 scopus 로고    scopus 로고
    • Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment
    • Hughes J.R., et al. Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment. Nat. Genet. 2014, 46:205-212.
    • (2014) Nat. Genet. , vol.46 , pp. 205-212
    • Hughes, J.R.1
  • 91
    • 70349873824 scopus 로고    scopus 로고
    • Comprehensive mapping of long-range interactions reveals folding principles of the human genome
    • Lieberman-Aiden E., et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 2009, 326:289-293.
    • (2009) Science , vol.326 , pp. 289-293
    • Lieberman-Aiden, E.1
  • 92
    • 84861095603 scopus 로고    scopus 로고
    • Topological domains in mammalian genomes identified by analysis of chromatin interactions
    • Dixon J.R., et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 2012, 485:376-380.
    • (2012) Nature , vol.485 , pp. 376-380
    • Dixon, J.R.1
  • 93
    • 84861100147 scopus 로고    scopus 로고
    • Spatial partitioning of the regulatory landscape of the X-inactivation centre
    • Nora E.P., et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 2012, 485:381-385.
    • (2012) Nature , vol.485 , pp. 381-385
    • Nora, E.P.1
  • 94
    • 84887620842 scopus 로고    scopus 로고
    • A high-resolution map of the three-dimensional chromatin interactome in human cells
    • Jin F., et al. A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature 2013, 503:290-294.
    • (2013) Nature , vol.503 , pp. 290-294
    • Jin, F.1
  • 95
    • 84926177361 scopus 로고    scopus 로고
    • Fine-scale chromatin interaction maps reveal the cis-regulatory landscape of human lincRNA genes
    • Ma W., et al. Fine-scale chromatin interaction maps reveal the cis-regulatory landscape of human lincRNA genes. Nat. Methods 2015, 12:71-78.
    • (2015) Nat. Methods , vol.12 , pp. 71-78
    • Ma, W.1
  • 96
    • 84862777531 scopus 로고    scopus 로고
    • Insulators, long-range interactions, and genome function
    • Yang J., Corces V.G. Insulators, long-range interactions, and genome function. Curr. Opin. Genet. Dev. 2012, 22:86-92.
    • (2012) Curr. Opin. Genet. Dev. , vol.22 , pp. 86-92
    • Yang, J.1    Corces, V.G.2
  • 97
    • 84877795975 scopus 로고    scopus 로고
    • The role of chromatin insulators in nuclear architecture and genome function
    • Van Bortle K., Corces V.G. The role of chromatin insulators in nuclear architecture and genome function. Curr. Opin. Genet. Dev. 2013, 23:212-218.
    • (2013) Curr. Opin. Genet. Dev. , vol.23 , pp. 212-218
    • Van Bortle, K.1    Corces, V.G.2
  • 98
    • 67549119096 scopus 로고    scopus 로고
    • CTCF: master weaver of the genome
    • Phillips J.E., Corces V.G. CTCF: master weaver of the genome. Cell 2009, 137:1194-1211.
    • (2009) Cell , vol.137 , pp. 1194-1211
    • Phillips, J.E.1    Corces, V.G.2
  • 99
    • 84911478490 scopus 로고    scopus 로고
    • Topologically associating domains are stable units of replication-timing regulation
    • Pope B.D., et al. Topologically associating domains are stable units of replication-timing regulation. Nature 2014, 515:402-405.
    • (2014) Nature , vol.515 , pp. 402-405
    • Pope, B.D.1
  • 100
    • 84878860751 scopus 로고    scopus 로고
    • Architectural protein subclasses shape 3D organization of genomes during lineage commitment
    • Phillips-Cremins J.E., et al. Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell 2013, 153:1281-1295.
    • (2013) Cell , vol.153 , pp. 1281-1295
    • Phillips-Cremins, J.E.1
  • 101
    • 18844451820 scopus 로고    scopus 로고
    • Mediator and the mechanism of transcriptional activation
    • Kornberg R.D. Mediator and the mechanism of transcriptional activation. Trends Biochem. Sci. 2005, 30:235-239.
    • (2005) Trends Biochem. Sci. , vol.30 , pp. 235-239
    • Kornberg, R.D.1
  • 102
    • 81855227640 scopus 로고    scopus 로고
    • A regulatory archipelago controls Hox genes transcription in digits
    • Montavon T., et al. A regulatory archipelago controls Hox genes transcription in digits. Cell 2011, 147:1132-1145.
    • (2011) Cell , vol.147 , pp. 1132-1145
    • Montavon, T.1
  • 103
    • 70449103609 scopus 로고    scopus 로고
    • An oestrogen-receptor-alpha-bound human chromatin interactome
    • Fullwood M.J., et al. An oestrogen-receptor-alpha-bound human chromatin interactome. Nature 2009, 462:58-64.
    • (2009) Nature , vol.462 , pp. 58-64
    • Fullwood, M.J.1
  • 104
    • 79959699992 scopus 로고    scopus 로고
    • CTCF-mediated functional chromatin interactome in pluripotent cells
    • Handoko L., et al. CTCF-mediated functional chromatin interactome in pluripotent cells. Nat. Genet. 2011, 43:630-638.
    • (2011) Nat. Genet. , vol.43 , pp. 630-638
    • Handoko, L.1
  • 105
    • 84862908850 scopus 로고    scopus 로고
    • Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation
    • Li G., et al. Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell 2012, 148:84-98.
    • (2012) Cell , vol.148 , pp. 84-98
    • Li, G.1
  • 106
    • 84913537605 scopus 로고    scopus 로고
    • Genome-wide map of regulatory interactions in the human genome
    • Heidari N., et al. Genome-wide map of regulatory interactions in the human genome. Genome Res. 2014, 24:1905-1917.
    • (2014) Genome Res. , vol.24 , pp. 1905-1917
    • Heidari, N.1
  • 107
    • 84875463382 scopus 로고    scopus 로고
    • Disclosure of a structural milieu for the proximity ligation reveals the elusive nature of an active chromatin hub
    • Gavrilov A.A., et al. Disclosure of a structural milieu for the proximity ligation reveals the elusive nature of an active chromatin hub. Nucleic Acids Res. 2013, 41:3563-3575.
    • (2013) Nucleic Acids Res. , vol.41 , pp. 3563-3575
    • Gavrilov, A.A.1
  • 108
    • 45149084413 scopus 로고    scopus 로고
    • Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions
    • Guelen L., et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 2008, 453:948-951.
    • (2008) Nature , vol.453 , pp. 948-951
    • Guelen, L.1
  • 109
    • 84856747483 scopus 로고    scopus 로고
    • Three-dimensional folding and functional organization principles of the Drosophila genome
    • Sexton T., et al. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 2012, 148:458-472.
    • (2012) Cell , vol.148 , pp. 458-472
    • Sexton, T.1
  • 110
    • 84907512608 scopus 로고    scopus 로고
    • Distinct structural transitions of chromatin topological domains correlate with coordinated hormone-induced gene regulation
    • Le Dily F., et al. Distinct structural transitions of chromatin topological domains correlate with coordinated hormone-induced gene regulation. Genes Dev. 2014, 28:2151-2162.
    • (2014) Genes Dev. , vol.28 , pp. 2151-2162
    • Le Dily, F.1
  • 111
    • 84881613036 scopus 로고    scopus 로고
    • Segmental folding of chromosomes: a basis for structural and regulatory chromosomal neighborhoods?
    • Nora E.P., et al. Segmental folding of chromosomes: a basis for structural and regulatory chromosomal neighborhoods?. Bioessays 2013, 35:818-828.
    • (2013) Bioessays , vol.35 , pp. 818-828
    • Nora, E.P.1
  • 113
    • 58149498240 scopus 로고    scopus 로고
    • CTCF-dependent enhancer-blocking by alternative chromatin loop formation
    • Hou C., et al. CTCF-dependent enhancer-blocking by alternative chromatin loop formation. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:20398-20403.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 20398-20403
    • Hou, C.1
  • 114
    • 84861964135 scopus 로고    scopus 로고
    • Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor
    • Deng W., et al. Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell 2012, 149:1233-1244.
    • (2012) Cell , vol.149 , pp. 1233-1244
    • Deng, W.1
  • 115
    • 84908439526 scopus 로고    scopus 로고
    • Reactivation of developmentally silenced globin genes by forced chromatin looping
    • Deng W., et al. Reactivation of developmentally silenced globin genes by forced chromatin looping. Cell 2014, 158:849-860.
    • (2014) Cell , vol.158 , pp. 849-860
    • Deng, W.1
  • 116
    • 84918539650 scopus 로고    scopus 로고
    • Chromatin decondensation is sufficient to alter nuclear organization in embryonic stem cells
    • Therizols P., et al. Chromatin decondensation is sufficient to alter nuclear organization in embryonic stem cells. Science 2014, 346:1238-1242.
    • (2014) Science , vol.346 , pp. 1238-1242
    • Therizols, P.1
  • 117
    • 84865687580 scopus 로고    scopus 로고
    • Step-wise methylation of histone H3K9 positions heterochromatin at the nuclear periphery
    • Towbin B.D., et al. Step-wise methylation of histone H3K9 positions heterochromatin at the nuclear periphery. Cell 2012, 150:934-947.
    • (2012) Cell , vol.150 , pp. 934-947
    • Towbin, B.D.1
  • 118
    • 41949121084 scopus 로고    scopus 로고
    • Recruitment to the nuclear periphery can alter expression of genes in human cells
    • Finlan L.E., et al. Recruitment to the nuclear periphery can alter expression of genes in human cells. PLoS Genet. 2008, 4:e1000039.
    • (2008) PLoS Genet. , vol.4 , pp. e1000039
    • Finlan, L.E.1
  • 119
    • 84925497196 scopus 로고    scopus 로고
    • Resolving the complexity of the human genome using single-molecule sequencing
    • Chaisson M.J.P., et al. Resolving the complexity of the human genome using single-molecule sequencing. Nature 2014, 517:608-611.
    • (2014) Nature , vol.517 , pp. 608-611
    • Chaisson, M.J.P.1
  • 120
    • 84898762051 scopus 로고    scopus 로고
    • Centromere reference models for human chromosomes X and Y satellite arrays
    • Miga K.H., et al. Centromere reference models for human chromosomes X and Y satellite arrays. Genome Res. 2014, 24:697-707.
    • (2014) Genome Res. , vol.24 , pp. 697-707
    • Miga, K.H.1
  • 121
    • 84861889354 scopus 로고    scopus 로고
    • Differential DNase I hypersensitivity reveals factor-dependent chromatin dynamics
    • He H.H., et al. Differential DNase I hypersensitivity reveals factor-dependent chromatin dynamics. Genome Res. 2012, 22:1015-1025.
    • (2012) Genome Res. , vol.22 , pp. 1015-1025
    • He, H.H.1
  • 122
    • 84908207355 scopus 로고    scopus 로고
    • Identifying and mitigating bias in next-generation sequencing methods for chromatin biology
    • Meyer C.A., Liu X.S. Identifying and mitigating bias in next-generation sequencing methods for chromatin biology. Nat. Rev. Genet. 2014, 15:709-721.
    • (2014) Nat. Rev. Genet. , vol.15 , pp. 709-721
    • Meyer, C.A.1    Liu, X.S.2
  • 123
    • 84922589001 scopus 로고    scopus 로고
    • DNase footprint signatures are dictated by factor dynamics and DNA sequence
    • Sung M-H., et al. DNase footprint signatures are dictated by factor dynamics and DNA sequence. Mol. Cell 2014, 56:275-285.
    • (2014) Mol. Cell , vol.56 , pp. 275-285
    • Sung, M.-H.1
  • 124
    • 84862979650 scopus 로고    scopus 로고
    • A map of nucleosome positions in yeast at base-pair resolution
    • Brogaard K., et al. A map of nucleosome positions in yeast at base-pair resolution. Nature 2012, 486:496-501.
    • (2012) Nature , vol.486 , pp. 496-501
    • Brogaard, K.1
  • 125
    • 84890280929 scopus 로고    scopus 로고
    • Chemical map of Schizosaccharomyces pombe reveals species-specific features in nucleosome positioning
    • Moyle-Heyrman G., et al. Chemical map of Schizosaccharomyces pombe reveals species-specific features in nucleosome positioning. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:20158-20163.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 20158-20163
    • Moyle-Heyrman, G.1
  • 126
    • 84902668801 scopus 로고    scopus 로고
    • Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma
    • Patel A.P., et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 2014, 344:1396-1401.
    • (2014) Science , vol.344 , pp. 1396-1401
    • Patel, A.P.1
  • 127
    • 84866997011 scopus 로고    scopus 로고
    • Iterative correction of Hi-C data reveals hallmarks of chromosome organization
    • Imakaev M., et al. Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat. Methods 2012, 9:999-1003.
    • (2012) Nat. Methods , vol.9 , pp. 999-1003
    • Imakaev, M.1
  • 128
    • 84868024339 scopus 로고    scopus 로고
    • HiTC: exploration of high-throughput 'C' experiments
    • Servant N., et al. HiTC: exploration of high-throughput 'C' experiments. Bioinformatics 2012, 28:2843-2844.
    • (2012) Bioinformatics , vol.28 , pp. 2843-2844
    • Servant, N.1
  • 129
    • 84877296402 scopus 로고    scopus 로고
    • Exploring long-range genome interactions using the WashU Epigenome Browser
    • Zhou X., et al. Exploring long-range genome interactions using the WashU Epigenome Browser. Nat. Methods 2013, 10:375-376.
    • (2013) Nat. Methods , vol.10 , pp. 375-376
    • Zhou, X.1
  • 130
    • 84878011578 scopus 로고    scopus 로고
    • Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data
    • Dekker J., et al. Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat. Rev. Genet. 2013, 14:390-403.
    • (2013) Nat. Rev. Genet. , vol.14 , pp. 390-403
    • Dekker, J.1
  • 131
    • 84887942741 scopus 로고    scopus 로고
    • Large-scale chromatin organization: the good, the surprising, and the still perplexing
    • Belmont A.S. Large-scale chromatin organization: the good, the surprising, and the still perplexing. Curr. Opin. Cell Biol. 2014, 26:69-78.
    • (2014) Curr. Opin. Cell Biol. , vol.26 , pp. 69-78
    • Belmont, A.S.1
  • 132
    • 84918510740 scopus 로고    scopus 로고
    • Spatial genome organization: contrasting views from chromosome conformation capture and fluorescence in situ hybridization
    • Williamson I., et al. Spatial genome organization: contrasting views from chromosome conformation capture and fluorescence in situ hybridization. Genes Dev. 2014, 28:2778-2791.
    • (2014) Genes Dev. , vol.28 , pp. 2778-2791
    • Williamson, I.1
  • 133
    • 84885617426 scopus 로고    scopus 로고
    • Single-cell Hi-C reveals cell-to-cell variability in chromosome structure
    • Nagano T., et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 2013, 502:59-64.
    • (2013) Nature , vol.502 , pp. 59-64
    • Nagano, T.1
  • 134
    • 84900297485 scopus 로고    scopus 로고
    • Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and transcription
    • Giorgetti L., et al. Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and transcription. Cell 2014, 157:950-963.
    • (2014) Cell , vol.157 , pp. 950-963
    • Giorgetti, L.1
  • 135
    • 84888018217 scopus 로고    scopus 로고
    • Organization of the mitotic chromosome
    • Naumova N., et al. Organization of the mitotic chromosome. Science 2013, 342:948-953.
    • (2013) Science , vol.342 , pp. 948-953
    • Naumova, N.1
  • 136
    • 70349813779 scopus 로고    scopus 로고
    • Distinct promoter dynamics of the basal transcription factor TBP across the yeast genome
    • van Werven F.J., et al. Distinct promoter dynamics of the basal transcription factor TBP across the yeast genome. Nat. Struct. Mol. Biol. 2009, 16:1043-1048.
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 1043-1048
    • van Werven, F.J.1
  • 137
    • 0348150714 scopus 로고    scopus 로고
    • Maintenance of stable heterochromatin domains by dynamic HP1 binding
    • Cheutin T., et al. Maintenance of stable heterochromatin domains by dynamic HP1 binding. Science 2003, 299:721-725.
    • (2003) Science , vol.299 , pp. 721-725
    • Cheutin, T.1
  • 139
    • 84937535711 scopus 로고    scopus 로고
    • Preparation of single-cell RNA-seq libraries for next generation sequencing
    • 4.22.1-4.22.17
    • Trombetta J.J., et al. Preparation of single-cell RNA-seq libraries for next generation sequencing. Curr. Protoc. Mol. Biol. 2014, 107. 4.22.1-4.22.17.
    • (2014) Curr. Protoc. Mol. Biol. , vol.107
    • Trombetta, J.J.1
  • 140
    • 79955540235 scopus 로고    scopus 로고
    • Live-cell chromosome dynamics and outcome of X chromosome pairing events during ES cell differentiation
    • Masui O., et al. Live-cell chromosome dynamics and outcome of X chromosome pairing events during ES cell differentiation. Cell 2011, 145:447-458.
    • (2011) Cell , vol.145 , pp. 447-458
    • Masui, O.1
  • 141
    • 80052404952 scopus 로고    scopus 로고
    • Insights into interphase large-scale chromatin structure from analysis of engineered chromosome regions
    • Belmont A.S., et al. Insights into interphase large-scale chromatin structure from analysis of engineered chromosome regions. Cold Spring Harb. Symp. Quant. Biol. 2010, 75:453-460.
    • (2010) Cold Spring Harb. Symp. Quant. Biol. , vol.75 , pp. 453-460
    • Belmont, A.S.1
  • 142
    • 84875703872 scopus 로고    scopus 로고
    • Single-cell dynamics of genome-nuclear lamina interactions
    • Kind J., et al. Single-cell dynamics of genome-nuclear lamina interactions. Cell 2013, 153:178-192.
    • (2013) Cell , vol.153 , pp. 178-192
    • Kind, J.1
  • 143
    • 84922480037 scopus 로고    scopus 로고
    • Regulation of RNA polymerase II activation by histone acetylation in single living cells
    • Stasevich T.J., et al. Regulation of RNA polymerase II activation by histone acetylation in single living cells. Nature 2014, 516:272-275.
    • (2014) Nature , vol.516 , pp. 272-275
    • Stasevich, T.J.1
  • 144
    • 84907222725 scopus 로고    scopus 로고
    • RNA Function. RNA and dynamic nuclear organization
    • Rinn J., Guttman M. RNA Function. RNA and dynamic nuclear organization. Science 2014, 345:1240-1241.
    • (2014) Science , vol.345 , pp. 1240-1241
    • Rinn, J.1    Guttman, M.2
  • 145
    • 84897128298 scopus 로고    scopus 로고
    • The noncoding RNA revolution - trashing old rules to forge new ones
    • Cech T.R., Steitz J.A. The noncoding RNA revolution - trashing old rules to forge new ones. Cell 2014, 157:77-94.
    • (2014) Cell , vol.157 , pp. 77-94
    • Cech, T.R.1    Steitz, J.A.2
  • 146
    • 84875200257 scopus 로고    scopus 로고
    • Long noncoding RNAs: cellular address codes in development and disease
    • Batista P.J., Chang H.Y. Long noncoding RNAs: cellular address codes in development and disease. Cell 2013, 152:1298-1307.
    • (2013) Cell , vol.152 , pp. 1298-1307
    • Batista, P.J.1    Chang, H.Y.2
  • 147
    • 84879642373 scopus 로고    scopus 로고
    • The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome
    • Engreitz J.M., et al. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 2013, 341:1237973.
    • (2013) Science , vol.341 , pp. 1237973
    • Engreitz, J.M.1
  • 148
    • 84893767092 scopus 로고    scopus 로고
    • Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre
    • Hacisuleyman E., et al. Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre. Nat. Struct. Mol. Biol. 2014, 21:198-206.
    • (2014) Nat. Struct. Mol. Biol. , vol.21 , pp. 198-206
    • Hacisuleyman, E.1
  • 149
    • 53349098906 scopus 로고    scopus 로고
    • Epigenomics: a roadmap, but to where?
    • Madhani H.D., et al. Epigenomics: a roadmap, but to where?. Science 2008, 322:43-44.
    • (2008) Science , vol.322 , pp. 43-44
    • Madhani, H.D.1
  • 150
    • 84887419464 scopus 로고    scopus 로고
    • Promiscuous RNA binding by Polycomb repressive complex 2
    • Davidovich C., et al. Promiscuous RNA binding by Polycomb repressive complex 2. Nat. Struct. Mol. Biol. 2013, 20:1250-1257.
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 1250-1257
    • Davidovich, C.1
  • 151
    • 84924919291 scopus 로고    scopus 로고
    • Toward a consensus on the binding specificity and promiscuity of PRC2 for RNA
    • Davidovich C., et al. Toward a consensus on the binding specificity and promiscuity of PRC2 for RNA. Mol. Cell 2015, 57:552-558.
    • (2015) Mol. Cell , vol.57 , pp. 552-558
    • Davidovich, C.1
  • 152
    • 84921539874 scopus 로고    scopus 로고
    • Locus-specific targeting to the X chromosome revealed by the RNA interactome of CTCF
    • Kung J.T., et al. Locus-specific targeting to the X chromosome revealed by the RNA interactome of CTCF. Mol. Cell 2015, 57:361-375.
    • (2015) Mol. Cell , vol.57 , pp. 361-375
    • Kung, J.T.1
  • 153
    • 84904507962 scopus 로고    scopus 로고
    • Regulatory interactions between RNA and Polycomb repressive complex 2
    • Cifuentes-Rojas C., et al. Regulatory interactions between RNA and Polycomb repressive complex 2. Mol. Cell 2014, 55:171-185.
    • (2014) Mol. Cell , vol.55 , pp. 171-185
    • Cifuentes-Rojas, C.1
  • 154
    • 70349267600 scopus 로고    scopus 로고
    • Mapping accessible chromatin regions using Sono-Seq
    • Auerbach R.K., et al. Mapping accessible chromatin regions using Sono-Seq. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:14926-14931.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 14926-14931
    • Auerbach, R.K.1
  • 155
    • 84882766972 scopus 로고    scopus 로고
    • Developmental fate and cellular maturity encoded in human regulatory DNA landscapes
    • Stergachis A.B., et al. Developmental fate and cellular maturity encoded in human regulatory DNA landscapes. Cell 2013, 154:888-903.
    • (2013) Cell , vol.154 , pp. 888-903
    • Stergachis, A.B.1
  • 156
    • 77956276383 scopus 로고    scopus 로고
    • DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells
    • Song L., Crawford G.E. DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. Cold Spring Harb. Protoc. 2010, 2010. 10.1101/pdb.prot5384.
    • (2010) Cold Spring Harb. Protoc. , vol.2010
    • Song, L.1    Crawford, G.E.2
  • 157
    • 81055141350 scopus 로고    scopus 로고
    • Epigenome characterization at single base-pair resolution
    • Henikoff J.G., et al. Epigenome characterization at single base-pair resolution. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:18318-18323.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 18318-18323
    • Henikoff, J.G.1
  • 158
    • 68349122404 scopus 로고    scopus 로고
    • Native chromatin preparation and Illumina/Solexa library construction
    • Cuddapah S., et al. Native chromatin preparation and Illumina/Solexa library construction. Cold Spring Harb. Protoc. 2009, 2009. 10.1101/pdb.prot5237.
    • (2009) Cold Spring Harb. Protoc. , vol.2009
    • Cuddapah, S.1
  • 159
    • 84953635706 scopus 로고    scopus 로고
    • An ultra-low-input native ChIP-seq protocol for genome-wide profiling of rare cell populations
    • Brind'Amour J., et al. An ultra-low-input native ChIP-seq protocol for genome-wide profiling of rare cell populations. Nat. Commun. 2015, 6:6033.
    • (2015) Nat. Commun. , vol.6 , pp. 6033
    • Brind'Amour, J.1
  • 160
    • 84873020117 scopus 로고    scopus 로고
    • ChIP-exo method for identifying genomic location of DNA-binding proteins with near-single-nucleotide accuracy
    • Rhee H.S., Pugh B.F. ChIP-exo method for identifying genomic location of DNA-binding proteins with near-single-nucleotide accuracy. Curr. Protoc. Mol. Biol. 2012, 100:21.24.1-21.24.14.
    • (2012) Curr. Protoc. Mol. Biol. , vol.100 , pp. 21.24.1-21.24.14
    • Rhee, H.S.1    Pugh, B.F.2
  • 161
    • 34548565667 scopus 로고    scopus 로고
    • Quantitative analysis of chromosome conformation capture assays (3C-qPCR)
    • Hagège H., et al. Quantitative analysis of chromosome conformation capture assays (3C-qPCR). Nat. Protoc. 2007, 2:1722-1733.
    • (2007) Nat. Protoc. , vol.2 , pp. 1722-1733
    • Hagège, H.1
  • 162
    • 33748259774 scopus 로고    scopus 로고
    • CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus
    • Splinter E., et al. CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus. Genes Dev. 2006, 20:2349-2354.
    • (2006) Genes Dev. , vol.20 , pp. 2349-2354
    • Splinter, E.1
  • 163
    • 80054110441 scopus 로고    scopus 로고
    • The dynamic architecture of Hox gene clusters
    • Noordermeer D., et al. The dynamic architecture of Hox gene clusters. Science 2011, 334:222-225.
    • (2011) Science , vol.334 , pp. 222-225
    • Noordermeer, D.1
  • 164
    • 84875143934 scopus 로고    scopus 로고
    • Multiplexed chromosome conformation capture sequencing for rapid genome-scale high-resolution detection of long-range chromatin interactions
    • Stadhouders R., et al. Multiplexed chromosome conformation capture sequencing for rapid genome-scale high-resolution detection of long-range chromatin interactions. Nat. Protoc. 2013, 8:509-524.
    • (2013) Nat. Protoc. , vol.8 , pp. 509-524
    • Stadhouders, R.1
  • 165
    • 84865800494 scopus 로고    scopus 로고
    • The long-range interaction landscape of gene promoters
    • Sanyal A., et al. The long-range interaction landscape of gene promoters. Nature 2012, 489:109-113.
    • (2012) Nature , vol.489 , pp. 109-113
    • Sanyal, A.1
  • 166
    • 77957932111 scopus 로고    scopus 로고
    • Genomics tools for unraveling chromosome architecture
    • van Steensel B., Dekker J. Genomics tools for unraveling chromosome architecture. Nat. Biotechnol. 2010, 28:1089-1095.
    • (2010) Nat. Biotechnol. , vol.28 , pp. 1089-1095
    • van Steensel, B.1    Dekker, J.2
  • 167
    • 34250791291 scopus 로고    scopus 로고
    • Detection of in vivo protein-DNA interactions using DamID in mammalian cells
    • Vogel M.J., et al. Detection of in vivo protein-DNA interactions using DamID in mammalian cells. Nat. Protoc. 2007, 2:1467-1478.
    • (2007) Nat. Protoc. , vol.2 , pp. 1467-1478
    • Vogel, M.J.1
  • 168
    • 33745258986 scopus 로고    scopus 로고
    • Genome-wide profiling of PRC1 and PRC2 Polycomb chromatin binding in Drosophila melanogaster
    • Tolhuis B., et al. Genome-wide profiling of PRC1 and PRC2 Polycomb chromatin binding in Drosophila melanogaster. Nat. Genet. 2006, 38:694-699.
    • (2006) Nat. Genet. , vol.38 , pp. 694-699
    • Tolhuis, B.1
  • 169
    • 84864886891 scopus 로고    scopus 로고
    • HACking the centromere chromatin code: insights from human artificial chromosomes
    • Bergmann J.H., et al. HACking the centromere chromatin code: insights from human artificial chromosomes. Chromosome Res. 2012, 20:505-519.
    • (2012) Chromosome Res. , vol.20 , pp. 505-519
    • Bergmann, J.H.1
  • 170
    • 84897581176 scopus 로고    scopus 로고
    • Total synthesis of a functional designer eukaryotic chromosome
    • Annaluru N., et al. Total synthesis of a functional designer eukaryotic chromosome. Science 2014, 344:55-58.
    • (2014) Science , vol.344 , pp. 55-58
    • Annaluru, N.1
  • 171
    • 0037847397 scopus 로고    scopus 로고
    • Effects of tethering HP1 to euchromatic regions of the Drosophila genome
    • Li Y., et al. Effects of tethering HP1 to euchromatic regions of the Drosophila genome. Development 2003, 130:1817-1824.
    • (2003) Development , vol.130 , pp. 1817-1824
    • Li, Y.1
  • 172
    • 67649939154 scopus 로고    scopus 로고
    • Synthetic heterochromatin bypasses RNAi and centromeric repeats to establish functional centromeres
    • Kagansky A., et al. Synthetic heterochromatin bypasses RNAi and centromeric repeats to establish functional centromeres. Science 2009, 324:1716-1719.
    • (2009) Science , vol.324 , pp. 1716-1719
    • Kagansky, A.1
  • 173
    • 84915804025 scopus 로고    scopus 로고
    • Activation of DNA damage response signaling by condensed chromatin
    • Burgess R.C., et al. Activation of DNA damage response signaling by condensed chromatin. Cell Rep. 2014, 9:1703-1717.
    • (2014) Cell Rep. , vol.9 , pp. 1703-1717
    • Burgess, R.C.1
  • 174
    • 84862662420 scopus 로고    scopus 로고
    • Dynamics and memory of heterochromatin in living cells
    • Hathaway N.A., et al. Dynamics and memory of heterochromatin in living cells. Cell 2012, 149:1447-1460.
    • (2012) Cell , vol.149 , pp. 1447-1460
    • Hathaway, N.A.1
  • 175
    • 79961005102 scopus 로고    scopus 로고
    • Synthetic reversal of epigenetic silencing
    • Haynes K.A., Silver P.A. Synthetic reversal of epigenetic silencing. J. Biol. Chem. 2011, 286:27176-27182.
    • (2011) J. Biol. Chem. , vol.286 , pp. 27176-27182
    • Haynes, K.A.1    Silver, P.A.2
  • 176
    • 84874627289 scopus 로고    scopus 로고
    • Robust, synergistic regulation of human gene expression using TALE activators
    • Maeder M.L., et al. Robust, synergistic regulation of human gene expression using TALE activators. Nat. Methods 2013, 10:243-245.
    • (2013) Nat. Methods , vol.10 , pp. 243-245
    • Maeder, M.L.1
  • 177
    • 84880571335 scopus 로고    scopus 로고
    • CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes
    • Gilbert L.A., et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 2013, 154:442-451.
    • (2013) Cell , vol.154 , pp. 442-451
    • Gilbert, L.A.1
  • 178
    • 84923096541 scopus 로고    scopus 로고
    • Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex
    • Konermann S., et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 2015, 517:583-588.
    • (2015) Nature , vol.517 , pp. 583-588
    • Konermann, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.