메뉴 건너뛰기




Volumn 105, Issue 26, 2008, Pages 8872-8877

Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure

Author keywords

30 nm fiber; Electron microscopy; Heterochromatin; Nucleosome array reconstitution; Sedimentation velocity analysis

Indexed keywords

HISTONE;

EID: 48249103503     PISSN: 00278424     EISSN: 10916490     Source Type: Journal    
DOI: 10.1073/pnas.0802336105     Document Type: Article
Times cited : (280)

References (37)
  • 1
    • 0036307707 scopus 로고    scopus 로고
    • Solvent-mediated interactions in the structure of the nucleosome core particle at 1.9-Å resolution
    • Davey CA, Sargent DF, Luger K, Maeder AW, Richmond TJ (2002) Solvent-mediated interactions in the structure of the nucleosome core particle at 1.9-Å resolution. J Mol Biol 319:1097-1113.
    • (2002) J Mol Biol , vol.319 , pp. 1097-1113
    • Davey, C.A.1    Sargent, D.F.2    Luger, K.3    Maeder, A.W.4    Richmond, T.J.5
  • 2
    • 1842411320 scopus 로고    scopus 로고
    • Crystal structure of the nucleosome core particle at 2.8-Å resolution
    • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8-Å resolution. Nature 389:251-260.
    • (1997) Nature , vol.389 , pp. 251-260
    • Luger, K.1    Mader, A.W.2    Richmond, R.K.3    Sargent, D.F.4    Richmond, T.J.5
  • 3
    • 33744831161 scopus 로고    scopus 로고
    • Structure of the 30-nm chromatin fiber: A key role for the linker histone
    • Robinson PJ, Rhodes D (2006) Structure of the 30-nm chromatin fiber: A key role for the linker histone. Curr Opin Struct Biol 16:336-343.
    • (2006) Curr Opin Struct Biol , vol.16 , pp. 336-343
    • Robinson, P.J.1    Rhodes, D.2
  • 4
    • 0020466758 scopus 로고
    • Rapid reformation of the thick chromosome fiber upon completion of RNA synthesis at the Balbiani ring genes in Chironomus tentans
    • Andersson K, Mahr R, Bjorkroth B, Daneholt B (1982) Rapid reformation of the thick chromosome fiber upon completion of RNA synthesis at the Balbiani ring genes in Chironomus tentans. Chromosoma 87:33-48.
    • (1982) Chromosoma , vol.87 , pp. 33-48
    • Andersson, K.1    Mahr, R.2    Bjorkroth, B.3    Daneholt, B.4
  • 5
    • 0019197619 scopus 로고
    • The higher-order structure of chicken erythrocyte chromosomes in vivo
    • Langmore JP, Schutt C (1980) The higher-order structure of chicken erythrocyte chromosomes in vivo. Nature 288:620-622.
    • (1980) Nature , vol.288 , pp. 620-622
    • Langmore, J.P.1    Schutt, C.2
  • 6
    • 0032512794 scopus 로고    scopus 로고
    • New DNA sequence rules for high-affinity binding to histone octamer and sequence-directed nucleosome positioning
    • Lowary PT, Widom J (1998) New DNA sequence rules for high-affinity binding to histone octamer and sequence-directed nucleosome positioning. J Mol Biol 276:19- 42.
    • (1998) J Mol Biol , vol.276 , pp. 19-42
    • Lowary, P.T.1    Widom, J.2
  • 7
    • 21844436803 scopus 로고    scopus 로고
    • X-ray structure of a tetranucleosome and its implications for the chromatin fiber
    • Schalch T, Duda S, Sargent DF, Richmond TJ (2005) X-ray structure of a tetranucleosome and its implications for the chromatin fiber. Nature 436:138-141.
    • (2005) Nature , vol.436 , pp. 138-141
    • Schalch, T.1    Duda, S.2    Sargent, D.F.3    Richmond, T.J.4
  • 8
    • 33646242052 scopus 로고    scopus 로고
    • EM measurements define the dimensions of the 30-nm chromatin fiber: Evidence for a compact, interdigitated structure
    • Robinson PJJ, Fairall L, Huynh VAT, Rhodes D (2006) EM measurements define the dimensions of the 30-nm chromatin fiber: Evidence for a compact, interdigitated structure. Proc Natl Acad Sci USA 103:6506-6511.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 6506-6511
    • Robinson, P.J.J.1    Fairall, L.2    Huynh, V.A.T.3    Rhodes, D.4
  • 9
    • 0000878535 scopus 로고
    • Solenoidal model for superstructure in chromatin
    • Finch JT, Klug A (1976) Solenoidal model for superstructure in chromatin. Proc Natl Acad Sci USA 73:1897-1901.
    • (1976) Proc Natl Acad Sci USA , vol.73 , pp. 1897-1901
    • Finch, J.T.1    Klug, A.2
  • 10
    • 0018581187 scopus 로고
    • Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin
    • Thoma F, Koller T, Klug A (1979) Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J Cell Biol 83:403-427.
    • (1979) J Cell Biol , vol.83 , pp. 403-427
    • Thoma, F.1    Koller, T.2    Klug, A.3
  • 11
    • 9444297879 scopus 로고    scopus 로고
    • Nucleosome arrays reveal the two-start organization of the chromatin fiber
    • Dorigo B, et al. (2004) Nucleosome arrays reveal the two-start organization of the chromatin fiber. Science 306:1571-1573.
    • (2004) Science , vol.306 , pp. 1571-1573
    • Dorigo, B.1
  • 12
    • 0017358203 scopus 로고
    • Action of micrococcal nuclease on chromatin and the location of histone H1
    • Noll M, Kornberg RD (1977) Action of micrococcal nuclease on chromatin and the location of histone H1. J Mol Biol 109:393-404.
    • (1977) J Mol Biol , vol.109 , pp. 393-404
    • Noll, M.1    Kornberg, R.D.2
  • 13
    • 0019157001 scopus 로고
    • The structure of histone H1 and its location in chromatin
    • Allan J, Hartman PG, Crane-Robinson C, Aviles FX (1980) The structure of histone H1 and its location in chromatin. Nature 288:675-679.
    • (1980) Nature , vol.288 , pp. 675-679
    • Allan, J.1    Hartman, P.G.2    Crane-Robinson, C.3    Aviles, F.X.4
  • 15
    • 0032564478 scopus 로고    scopus 로고
    • Nucleosomes, linker DNA, and linker histone form a unique structural motif that directs the higher-order folding and compaction of chromatin
    • Bednar J, et al. (1998) Nucleosomes, linker DNA, and linker histone form a unique structural motif that directs the higher-order folding and compaction of chromatin. Proc Natl Acad Sci USA 95:14173-14178.
    • (1998) Proc Natl Acad Sci USA , vol.95 , pp. 14173-14178
    • Bednar, J.1
  • 16
    • 25444436189 scopus 로고    scopus 로고
    • Linker histone H1 per se can induce three-dimensional folding of chromatin fiber
    • Hizume K, Yoshimura SH, Takeyasu K (2005) Linker histone H1 per se can induce three-dimensional folding of chromatin fiber. Biochemistry 44:12978-12989.
    • (2005) Biochemistry , vol.44 , pp. 12978-12989
    • Hizume, K.1    Yoshimura, S.H.2    Takeyasu, K.3
  • 17
    • 44649186259 scopus 로고    scopus 로고
    • The histone H1 family: Specific members, specific functions?
    • Izzo A, Kamieniarz K, Schneider R (2008) The histone H1 family: Specific members, specific functions? Biol Chem 389:333-343.
    • (2008) Biol Chem , vol.389 , pp. 333-343
    • Izzo, A.1    Kamieniarz, K.2    Schneider, R.3
  • 18
    • 29244449333 scopus 로고    scopus 로고
    • Histone h1 depletion in mammals alters global chromatin structure but causes specific changes in gene regulation
    • Fan Y, et al. (2005) Histone h1 depletion in mammals alters global chromatin structure but causes specific changes in gene regulation. Cell 123:1199-1212.
    • (2005) Cell , vol.123 , pp. 1199-1212
    • Fan, Y.1
  • 19
    • 17644391390 scopus 로고    scopus 로고
    • Linker histone variants control chromatin dynamics during early embryogenesis
    • Saeki H, et al. (2005) Linker histone variants control chromatin dynamics during early embryogenesis. Proc Natl Acad Sci USA 102:5697-5702.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 5697-5702
    • Saeki, H.1
  • 20
    • 0037609662 scopus 로고    scopus 로고
    • Mammalian linker-histone subtypes differentially affect gene expression in vivo
    • Alami R, et al. (2003) Mammalian linker-histone subtypes differentially affect gene expression in vivo. Proc Natl Acad Sci USA 100:5920-5925.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 5920-5925
    • Alami, R.1
  • 21
    • 0026517738 scopus 로고
    • A relationship between the helical twist of DNA and the ordered positioning of nucleosomes in all eukaryotic cells
    • Widom J (1992) A relationship between the helical twist of DNA and the ordered positioning of nucleosomes in all eukaryotic cells. Proc Natl Acad Sci USA 89:1095-1099.
    • (1992) Proc Natl Acad Sci USA , vol.89 , pp. 1095-1099
    • Widom, J.1
  • 22
    • 11844299709 scopus 로고    scopus 로고
    • A method for the in vitro reconstitution of a defined 30-nm chromatin fiber containing stoichiometric amounts of the linker histone
    • Huynh VA, Robinson PJ, Rhodes D (2005) A method for the in vitro reconstitution of a defined 30-nm chromatin fiber containing stoichiometric amounts of the linker histone. J Mol Biol 345:957-968.
    • (2005) J Mol Biol , vol.345 , pp. 957-968
    • Huynh, V.A.1    Robinson, P.J.2    Rhodes, D.3
  • 23
    • 0021104510 scopus 로고
    • Exchange of histones H1 and H5 between chromatin fragments.Apreference of H5 for higher-order structures
    • Thomas JO, Rees C (1983) Exchange of histones H1 and H5 between chromatin fragments.Apreference of H5 for higher-order structures. Eur J Biochem 134:109-115.
    • (1983) Eur J Biochem , vol.134 , pp. 109-115
    • Thomas, J.O.1    Rees, C.2
  • 24
    • 0019628147 scopus 로고
    • Stability of the higher-order structure of chicken-erythrocyte chromatin in solution
    • Bates DL, Butler PJ, Pearson EC, Thomas JO (1981) Stability of the higher-order structure of chicken-erythrocyte chromatin in solution. Eur J Biochem 119:469-476.
    • (1981) Eur J Biochem , vol.119 , pp. 469-476
    • Bates, D.L.1    Butler, P.J.2    Pearson, E.C.3    Thomas, J.O.4
  • 25
    • 0032553013 scopus 로고    scopus 로고
    • Linker histones stabilize the intrinsic salt-dependent folding of nucleosomal arrays: Mechanistic ramifications for higher-order chromatin folding
    • Carruthers LM, Bednar J, Woodcock CL, Hansen JC (1998) Linker histones stabilize the intrinsic salt-dependent folding of nucleosomal arrays: Mechanistic ramifications for higher-order chromatin folding. Biochemistry 37:14776-14787.
    • (1998) Biochemistry , vol.37 , pp. 14776-14787
    • Carruthers, L.M.1    Bednar, J.2    Woodcock, C.L.3    Hansen, J.C.4
  • 26
    • 0019888694 scopus 로고
    • Histones H1 and H5: One or two molecules per nucleosome?
    • Bates DL, Thomas JO (1981) Histones H1 and H5: One or two molecules per nucleosome? Nucleic Acids Res 9:5883-5894.
    • (1981) Nucleic Acids Res , vol.9 , pp. 5883-5894
    • Bates, D.L.1    Thomas, J.O.2
  • 27
    • 0023701492 scopus 로고
    • Reconstitution of chromatin higher-order structure from histone H5 and depleted chromatin
    • Graziano V, Gerchman SE, Ramakrishnan V (1988) Reconstitution of chromatin higher-order structure from histone H5 and depleted chromatin. J Mol Biol 203:997-1007.
    • (1988) J Mol Biol , vol.203 , pp. 997-1007
    • Graziano, V.1    Gerchman, S.E.2    Ramakrishnan, V.3
  • 28
    • 11944260159 scopus 로고
    • Direct detection of linker DNA bending in defined-length oligomers of chromatin
    • Yao J, Lowary PT, Widom J (1990) Direct detection of linker DNA bending in defined-length oligomers of chromatin. Proc Natl Acad Sci USA 87:7603-7607.
    • (1990) Proc Natl Acad Sci USA , vol.87 , pp. 7603-7607
    • Yao, J.1    Lowary, P.T.2    Widom, J.3
  • 29
    • 32444434989 scopus 로고    scopus 로고
    • Histone H4-K16 acetylation controls chromatin structure and protein interactions
    • Shogren-Knaak M, et al. (2006) Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311:844-847.
    • (2006) Science , vol.311 , pp. 844-847
    • Shogren-Knaak, M.1
  • 30
    • 29244467484 scopus 로고    scopus 로고
    • Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length
    • Woodcock CL, Skoultchi AI, Fan Y (2006) Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length. Chromosome Res 14:17-25.
    • (2006) Chromosome Res , vol.14 , pp. 17-25
    • Woodcock, C.L.1    Skoultchi, A.I.2    Fan, Y.3
  • 31
    • 38949198773 scopus 로고    scopus 로고
    • Reciprocal binding of PARP-1 and histone H1 at promoters specifies transcriptional outcomes
    • Krishnakumar R, et al. (2008) Reciprocal binding of PARP-1 and histone H1 at promoters specifies transcriptional outcomes. Science 319:819-821.
    • (2008) Science , vol.319 , pp. 819-821
    • Krishnakumar, R.1
  • 32
    • 0017755951 scopus 로고
    • Structure of nucleosome core particles of chromatin
    • Finch JT, et al. (1977) Structure of nucleosome core particles of chromatin. Nature 269:29-36.
    • (1977) Nature , vol.269 , pp. 29-36
    • Finch, J.T.1
  • 33
    • 0019197607 scopus 로고
    • Size dependence of a stable higher-order structure of chromatin
    • Thomas JO, Butler PJ (1980) Size dependence of a stable higher-order structure of chromatin. J Mol Biol 144:89-93.
    • (1980) J Mol Biol , vol.144 , pp. 89-93
    • Thomas, J.O.1    Butler, P.J.2
  • 34
    • 0022470051 scopus 로고
    • Salt-dependent cooperative interaction of histone H1 with linear DNA
    • Clark DJ, Thomas JO (1986) Salt-dependent cooperative interaction of histone H1 with linear DNA. J Mol Biol 187:569-580.
    • (1986) J Mol Biol , vol.187 , pp. 569-580
    • Clark, D.J.1    Thomas, J.O.2
  • 35
    • 0026747656 scopus 로고
    • Boundary analysis in sedimentation transport experiments: A procedure for obtaining sedimentation coefficient distributions using the time derivative of the concentration profile
    • Stafford WF, 3rd (1992) Boundary analysis in sedimentation transport experiments: A procedure for obtaining sedimentation coefficient distributions using the time derivative of the concentration profile. Anal Biochem 203:295-301.
    • (1992) Anal Biochem , vol.203 , pp. 295-301
    • Stafford 3rd, W.F.1
  • 36
    • 33745216899 scopus 로고    scopus 로고
    • Improved methods for fitting sedimentation coefficient distributions derived by time-derivative techniques
    • Philo JS (2006) Improved methods for fitting sedimentation coefficient distributions derived by time-derivative techniques. Anal Biochem 354:238-246.
    • (2006) Anal Biochem , vol.354 , pp. 238-246
    • Philo, J.S.1
  • 37
    • 48249116182 scopus 로고    scopus 로고
    • Nucleosome geometry and internucleosomal interactions control the chromatin fiber conformation
    • in press
    • Kepper N, Foethke D, Stehr R, Wedemann G, Rippe K (2008) Nucleosome geometry and internucleosomal interactions control the chromatin fiber conformation. Biophys J, in press.
    • (2008) Biophys J
    • Kepper, N.1    Foethke, D.2    Stehr, R.3    Wedemann, G.4    Rippe, K.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.