-
1
-
-
0015385037
-
Nonlinear Bayesian estimation using Gaussian sum approximations
-
ALSPACH, D. and SORENSON, H. (1972). Nonlinear Bayesian estimation using Gaussian sum approximations. IEEE Trans. Automat. Control 17 439-448.
-
(1972)
IEEE Trans. Automat. Control
, vol.17
, pp. 439-448
-
-
Alspach, D.1
Sorenson, H.2
-
2
-
-
85017310179
-
Sequential MCMC for Bayesian model selection
-
IEEE, New York
-
ANDRIEU, C., DE FREITAS, J. F. G. and DOUCET, A. (1999). Sequential MCMC for Bayesian model selection. In Proc. IEEE Workshop Higher Order Statistics 130-134. IEEE, New York.
-
(1999)
Proc. IEEE Workshop Higher Order Statistics
, pp. 130-134
-
-
Andrieu, C.1
De Freitas, J.F.G.2
Doucet, A.3
-
4
-
-
33847199764
-
Online parameter estimation in general state-space models
-
IEEE, New York
-
ANDRIEU, C., DOUCET, A. and TADI Ć, V. B. (2005). Online parameter estimation in general state-space models. In Proc. 44th IEEE Conf. on Decision and Control 332-337. IEEE, New York.
-
(2005)
Proc. 44th IEEE Conf. on Decision and Control
, pp. 332-337
-
-
Andrieu, C.1
Doucet, A.2
Tadi, C.V.B.3
-
5
-
-
0003778897
-
-
Springer, Berlin
-
BENVENISTE, A., MÉTIVIER, M. and PRIOURET, P. (1990). Adaptive Algorithms and Stochastic Approximations. Applications of Mathematics (New York) 22. Springer, Berlin.
-
(1990)
Adaptive Algorithms and Stochastic Approximations. Applications of Mathematics (New York)
, pp. 22
-
-
Benveniste, A.1
Métivier, M.2
Priouret, P.3
-
7
-
-
33847156958
-
Sequential auxiliary particle belief propagation
-
Philadelphia, PA
-
BRIERS, M., DOUCET, A. and SINGH, S. S. (2005). Sequential auxiliary particle belief propagation. In Proc. Conf. Fusion. Philadelphia, PA.
-
(2005)
Proc. Conf. Fusion
-
-
Briers, M.1
Doucet, A.2
Singh, S.S.3
-
9
-
-
80052231929
-
Online EM algorithm for hidden Markov models
-
CAPPÉ, O. (2011). Online EM algorithm for hidden Markov models. J. Comput. Graph. Statist. 20 728-749.
-
(2011)
J. Comput. Graph. Statist
, vol.20
, pp. 728-749
-
-
Cappé, O.1
-
10
-
-
66849104300
-
On-line expectation-maximization algorithm for latent data models
-
CAPPÉ, O. and MOULINES, E. (2009). On-line expectation-maximization algorithm for latent data models. J. R. Stat. Soc. Ser. B. Stat. Methodol. 71 593-613.
-
(2009)
J. R. Stat. Soc. Ser. B. Stat. Methodol
, vol.71
, pp. 593-613
-
-
Cappé, O.1
Moulines, E.2
-
12
-
-
0032626544
-
An improved particle filter for non-linear problems
-
CARPENTER, J., CLIFFORD, P. and FEARNHEAD, P. (1999). An improved particle filter for non-linear problems. IEE Proceedings-Radar, Sonar and Navigation 146 2-7.
-
(1999)
IEE Proceedings-Radar, Sonar and Navigation
, vol.146
, pp. 2-7
-
-
Carpenter, J.1
Clifford, P.2
Fearnhead, P.3
-
13
-
-
78650683992
-
Particle learning and smoothing
-
CARVALHO, C. M., JOHANNES, M. S., LOPES, H. F. andPOLSON, N. G. (2010). Particle learning and smoothing. Statist. Sci. 25 88-106.
-
(2010)
Statist. Sci
, vol.25
, pp. 88-106
-
-
Carvalho, C.M.1
Johannes, M.S.2
Lopes, H.F.3
Andpolson, N.G.4
-
14
-
-
79960182481
-
A nonasymptotic theorem for unnormalized Feynman-Kac particle models
-
CÉROU, F., DEL MORAL, P. and GUYADER, A. (2011). A nonasymptotic theorem for unnormalized Feynman-Kac particle models. Ann. Inst. Henri Poincaré, B Probab. Stat. 47 629-649.
-
(2011)
Ann. Inst. Henri Poincaré, B Probab. Stat
, vol.47
, pp. 629-649
-
-
Cérou, F.1
Del Moral, P.2
Guyader, A.3
-
16
-
-
0012338718
-
A sequential particle filter method forstatic models
-
CHOPIN, N. (2002). A sequential particle filter method forstatic models. Biometrika 89 539-551.
-
(2002)
Biometrika
, vol.89
, pp. 539-551
-
-
Chopin, N.1
-
17
-
-
21644457738
-
Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference
-
CHOPIN, N. (2004). Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference. Ann. Statist. 32 2385-2411.
-
(2004)
Ann. Statist
, vol.32
, pp. 2385-2411
-
-
Chopin, N.1
-
18
-
-
80051745679
-
On particle learning
-
J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D., Heckerman A. F. M. Smith and M., West, eds., Oxford Univ. Press, Oxford
-
CHOPIN, N., IACOBUCCI, A., MARIN, J. M., MENGERSEN, K., ROBERT, C. P., RYDER, R. and SCHÄUFER, C. (2011). On particle learning. In Bayesian Statistics 9 (J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D., Heckerman A. F. M. Smith and M., West, eds.) 317-360. Oxford Univ. Press, Oxford.
-
(2011)
Bayesian Statistics 9
, pp. 317-360
-
-
Chopin, N.1
Iacobucci, A.2
Marin, J.M.3
Mengersen, K.4
Robert, C.P.5
Ryder, R.6
Schäufer, C.7
-
20
-
-
84940742186
-
Sensitivity analysis in HMMs with application to likelihood maximization
-
Vancouver
-
COQUELIN, P. A., DEGUEST, R. and MUNOS, R. (2009). Sensitivity analysis in HMMs with application to likelihood maximization. In Proc. 22th Conf. NIPS. Vancouver.
-
(2009)
Proc. 22th Conf. NIPS
-
-
Coquelin, P.A.1
Deguest, R.2
Munos, R.3
-
21
-
-
84925494064
-
Particle Metropolis-Hastings using gradient and Hessian information
-
DAHLIN, J., LINDSTEN, F. and SCHÖN, T. B. (2015). Particle Metropolis-Hastings using gradient and Hessian information. Stat. Comput. 25 81-92.
-
(2015)
Stat. Comput
, vol.25
, pp. 81-92
-
-
Dahlin, J.1
Lindsten, F.2
Schön, T.B.3
-
22
-
-
84877055471
-
Efficient likelihood evaluation of state-space representations
-
DEJONG, D. N., LIESENFELD, R., MOURA, G. V., RICHARD, J.-F. and DHARMARAJAN, H. (2013). Efficient likelihood evaluation of state-space representations. Rev. Econ. Stud. 80 538-567.
-
(2013)
Rev. Econ. Stud
, vol.80
, pp. 538-567
-
-
Dejong, D.N.1
Liesenfeld, R.2
Moura, G.V.3
Richard, J.-F.4
Dharmarajan, H.5
-
24
-
-
77956767977
-
-
Preprint. Available at arXiv:1012.5390
-
DEL MORAL, P., DOUCET, A. and SINGH, S. S. (2009). Forward smoothing using sequential Monte Carlo. Technical Report 638, CUED-F-INFENG, Cambridge Univ. Preprint. Available at arXiv:1012.5390.
-
(2009)
Forward smoothing using sequential Monte Carlo. Technical Report 638, CUED-F-INFENG, Cambridge Univ
-
-
Del Moral, P.1
Doucet, A.2
Singh, S.S.3
-
26
-
-
84937845816
-
Uniform stability of a particle approximation of the optimal filter derivative
-
DEL MORAL, P., DOUCET, A. and SINGH, S. S. (2015). Uniform stability of a particle approximation of the optimal filter derivative. SIAM J. Control Optim. 53 1278-1304.
-
(2015)
SIAM J. Control Optim
, vol.53
, pp. 1278-1304
-
-
Del Moral, P.1
Doucet, A.2
Singh, S.S.3
-
28
-
-
82655181336
-
Sequential Monte Carlo smoothing for general state space hidden Markov models
-
DOUC, R., GARIVIER, A., MOULINES, E. andOLSSON, J. (2011). Sequential Monte Carlo smoothing for general state space hidden Markov models. Ann. Appl. Probab. 21 2109-2145.
-
(2011)
Ann. Appl. Probab
, vol.21
, pp. 2109-2145
-
-
Douc, R.1
Garivier, A.2
Moulines, E.3
Andolsson, J.4
-
29
-
-
59249098696
-
Forgetting of the initial condition for the filter in general state-space hidden Markov chain: A coupling approach
-
DOUC, R., MOULINES, E. and RITOV, Y. (2009). Forgetting of the initial condition for the filter in general state-space hidden Markov chain: A coupling approach. Electron. J. Probab. 14 27-49.
-
(2009)
Electron. J. Probab
, vol.14
, pp. 27-49
-
-
Douc, R.1
Moulines, E.2
Ritov, Y.3
-
30
-
-
0003665481
-
-
Springer, New York
-
DOUCET, A., DE FREITAS, J. F. G. and GORDON, N. J., eds. (2001). Sequential Monte Carlo Methods in Practice. Springer, New York.
-
(2001)
Sequential Monte Carlo Methods in Practice
-
-
Doucet, A.1
De Freitas, J.F.G.2
Gordon, N.J.3
-
31
-
-
0001460136
-
On sequential Monte Carlo sampling methods for Bayesian filtering
-
DOUCET, A., GODSILL, S. J. and ANDRIEU, C. (2000). On sequential Monte Carlo sampling methods for Bayesian filtering. Stat. Comput. 10 197-208.
-
(2000)
Stat. Comput
, vol.10
, pp. 197-208
-
-
Doucet, A.1
Godsill, S.J.2
Andrieu, C.3
-
32
-
-
77951131231
-
A tutorial on particle filtering and smoothing: Fifteen years later
-
Oxford Univ. Press, Oxford
-
DOUCET, A. and JOHANSEN, A. M. (2011). A tutorial on particle filtering and smoothing: Fifteen years later. In The Oxford Handbook of Nonlinear Filtering 656-704. Oxford Univ. Press, Oxford.
-
(2011)
The Oxford Handbook of Nonlinear Filtering
, pp. 656-704
-
-
Doucet, A.1
Johansen, A.M.2
-
33
-
-
84929220466
-
Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator
-
DOUCET, A., PITT, M. K., DELIGIANNIDIS, G. and KOHN, R. (2015). Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator. Biometrika 102 295-313.
-
(2015)
Biometrika
, vol.102
, pp. 295-313
-
-
Doucet, A.1
Pitt, M.K.2
Deligiannidis, G.3
Kohn, R.4
-
34
-
-
0003459126
-
-
Springer, New York
-
ELLIOTT, R. J., AGGOUN, L. and MOORE, J. B. (1995). Hidden Markov Models: Estimation and Control. Applications of Mathematics (New York) 29. Springer, New York.
-
(1995)
Hidden Markov Models: Estimation and Control. Applications of Mathematics (New York)
, vol.29
-
-
Elliott, R.J.1
Aggoun, L.2
Moore, J.B.3
-
35
-
-
84866506971
-
-
Technical report, Dept. Systems Engineering, Australian National Univ., Canberra
-
ELLIOTT, R. J., FORD, J. J. and MOORE, J. B. (2000). Online consistent estimation of hidden Markov models. Technical report, Dept. Systems Engineering, Australian National Univ., Canberra.
-
(2000)
Online consistent estimation of hidden Markov models
-
-
Elliott, R.J.1
Ford, J.J.2
Moore, J.B.3
-
36
-
-
0036929961
-
Markov chain Monte Carlo, sufficient statistics, and particle filters
-
FEARNHEAD, P. and MELIGKOTSIDOU, L. (2014). Augmentation schemes for particle MCMC. Preprint. Available at arXiv:1408.6980.
-
(2002)
J. Comput. Graph. Statist
, vol.11
, pp. 848-862
-
-
Fearnhead, P.1
-
38
-
-
77952840924
-
A sequential smoothing algorithm with linear computational cost
-
FEARNHEAD, P., WYNCOLL, D. and TAWN, J. (2010). A sequential smoothing algorithm with linear computational cost. Biometrika 97 447-464.
-
(2010)
Biometrika
, vol.97
, pp. 447-464
-
-
Fearnhead, P.1
Wyncoll, D.2
Tawn, J.3
-
39
-
-
34548526338
-
Estimating macroeconomic models: A likelihood approach
-
FERNÁNDEZ-VILLAVERDE, J. and RUBIO-RAMÍREZ, J. F. (2007). Estimating macroeconomic models: A likelihood approach. Rev. Econ. Stud. 74 1059-1087.
-
(2007)
Rev. Econ. Stud
, vol.74
, pp. 1059-1087
-
-
Fernández-Villaverde, J.1
Rubio-Ramírez, J.F.2
-
41
-
-
80052914719
-
Bayesian inference based only on simulated likelihood: Particle filter analysis of dynamic economic models
-
FLURY, T. and SHEPHARD, N. (2011). Bayesian inference based only on simulated likelihood: Particle filter analysis of dynamic economic models. Econometric Theory 27 933-956.
-
(2011)
Econometric Theory
, vol.27
, pp. 933-956
-
-
Flury, T.1
Shephard, N.2
-
42
-
-
0004089833
-
-
Ph.D. thesis, Dept. Systems Engineering, Australian National Univ., Canberra
-
FORD, J. J. (1998). Adaptive hidden Markov model estimation and applications. Ph.D. thesis, Dept. Systems Engineering, Australian National Univ., Canberra. Available at http://infoeng.rsise.anu.edu.au/files/jason_ford_thesis.pdf.
-
(1998)
Adaptive hidden Markov model estimation and applications
-
-
Ford, J.J.1
-
43
-
-
84880329304
-
Efficient learning via simulation: A marginalized resample-move approach
-
FULOP, A. and LI, J. (2013). Efficient learning via simulation: A marginalized resample-move approach. J. Econometrics 176 146-161.
-
(2013)
J. Econometrics
, vol.176
, pp. 146-161
-
-
Fulop, A.1
Li, J.2
-
44
-
-
0035648076
-
Following a moving target-Monte Carlo inference for dynamic Bayesian models
-
GILKS, W. R. and BERZUINI, C. (2001). Following a moving target-Monte Carlo inference for dynamic Bayesian models. J. R. Stat. Soc. Ser. B. Stat. Methodol. 63 127-146.
-
(2001)
J. R. Stat. Soc. Ser. B. Stat. Methodol
, vol.63
, pp. 127-146
-
-
Gilks, W.R.1
Berzuini, C.2
-
45
-
-
2142848605
-
Monte Carlo smoothing for nonlinear times series
-
GODSILL, S. J., DOUCET, A. and WEST, M. (2004). Monte Carlo smoothing for nonlinear times series. J. Amer. Statist. Assoc. 99 156-168.
-
(2004)
J. Amer. Statist. Assoc
, vol.99
, pp. 156-168
-
-
Godsill, S.J.1
Doucet, A.2
West, M.3
-
46
-
-
0027580559
-
Novel approach to nonlinear/non-Gaussian Bayesian state estimation
-
GORDON, N. J., SALMOND, D. J. and SMITH, A. F. M. (1993). Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc. F, Comm., Radar, Signal. Proc. 140 107-113.
-
(1993)
IEE Proc. F, Comm., Radar, Signal. Proc
, vol.140
, pp. 107-113
-
-
Gordon, N.J.1
Salmond, D.J.2
Smith, A.F.M.3
-
48
-
-
0032221057
-
Monte Carlo approximations for general state-space models
-
HÜRZELER, M. and KÜNSCH, H. R. (1998). Monte Carlo approximations for general state-space models. J. Comput. Graph. Statist. 7 175-193.
-
(1998)
J. Comput. Graph. Statist
, vol.7
, pp. 175-193
-
-
Hürzeler, M.1
Künsch, H.R.2
-
50
-
-
80052459646
-
Iterated filtering
-
IONIDES, E. L., BHADRA, A., ATCHADÉ, Y. and KING, A. (2011). Iterated filtering. Ann. Statist. 39 1776-1802.
-
(2011)
Ann. Statist
, vol.39
, pp. 1776-1802
-
-
Ionides, E.L.1
Bhadra, A.2
Atchadé, Y.3
King, A.4
-
52
-
-
0001251517
-
Stochastic volatility: Likelihood inference and comparison with ARCH models
-
KIM, S., SHEPHARD, N. and CHIB, S. (1998). Stochastic volatility: Likelihood inference and comparison with ARCH models. Rev. Econ. Stud. 65 361-393.
-
(1998)
Rev. Econ. Stud
, vol.65
, pp. 361-393
-
-
Kim, S.1
Shephard, N.2
Chib, S.3
-
53
-
-
0030304310
-
Monte Carlo filter and smoother for non-Gaussian nonlinear state space models
-
KITAGAWA, G. (1996). Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. J. Comput. Graph. Statist. 5 1-25.
-
(1996)
J. Comput. Graph. Statist
, vol.5
, pp. 1-25
-
-
Kitagawa, G.1
-
54
-
-
0032347276
-
A self-organizing state-space model
-
KITAGAWA, G. (1998). A self-organizing state-space model. J. Amer. Statist. Assoc. 93 1203-1215.
-
(1998)
J. Amer. Statist. Assoc
, vol.93
, pp. 1203-1215
-
-
Kitagawa, G.1
-
55
-
-
84903276075
-
Computational aspects of sequential Monte Carlo filter and smoother
-
KITAGAWA, G. (2014). Computational aspects of sequential Monte Carlo filter and smoother. Ann. Inst. Statist. Math. 66 443-471.
-
(2014)
Ann. Inst. Statist. Math
, vol.66
, pp. 443-471
-
-
Kitagawa, G.1
-
57
-
-
33749264449
-
Fast particle smoothing: If I had a million particles
-
Pittsburgh, PA
-
KLAAS, M., BRIERS, M., DE FREITAS, N., DOUCET, A., MASKELL, S. and LANG, D. (2006). Fast particle smoothing: If I had a million particles. In Proc. International Conf. Machine Learning 481-488. Pittsburgh, PA.
-
(2006)
Proc. International Conf. Machine Learning
, pp. 481-488
-
-
Klaas, M.1
Briers, M.2
De Freitas, N.3
Doucet, A.4
Maskell, S.5
Lang, D.6
-
58
-
-
84885027411
-
Particle filters
-
KÜNSCH, H. R. (2013). Particle filters. Bernoulli 19 1391-1403.
-
(2013)
Bernoulli
, vol.19
, pp. 1391-1403
-
-
Künsch, H.R.1
-
61
-
-
0036475084
-
A particle algorithm for sequential Bayesian parameter estimation and model selection
-
LEE, D. S. and CHIA, K. K. (2002). A particle algorithm for sequential Bayesian parameter estimation and model selection. IEEE Trans. Signal Process. 50 326-336.
-
(2002)
IEEE Trans. Signal Process
, vol.50
, pp. 326-336
-
-
Lee, D.S.1
Chia, K.K.2
-
62
-
-
84884959903
-
Online expectation maximization based algorithms for inference in hidden Markov models
-
LE CORFF, S. and FORT, G. (2013). Online expectation maximization based algorithms for inference in hidden Markov models. Electron. J. Stat. 7 763-792.
-
(2013)
Electron. J. Stat
, vol.7
, pp. 763-792
-
-
Le Corff, S.1
Fort, G.2
-
63
-
-
84873632768
-
Convergence of a particle-based approximation of the block online expectation maximization algorithm
-
Art. 2
-
LE CORFF, S. and FORT, G. (2013). Convergence of a particle-based approximation of the block online expectation maximization algorithm. ACM Trans. Model. Comput. Simul. 23 Art. 2, 22.
-
(2013)
ACM Trans. Model. Comput. Simul
, vol.23
, pp. 22
-
-
Le Corff, S.1
Fort, G.2
-
65
-
-
84878993948
-
Lookahead strategies for sequential Monte Carlo
-
LIN, M., CHEN, R. and LIU, J. S. (2013). Lookahead strategies for sequential Monte Carlo. Statist. Sci. 28 69-94.
-
(2013)
Statist. Sci
, vol.28
, pp. 69-94
-
-
Lin, M.1
Chen, R.2
Liu, J.S.3
-
67
-
-
0001225908
-
Combined parameter and state estimation in simulation-based filtering
-
Springer, New York
-
LIU, J. and WEST, M. (2001). Combined parameter and state estimation in simulation-based filtering. In Sequential Monte Carlo Methods in Practice. Springer, New York.
-
(2001)
Sequential Monte Carlo Methods in Practice
-
-
Liu, J.1
West, M.2
-
69
-
-
0032359151
-
Sequential Monte Carlo methods for dynamic systems
-
LIU, J. S. and CHEN, R. (1998). Sequential Monte Carlo methods for dynamic systems. J. Amer. Statist. Assoc. 93 1032-1044.
-
(1998)
J. Amer. Statist. Assoc
, vol.93
, pp. 1032-1044
-
-
Liu, J.S.1
Chen, R.2
-
70
-
-
80051745679
-
Particle learning for sequential Bayesian computation
-
J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D., Heckerman A. F. M. Smith and M., West, eds., Oxford Univ. Press, Oxford
-
LOPES, H. F., CARVALHO, C. M., JOHANNES, M. S. and POLSON, N. G. (2011). Particle learning for sequential Bayesian computation. In Bayesian Statistics 9 (J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D., Heckerman A. F. M. Smith and M., West, eds.). Oxford Univ. Press, Oxford.
-
(2011)
Bayesian Statistics
, vol.9
-
-
Lopes, H.F.1
Carvalho, C.M.2
Johannes, M.S.3
Polson, N.G.4
-
71
-
-
78650767223
-
Particle filters and Bayesian inference in financial econometrics
-
LOPES, H. F. and TSAY, R. S. (2011). Particle filters and Bayesian inference in financial econometrics. J. Forecast. 30 168-209.
-
(2011)
J. Forecast
, vol.30
, pp. 168-209
-
-
Lopes, H.F.1
Tsay, R.S.2
-
72
-
-
80054687598
-
Particle filters for continuous likelihood evaluation and maximisation
-
MALIK, S. and PITT, M. K. (2011). Particle filters for continuous likelihood evaluation and maximisation. J. Econometrics 165 190-209.
-
(2011)
J. Econometrics
, vol.165
, pp. 190-209
-
-
Malik, S.1
Pitt, M.K.2
-
74
-
-
41449089271
-
Sequential Monte Carlo smoothing with application to parameter estimation in nonlinear state space models
-
OLSSON, J., CAPPÉ, O., DOUC, R. and MOULINES, E. (2008). Sequential Monte Carlo smoothing with application to parameter estimation in nonlinear state space models. Bernoulli 14 155-179.
-
(2008)
Bernoulli
, vol.14
, pp. 155-179
-
-
Olsson, J.1
Cappé, O.2
Douc, R.3
Moulines, E.4
-
76
-
-
20444395499
-
Stability and uniform particle approximation of nonlinear filters in case of non ergodic signals
-
OUDJANE, N. and RUBENTHALER, S. (2005). Stability and uniform particle approximation of nonlinear filters in case of non ergodic signals. Stoch. Anal. Appl. 23 421-448.
-
(2005)
Stoch. Anal. Appl
, vol.23
, pp. 421-448
-
-
Oudjane, N.1
Rubenthaler, S.2
-
77
-
-
77956895434
-
A new look at state-space models for neural data
-
PANINSKI, L., AHMADIAN, Y., FERREIRA, D. G., KOYAMA, S., RAD, K. R., VIDNE, M., VOGELSTEIN, J. and WU, W. (2010). A new look at state-space models for neural data. J. Comput. Neurosci. 29 107-126.
-
(2010)
J. Comput. Neurosci
, vol.29
, pp. 107-126
-
-
Paninski, L.1
Ahmadian, Y.2
Ferreira, D.G.3
Koyama, S.4
Rad, K.R.5
Vidne, M.6
Vogelstein, J.7
Wu, W.8
-
78
-
-
1542427941
-
Filtering via simulation: Auxiliary particle filters
-
PITT, M. K. and SHEPHARD, N. (1999). Filtering via simulation: Auxiliary particle filters. J. Amer. Statist. Assoc. 94 590-599.
-
(1999)
J. Amer. Statist. Assoc
, vol.94
, pp. 590-599
-
-
Pitt, M.K.1
Shephard, N.2
-
79
-
-
84868208864
-
On some properties of Markov chain Monte Carlo simulation methods based on the particle filter
-
PITT, M. K., SILVA, R. D. S., GIORDANI, P. and KOHN, R. (2012). On some properties of Markov chain Monte Carlo simulation methods based on the particle filter. J. Econometrics 171 134-151.
-
(2012)
J. Econometrics
, vol.171
, pp. 134-151
-
-
Pitt, M.K.1
Silva, R.D.S.2
Giordani, P.3
Kohn, R.4
-
81
-
-
79952176832
-
Particle approximations of the score and observed information matrix in state space models with application to parameter estimation
-
POYIADJIS, G., DOUCET, A. and SINGH, S. S. (2011). Particle approximations of the score and observed information matrix in state space models with application to parameter estimation. Biometrika 98 65-80.
-
(2011)
Biometrika
, vol.98
, pp. 65-80
-
-
Poyiadjis, G.1
Doucet, A.2
Singh, S.S.3
-
82
-
-
78650803456
-
System identification of nonlinear state-space models
-
SCHÖN, T. B., WILLS, A. and NINNESS, B. (2011). System identification of nonlinear state-space models. Automatica J. IFAC 47 39-49.
-
(2011)
Automatica J. IFAC
, vol.47
, pp. 39-49
-
-
Schön, T.B.1
Wills, A.2
Ninness, B.3
-
83
-
-
84922540951
-
On the efficiency of pseudo-marginal random walk Metropolis algorithms
-
SHERLOCK, C., THIERY, A. H., ROBERTS, G. O. and ROSENTHAL, J. S. (2015). On the efficiency of pseudo-marginal random walk Metropolis algorithms. Ann. Statist. 43 238-275.
-
(2015)
Ann. Statist
, vol.43
, pp. 238-275
-
-
Sherlock, C.1
Thiery, A.H.2
Roberts, G.O.3
Rosenthal, J.S.4
-
84
-
-
0036475891
-
Particle filters in state space models with the presence of unknown static parameters
-
STORVIK, G. (2002). Particle filters in state space models with the presence of unknown static parameters. IEEE Trans. Signal Process. 50 281-289.
-
(2002)
IEEE Trans. Signal Process
, vol.50
, pp. 281-289
-
-
Storvik, G.1
-
85
-
-
84890507871
-
Adaptive stopping for fast particle smoothing
-
Vancouver, BC
-
TAGHAVI, E., LINDSTEN, F., SVENSSON, L. and SCHÖN, T. B. (2013). Adaptive stopping for fast particle smoothing. In Proc. IEEE ICASSP 6293-6297. Vancouver, BC.
-
(2013)
Proc. IEEE ICASSP
, pp. 6293-6297
-
-
Taghavi, E.1
Lindsten, F.2
Svensson, L.3
Schön, T.B.4
-
86
-
-
33646816059
-
Online Bayesian estimation of hidden Markov models with unknown transition matrix and applications to IEEE 802.11 networks
-
Philadelphia, PA
-
VERCAUTEREN, T., TOLEDO, A. and WANG, X. (2005). Online Bayesian estimation of hidden Markov models with unknown transition matrix and applications to IEEE 802.11 networks. In Proc. IEEE ICASSP, Vol. IV 13-16. Philadelphia, PA.
-
(2005)
Proc. IEEE ICASSP, Vol. IV
, pp. 13-16
-
-
Vercauteren, T.1
Toledo, A.2
Wang, X.3
-
88
-
-
84905270424
-
Efficient particle-based online smoothing in general hidden Markov models
-
Florence
-
WESTERBORN, J. and OLSSON, J. (2014). Efficient particle-based online smoothing in general hidden Markov models. In Proc. IEEE ICASSP 8003-8007. Florence.
-
(2014)
Proc. IEEE ICASSP
, pp. 8003-8007
-
-
Westerborn, J.1
Olsson, J.2
-
89
-
-
84867061388
-
Discussion of Particle Markov chain Monte Carlo methods
-
WHITELEY, N. (2010). Discussion of Particle Markov chain Monte Carlo methods. J. Royal Stat. Soc. 72 306-307.
-
(2010)
J. Royal Stat. Soc
, vol.72
, pp. 306-307
-
-
Whiteley, N.1
-
90
-
-
84888340792
-
Stability properties of some particle filters
-
WHITELEY, N. (2013). Stability properties of some particle filters. Ann. Appl. Probab. 23 2500-2537.
-
(2013)
Ann. Appl. Probab
, vol.23
, pp. 2500-2537
-
-
Whiteley, N.1
-
92
-
-
84988038832
-
Twisted particle filters
-
WHITELEY, N. and LEE, A. (2014). Twisted particle filters. Ann. Statist. 42 115-141.
-
(2014)
Ann. Statist
, vol.42
, pp. 115-141
-
-
Whiteley, N.1
Lee, A.2
-
94
-
-
84896806244
-
An online expectation-maximization algorithm for change-point models
-
YILDIRIM, S., SINGH, S. S. and DOUCET, A. (2013). An online expectation-maximization algorithm for change-point models. J. Comput. Graph. Statist. 22 906-926.
-
(2013)
J. Comput. Graph. Statist
, vol.22
, pp. 906-926
-
-
Yildirim, S.1
Singh, S.S.2
Doucet, A.3
-
95
-
-
75349085842
-
Step-sizes for the gradient method
-
Amer. Math. Soc., Providence, RI
-
YUAN, Y.-X. (2008). Step-sizes for the gradient method. In Third International Congress of Chinese Mathematicians. Part 1, 2. AMS/IP Stud. Adv. Math., 42, Pt. 12 785-796. Amer. Math. Soc., Providence, RI.
-
(2008)
Third International Congress of Chinese Mathematicians. Part 1, 2. AMS/IP Stud. Adv. Math., 42, Pt
, vol.12
, pp. 785-796
-
-
Yuan, Y.-X.1
|