메뉴 건너뛰기




Volumn 30, Issue 3, 2015, Pages 328-351

On particle methods for parameter estimation in state-space models

Author keywords

Bayesian inference; Maximum likelihood inference; Particle filtering; Sequential monte carlo; State space models

Indexed keywords


EID: 84931459778     PISSN: 08834237     EISSN: None     Source Type: Journal    
DOI: 10.1214/14-STS511     Document Type: Article
Times cited : (444)

References (95)
  • 1
    • 0015385037 scopus 로고
    • Nonlinear Bayesian estimation using Gaussian sum approximations
    • ALSPACH, D. and SORENSON, H. (1972). Nonlinear Bayesian estimation using Gaussian sum approximations. IEEE Trans. Automat. Control 17 439-448.
    • (1972) IEEE Trans. Automat. Control , vol.17 , pp. 439-448
    • Alspach, D.1    Sorenson, H.2
  • 7
    • 33847156958 scopus 로고    scopus 로고
    • Sequential auxiliary particle belief propagation
    • Philadelphia, PA
    • BRIERS, M., DOUCET, A. and SINGH, S. S. (2005). Sequential auxiliary particle belief propagation. In Proc. Conf. Fusion. Philadelphia, PA.
    • (2005) Proc. Conf. Fusion
    • Briers, M.1    Doucet, A.2    Singh, S.S.3
  • 9
    • 80052231929 scopus 로고    scopus 로고
    • Online EM algorithm for hidden Markov models
    • CAPPÉ, O. (2011). Online EM algorithm for hidden Markov models. J. Comput. Graph. Statist. 20 728-749.
    • (2011) J. Comput. Graph. Statist , vol.20 , pp. 728-749
    • Cappé, O.1
  • 10
    • 66849104300 scopus 로고    scopus 로고
    • On-line expectation-maximization algorithm for latent data models
    • CAPPÉ, O. and MOULINES, E. (2009). On-line expectation-maximization algorithm for latent data models. J. R. Stat. Soc. Ser. B. Stat. Methodol. 71 593-613.
    • (2009) J. R. Stat. Soc. Ser. B. Stat. Methodol , vol.71 , pp. 593-613
    • Cappé, O.1    Moulines, E.2
  • 16
    • 0012338718 scopus 로고    scopus 로고
    • A sequential particle filter method forstatic models
    • CHOPIN, N. (2002). A sequential particle filter method forstatic models. Biometrika 89 539-551.
    • (2002) Biometrika , vol.89 , pp. 539-551
    • Chopin, N.1
  • 17
    • 21644457738 scopus 로고    scopus 로고
    • Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference
    • CHOPIN, N. (2004). Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference. Ann. Statist. 32 2385-2411.
    • (2004) Ann. Statist , vol.32 , pp. 2385-2411
    • Chopin, N.1
  • 18
    • 80051745679 scopus 로고    scopus 로고
    • On particle learning
    • J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D., Heckerman A. F. M. Smith and M., West, eds., Oxford Univ. Press, Oxford
    • CHOPIN, N., IACOBUCCI, A., MARIN, J. M., MENGERSEN, K., ROBERT, C. P., RYDER, R. and SCHÄUFER, C. (2011). On particle learning. In Bayesian Statistics 9 (J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D., Heckerman A. F. M. Smith and M., West, eds.) 317-360. Oxford Univ. Press, Oxford.
    • (2011) Bayesian Statistics 9 , pp. 317-360
    • Chopin, N.1    Iacobucci, A.2    Marin, J.M.3    Mengersen, K.4    Robert, C.P.5    Ryder, R.6    Schäufer, C.7
  • 20
    • 84940742186 scopus 로고    scopus 로고
    • Sensitivity analysis in HMMs with application to likelihood maximization
    • Vancouver
    • COQUELIN, P. A., DEGUEST, R. and MUNOS, R. (2009). Sensitivity analysis in HMMs with application to likelihood maximization. In Proc. 22th Conf. NIPS. Vancouver.
    • (2009) Proc. 22th Conf. NIPS
    • Coquelin, P.A.1    Deguest, R.2    Munos, R.3
  • 21
    • 84925494064 scopus 로고    scopus 로고
    • Particle Metropolis-Hastings using gradient and Hessian information
    • DAHLIN, J., LINDSTEN, F. and SCHÖN, T. B. (2015). Particle Metropolis-Hastings using gradient and Hessian information. Stat. Comput. 25 81-92.
    • (2015) Stat. Comput , vol.25 , pp. 81-92
    • Dahlin, J.1    Lindsten, F.2    Schön, T.B.3
  • 25
  • 26
    • 84937845816 scopus 로고    scopus 로고
    • Uniform stability of a particle approximation of the optimal filter derivative
    • DEL MORAL, P., DOUCET, A. and SINGH, S. S. (2015). Uniform stability of a particle approximation of the optimal filter derivative. SIAM J. Control Optim. 53 1278-1304.
    • (2015) SIAM J. Control Optim , vol.53 , pp. 1278-1304
    • Del Moral, P.1    Doucet, A.2    Singh, S.S.3
  • 28
    • 82655181336 scopus 로고    scopus 로고
    • Sequential Monte Carlo smoothing for general state space hidden Markov models
    • DOUC, R., GARIVIER, A., MOULINES, E. andOLSSON, J. (2011). Sequential Monte Carlo smoothing for general state space hidden Markov models. Ann. Appl. Probab. 21 2109-2145.
    • (2011) Ann. Appl. Probab , vol.21 , pp. 2109-2145
    • Douc, R.1    Garivier, A.2    Moulines, E.3    Andolsson, J.4
  • 29
    • 59249098696 scopus 로고    scopus 로고
    • Forgetting of the initial condition for the filter in general state-space hidden Markov chain: A coupling approach
    • DOUC, R., MOULINES, E. and RITOV, Y. (2009). Forgetting of the initial condition for the filter in general state-space hidden Markov chain: A coupling approach. Electron. J. Probab. 14 27-49.
    • (2009) Electron. J. Probab , vol.14 , pp. 27-49
    • Douc, R.1    Moulines, E.2    Ritov, Y.3
  • 31
    • 0001460136 scopus 로고    scopus 로고
    • On sequential Monte Carlo sampling methods for Bayesian filtering
    • DOUCET, A., GODSILL, S. J. and ANDRIEU, C. (2000). On sequential Monte Carlo sampling methods for Bayesian filtering. Stat. Comput. 10 197-208.
    • (2000) Stat. Comput , vol.10 , pp. 197-208
    • Doucet, A.1    Godsill, S.J.2    Andrieu, C.3
  • 32
    • 77951131231 scopus 로고    scopus 로고
    • A tutorial on particle filtering and smoothing: Fifteen years later
    • Oxford Univ. Press, Oxford
    • DOUCET, A. and JOHANSEN, A. M. (2011). A tutorial on particle filtering and smoothing: Fifteen years later. In The Oxford Handbook of Nonlinear Filtering 656-704. Oxford Univ. Press, Oxford.
    • (2011) The Oxford Handbook of Nonlinear Filtering , pp. 656-704
    • Doucet, A.1    Johansen, A.M.2
  • 33
    • 84929220466 scopus 로고    scopus 로고
    • Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator
    • DOUCET, A., PITT, M. K., DELIGIANNIDIS, G. and KOHN, R. (2015). Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator. Biometrika 102 295-313.
    • (2015) Biometrika , vol.102 , pp. 295-313
    • Doucet, A.1    Pitt, M.K.2    Deligiannidis, G.3    Kohn, R.4
  • 36
    • 0036929961 scopus 로고    scopus 로고
    • Markov chain Monte Carlo, sufficient statistics, and particle filters
    • FEARNHEAD, P. and MELIGKOTSIDOU, L. (2014). Augmentation schemes for particle MCMC. Preprint. Available at arXiv:1408.6980.
    • (2002) J. Comput. Graph. Statist , vol.11 , pp. 848-862
    • Fearnhead, P.1
  • 38
    • 77952840924 scopus 로고    scopus 로고
    • A sequential smoothing algorithm with linear computational cost
    • FEARNHEAD, P., WYNCOLL, D. and TAWN, J. (2010). A sequential smoothing algorithm with linear computational cost. Biometrika 97 447-464.
    • (2010) Biometrika , vol.97 , pp. 447-464
    • Fearnhead, P.1    Wyncoll, D.2    Tawn, J.3
  • 39
    • 34548526338 scopus 로고    scopus 로고
    • Estimating macroeconomic models: A likelihood approach
    • FERNÁNDEZ-VILLAVERDE, J. and RUBIO-RAMÍREZ, J. F. (2007). Estimating macroeconomic models: A likelihood approach. Rev. Econ. Stud. 74 1059-1087.
    • (2007) Rev. Econ. Stud , vol.74 , pp. 1059-1087
    • Fernández-Villaverde, J.1    Rubio-Ramírez, J.F.2
  • 41
    • 80052914719 scopus 로고    scopus 로고
    • Bayesian inference based only on simulated likelihood: Particle filter analysis of dynamic economic models
    • FLURY, T. and SHEPHARD, N. (2011). Bayesian inference based only on simulated likelihood: Particle filter analysis of dynamic economic models. Econometric Theory 27 933-956.
    • (2011) Econometric Theory , vol.27 , pp. 933-956
    • Flury, T.1    Shephard, N.2
  • 42
    • 0004089833 scopus 로고    scopus 로고
    • Ph.D. thesis, Dept. Systems Engineering, Australian National Univ., Canberra
    • FORD, J. J. (1998). Adaptive hidden Markov model estimation and applications. Ph.D. thesis, Dept. Systems Engineering, Australian National Univ., Canberra. Available at http://infoeng.rsise.anu.edu.au/files/jason_ford_thesis.pdf.
    • (1998) Adaptive hidden Markov model estimation and applications
    • Ford, J.J.1
  • 43
    • 84880329304 scopus 로고    scopus 로고
    • Efficient learning via simulation: A marginalized resample-move approach
    • FULOP, A. and LI, J. (2013). Efficient learning via simulation: A marginalized resample-move approach. J. Econometrics 176 146-161.
    • (2013) J. Econometrics , vol.176 , pp. 146-161
    • Fulop, A.1    Li, J.2
  • 44
    • 0035648076 scopus 로고    scopus 로고
    • Following a moving target-Monte Carlo inference for dynamic Bayesian models
    • GILKS, W. R. and BERZUINI, C. (2001). Following a moving target-Monte Carlo inference for dynamic Bayesian models. J. R. Stat. Soc. Ser. B. Stat. Methodol. 63 127-146.
    • (2001) J. R. Stat. Soc. Ser. B. Stat. Methodol , vol.63 , pp. 127-146
    • Gilks, W.R.1    Berzuini, C.2
  • 45
    • 2142848605 scopus 로고    scopus 로고
    • Monte Carlo smoothing for nonlinear times series
    • GODSILL, S. J., DOUCET, A. and WEST, M. (2004). Monte Carlo smoothing for nonlinear times series. J. Amer. Statist. Assoc. 99 156-168.
    • (2004) J. Amer. Statist. Assoc , vol.99 , pp. 156-168
    • Godsill, S.J.1    Doucet, A.2    West, M.3
  • 48
    • 0032221057 scopus 로고    scopus 로고
    • Monte Carlo approximations for general state-space models
    • HÜRZELER, M. and KÜNSCH, H. R. (1998). Monte Carlo approximations for general state-space models. J. Comput. Graph. Statist. 7 175-193.
    • (1998) J. Comput. Graph. Statist , vol.7 , pp. 175-193
    • Hürzeler, M.1    Künsch, H.R.2
  • 52
    • 0001251517 scopus 로고    scopus 로고
    • Stochastic volatility: Likelihood inference and comparison with ARCH models
    • KIM, S., SHEPHARD, N. and CHIB, S. (1998). Stochastic volatility: Likelihood inference and comparison with ARCH models. Rev. Econ. Stud. 65 361-393.
    • (1998) Rev. Econ. Stud , vol.65 , pp. 361-393
    • Kim, S.1    Shephard, N.2    Chib, S.3
  • 53
    • 0030304310 scopus 로고    scopus 로고
    • Monte Carlo filter and smoother for non-Gaussian nonlinear state space models
    • KITAGAWA, G. (1996). Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. J. Comput. Graph. Statist. 5 1-25.
    • (1996) J. Comput. Graph. Statist , vol.5 , pp. 1-25
    • Kitagawa, G.1
  • 54
    • 0032347276 scopus 로고    scopus 로고
    • A self-organizing state-space model
    • KITAGAWA, G. (1998). A self-organizing state-space model. J. Amer. Statist. Assoc. 93 1203-1215.
    • (1998) J. Amer. Statist. Assoc , vol.93 , pp. 1203-1215
    • Kitagawa, G.1
  • 55
    • 84903276075 scopus 로고    scopus 로고
    • Computational aspects of sequential Monte Carlo filter and smoother
    • KITAGAWA, G. (2014). Computational aspects of sequential Monte Carlo filter and smoother. Ann. Inst. Statist. Math. 66 443-471.
    • (2014) Ann. Inst. Statist. Math , vol.66 , pp. 443-471
    • Kitagawa, G.1
  • 58
    • 84885027411 scopus 로고    scopus 로고
    • Particle filters
    • KÜNSCH, H. R. (2013). Particle filters. Bernoulli 19 1391-1403.
    • (2013) Bernoulli , vol.19 , pp. 1391-1403
    • Künsch, H.R.1
  • 61
    • 0036475084 scopus 로고    scopus 로고
    • A particle algorithm for sequential Bayesian parameter estimation and model selection
    • LEE, D. S. and CHIA, K. K. (2002). A particle algorithm for sequential Bayesian parameter estimation and model selection. IEEE Trans. Signal Process. 50 326-336.
    • (2002) IEEE Trans. Signal Process , vol.50 , pp. 326-336
    • Lee, D.S.1    Chia, K.K.2
  • 62
    • 84884959903 scopus 로고    scopus 로고
    • Online expectation maximization based algorithms for inference in hidden Markov models
    • LE CORFF, S. and FORT, G. (2013). Online expectation maximization based algorithms for inference in hidden Markov models. Electron. J. Stat. 7 763-792.
    • (2013) Electron. J. Stat , vol.7 , pp. 763-792
    • Le Corff, S.1    Fort, G.2
  • 63
    • 84873632768 scopus 로고    scopus 로고
    • Convergence of a particle-based approximation of the block online expectation maximization algorithm
    • Art. 2
    • LE CORFF, S. and FORT, G. (2013). Convergence of a particle-based approximation of the block online expectation maximization algorithm. ACM Trans. Model. Comput. Simul. 23 Art. 2, 22.
    • (2013) ACM Trans. Model. Comput. Simul , vol.23 , pp. 22
    • Le Corff, S.1    Fort, G.2
  • 65
    • 84878993948 scopus 로고    scopus 로고
    • Lookahead strategies for sequential Monte Carlo
    • LIN, M., CHEN, R. and LIU, J. S. (2013). Lookahead strategies for sequential Monte Carlo. Statist. Sci. 28 69-94.
    • (2013) Statist. Sci , vol.28 , pp. 69-94
    • Lin, M.1    Chen, R.2    Liu, J.S.3
  • 67
    • 0001225908 scopus 로고    scopus 로고
    • Combined parameter and state estimation in simulation-based filtering
    • Springer, New York
    • LIU, J. and WEST, M. (2001). Combined parameter and state estimation in simulation-based filtering. In Sequential Monte Carlo Methods in Practice. Springer, New York.
    • (2001) Sequential Monte Carlo Methods in Practice
    • Liu, J.1    West, M.2
  • 69
    • 0032359151 scopus 로고    scopus 로고
    • Sequential Monte Carlo methods for dynamic systems
    • LIU, J. S. and CHEN, R. (1998). Sequential Monte Carlo methods for dynamic systems. J. Amer. Statist. Assoc. 93 1032-1044.
    • (1998) J. Amer. Statist. Assoc , vol.93 , pp. 1032-1044
    • Liu, J.S.1    Chen, R.2
  • 70
    • 80051745679 scopus 로고    scopus 로고
    • Particle learning for sequential Bayesian computation
    • J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D., Heckerman A. F. M. Smith and M., West, eds., Oxford Univ. Press, Oxford
    • LOPES, H. F., CARVALHO, C. M., JOHANNES, M. S. and POLSON, N. G. (2011). Particle learning for sequential Bayesian computation. In Bayesian Statistics 9 (J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D., Heckerman A. F. M. Smith and M., West, eds.). Oxford Univ. Press, Oxford.
    • (2011) Bayesian Statistics , vol.9
    • Lopes, H.F.1    Carvalho, C.M.2    Johannes, M.S.3    Polson, N.G.4
  • 71
    • 78650767223 scopus 로고    scopus 로고
    • Particle filters and Bayesian inference in financial econometrics
    • LOPES, H. F. and TSAY, R. S. (2011). Particle filters and Bayesian inference in financial econometrics. J. Forecast. 30 168-209.
    • (2011) J. Forecast , vol.30 , pp. 168-209
    • Lopes, H.F.1    Tsay, R.S.2
  • 72
    • 80054687598 scopus 로고    scopus 로고
    • Particle filters for continuous likelihood evaluation and maximisation
    • MALIK, S. and PITT, M. K. (2011). Particle filters for continuous likelihood evaluation and maximisation. J. Econometrics 165 190-209.
    • (2011) J. Econometrics , vol.165 , pp. 190-209
    • Malik, S.1    Pitt, M.K.2
  • 74
    • 41449089271 scopus 로고    scopus 로고
    • Sequential Monte Carlo smoothing with application to parameter estimation in nonlinear state space models
    • OLSSON, J., CAPPÉ, O., DOUC, R. and MOULINES, E. (2008). Sequential Monte Carlo smoothing with application to parameter estimation in nonlinear state space models. Bernoulli 14 155-179.
    • (2008) Bernoulli , vol.14 , pp. 155-179
    • Olsson, J.1    Cappé, O.2    Douc, R.3    Moulines, E.4
  • 76
    • 20444395499 scopus 로고    scopus 로고
    • Stability and uniform particle approximation of nonlinear filters in case of non ergodic signals
    • OUDJANE, N. and RUBENTHALER, S. (2005). Stability and uniform particle approximation of nonlinear filters in case of non ergodic signals. Stoch. Anal. Appl. 23 421-448.
    • (2005) Stoch. Anal. Appl , vol.23 , pp. 421-448
    • Oudjane, N.1    Rubenthaler, S.2
  • 78
    • 1542427941 scopus 로고    scopus 로고
    • Filtering via simulation: Auxiliary particle filters
    • PITT, M. K. and SHEPHARD, N. (1999). Filtering via simulation: Auxiliary particle filters. J. Amer. Statist. Assoc. 94 590-599.
    • (1999) J. Amer. Statist. Assoc , vol.94 , pp. 590-599
    • Pitt, M.K.1    Shephard, N.2
  • 79
    • 84868208864 scopus 로고    scopus 로고
    • On some properties of Markov chain Monte Carlo simulation methods based on the particle filter
    • PITT, M. K., SILVA, R. D. S., GIORDANI, P. and KOHN, R. (2012). On some properties of Markov chain Monte Carlo simulation methods based on the particle filter. J. Econometrics 171 134-151.
    • (2012) J. Econometrics , vol.171 , pp. 134-151
    • Pitt, M.K.1    Silva, R.D.S.2    Giordani, P.3    Kohn, R.4
  • 81
    • 79952176832 scopus 로고    scopus 로고
    • Particle approximations of the score and observed information matrix in state space models with application to parameter estimation
    • POYIADJIS, G., DOUCET, A. and SINGH, S. S. (2011). Particle approximations of the score and observed information matrix in state space models with application to parameter estimation. Biometrika 98 65-80.
    • (2011) Biometrika , vol.98 , pp. 65-80
    • Poyiadjis, G.1    Doucet, A.2    Singh, S.S.3
  • 82
    • 78650803456 scopus 로고    scopus 로고
    • System identification of nonlinear state-space models
    • SCHÖN, T. B., WILLS, A. and NINNESS, B. (2011). System identification of nonlinear state-space models. Automatica J. IFAC 47 39-49.
    • (2011) Automatica J. IFAC , vol.47 , pp. 39-49
    • Schön, T.B.1    Wills, A.2    Ninness, B.3
  • 83
    • 84922540951 scopus 로고    scopus 로고
    • On the efficiency of pseudo-marginal random walk Metropolis algorithms
    • SHERLOCK, C., THIERY, A. H., ROBERTS, G. O. and ROSENTHAL, J. S. (2015). On the efficiency of pseudo-marginal random walk Metropolis algorithms. Ann. Statist. 43 238-275.
    • (2015) Ann. Statist , vol.43 , pp. 238-275
    • Sherlock, C.1    Thiery, A.H.2    Roberts, G.O.3    Rosenthal, J.S.4
  • 84
    • 0036475891 scopus 로고    scopus 로고
    • Particle filters in state space models with the presence of unknown static parameters
    • STORVIK, G. (2002). Particle filters in state space models with the presence of unknown static parameters. IEEE Trans. Signal Process. 50 281-289.
    • (2002) IEEE Trans. Signal Process , vol.50 , pp. 281-289
    • Storvik, G.1
  • 85
    • 84890507871 scopus 로고    scopus 로고
    • Adaptive stopping for fast particle smoothing
    • Vancouver, BC
    • TAGHAVI, E., LINDSTEN, F., SVENSSON, L. and SCHÖN, T. B. (2013). Adaptive stopping for fast particle smoothing. In Proc. IEEE ICASSP 6293-6297. Vancouver, BC.
    • (2013) Proc. IEEE ICASSP , pp. 6293-6297
    • Taghavi, E.1    Lindsten, F.2    Svensson, L.3    Schön, T.B.4
  • 86
    • 33646816059 scopus 로고    scopus 로고
    • Online Bayesian estimation of hidden Markov models with unknown transition matrix and applications to IEEE 802.11 networks
    • Philadelphia, PA
    • VERCAUTEREN, T., TOLEDO, A. and WANG, X. (2005). Online Bayesian estimation of hidden Markov models with unknown transition matrix and applications to IEEE 802.11 networks. In Proc. IEEE ICASSP, Vol. IV 13-16. Philadelphia, PA.
    • (2005) Proc. IEEE ICASSP, Vol. IV , pp. 13-16
    • Vercauteren, T.1    Toledo, A.2    Wang, X.3
  • 88
    • 84905270424 scopus 로고    scopus 로고
    • Efficient particle-based online smoothing in general hidden Markov models
    • Florence
    • WESTERBORN, J. and OLSSON, J. (2014). Efficient particle-based online smoothing in general hidden Markov models. In Proc. IEEE ICASSP 8003-8007. Florence.
    • (2014) Proc. IEEE ICASSP , pp. 8003-8007
    • Westerborn, J.1    Olsson, J.2
  • 89
    • 84867061388 scopus 로고    scopus 로고
    • Discussion of Particle Markov chain Monte Carlo methods
    • WHITELEY, N. (2010). Discussion of Particle Markov chain Monte Carlo methods. J. Royal Stat. Soc. 72 306-307.
    • (2010) J. Royal Stat. Soc , vol.72 , pp. 306-307
    • Whiteley, N.1
  • 90
    • 84888340792 scopus 로고    scopus 로고
    • Stability properties of some particle filters
    • WHITELEY, N. (2013). Stability properties of some particle filters. Ann. Appl. Probab. 23 2500-2537.
    • (2013) Ann. Appl. Probab , vol.23 , pp. 2500-2537
    • Whiteley, N.1
  • 92
    • 84988038832 scopus 로고    scopus 로고
    • Twisted particle filters
    • WHITELEY, N. and LEE, A. (2014). Twisted particle filters. Ann. Statist. 42 115-141.
    • (2014) Ann. Statist , vol.42 , pp. 115-141
    • Whiteley, N.1    Lee, A.2
  • 94
    • 84896806244 scopus 로고    scopus 로고
    • An online expectation-maximization algorithm for change-point models
    • YILDIRIM, S., SINGH, S. S. and DOUCET, A. (2013). An online expectation-maximization algorithm for change-point models. J. Comput. Graph. Statist. 22 906-926.
    • (2013) J. Comput. Graph. Statist , vol.22 , pp. 906-926
    • Yildirim, S.1    Singh, S.S.2    Doucet, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.