메뉴 건너뛰기




Volumn 23, Issue 1, 2013, Pages

Convergence of a particle-based approximation of the block online expectation maximization algorithm

Author keywords

Expectation maximization; Hidden markov models; Online estimation; Sequential Monte Carlo methods

Indexed keywords

CLOSED FORM; CONVERGENCE PROPERTIES; CONVERGENCE RESULTS; DATA STREAM; EXPECTATION - MAXIMIZATIONS; EXPECTATION-MAXIMIZATION ALGORITHMS; HIDDEN MARKOV; LARGE DATASETS; LATENT MODELS; MONTE CARLO; MONTE CARLO EXPERIMENTS; ON-LINE ESTIMATION; ONLINE EM; ONLINE EXPECTATION MAXIMIZATIONS; PARAMETER INFERENCE; SEQUENTIAL MONTE CARLO METHODS;

EID: 84873632768     PISSN: 10493301     EISSN: 15581195     Source Type: Journal    
DOI: 10.1145/2414416.2414418     Document Type: Article
Times cited : (10)

References (35)
  • 4
    • 80052231929 scopus 로고    scopus 로고
    • Online EM algorithm for hidden Markov models
    • Cappé, O. 2011. Online EM algorithm for hidden Markov models. J. Comput. Graph. Statist. 20, 3, 728-749.
    • (2011) J. Comput. Graph. Statist. , vol.20 , Issue.3 , pp. 728-749
    • Cappé, O.1
  • 5
    • 66849104300 scopus 로고    scopus 로고
    • Online expectation maximization algorithm for latent data models
    • Cappé, O. and Moulines, E. 2009. Online expectation maximization algorithm for latent data models. J. Roy. Statist. Soc. B 71, 3, 593-613.
    • (2009) J. Roy. Statist. Soc.B , vol.71 , Issue.3 , pp. 593-3613
    • Cappé, O.1    Moulines, E.2
  • 9
    • 0003040231 scopus 로고    scopus 로고
    • Large deviations for interacting particle systems: Applications to nonlinear filtering
    • Del Moral, P. and Guionnet, A. 1998. Large deviations for interacting particle systems: applications to nonlinear filtering. Stoch. Proc. App. 78, 69-95.
    • (1998) Stoch. Proc. App. , vol.78 , pp. 69-95
    • Del Moral, P.1    Guionnet, A.2
  • 11
    • 77956776020 scopus 로고    scopus 로고
    • A backward particle interpretation of Feynman-Kac formulae
    • DelMoral, P., Doucet, A., and Singh, S. 2010a. A backward particle interpretation of Feynman-Kac formulae. ESAIM M2AN 44, 5, 947-975.
    • (2010) ESAIM M2AN , vol.44 , Issue.5 , pp. 947-975
    • DelMoral, P.1    Doucet, A.2    Singh, S.3
  • 12
    • 77956767977 scopus 로고    scopus 로고
    • Forward smoothing using sequential monte carlo
    • Del Moral, P., Doucet, A., and Singh, S. 2010b. Forward smoothing using sequential Monte Carlo. Tech. rep., arXiv:1012.5390v1.
    • (2010) Tech. Rep. ArXiv , vol.1012
    • Del Moral, P.1    Doucet, A.2    Singh, S.3
  • 13
    • 0033243858 scopus 로고    scopus 로고
    • Convergence of a stochastic approximation version of the EM algorithm
    • Delyon, B., Lavielle, M., and Moulines, E. 1999. Convergence of a stochastic approximation version of the EM algorithm. Ann. Stat. 27, 1, 94-128.
    • (1999) Ann. Stat. , vol.27 , Issue.1 , pp. 94-128
    • Delyon, B.1    Lavielle, M.2    Moulines, E.3
  • 14
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • (with discussion)
    • Dempster, A. P., Laird, N. M., and Rubin, D. B. 1977. Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. B 39, 1, 1-38 (with discussion).
    • (1977) J. Roy. Statist. Soc. B , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 15
    • 61849151919 scopus 로고    scopus 로고
    • Forgetting the initial distribution for hidden Markov models
    • Douc, R., Fort, G., Moulines, E., and Priouret, P. 2009. Forgetting the initial distribution for hidden Markov models. Stoch. Proc. Their Appl. 119, 4, 1235-1256.
    • (2009) Stoch. Proc. Their Appl. , vol.119 , Issue.4 , pp. 1235-1256
    • Douc, R.1    Fort, G.2    Moulines, E.3    Priouret, P.4
  • 16
    • 82655181336 scopus 로고    scopus 로고
    • Sequential Monte Carlo smoothing for general state space hidden Markov models
    • Douc, R., Garivier, A., Moulines, E., and Olsson, J. 2011. Sequential Monte Carlo smoothing for general state space hidden Markov models. Ann. Appl. Probab. 21, 6, 2109-2145.
    • (2011) Ann. Appl. Probab. , vol.21 , Issue.6 , pp. 2109-2145
    • Douc, R.1    Garivier, A.2    Moulines, E.3    Olsson, J.4
  • 18
    • 79952176832 scopus 로고    scopus 로고
    • Particle approximations of the score and observed information matrix in state-space models with application to parameter estimation
    • Doucet, A., Poyiadjis, G., and Singh, S. 2010. Particle approximations of the score and observed information matrix in state-space models with application to parameter estimation. Biometrika 98, 1, 65-80.
    • (2010) Biometrika , vol.98 , Issue.1 , pp. 65-80
    • Doucet, A.1    Poyiadjis, G.2    Singh, S.3
  • 19
    • 84873681505 scopus 로고    scopus 로고
    • Non-asymptotic deviation inequalities for smoothed additive functionals in non-linear state-space models
    • Dubarry, C. and Le Corff, S. 2011. Non-asymptotic deviation inequalities for smoothed additive functionals in non-linear state-space models. Tech. rep., arXiv:1012.4183v1.
    • (2011) Tech. Rep., arXiv , vol.1012
    • Dubarry, C.1    Le Corff, S.2
  • 20
    • 0042358780 scopus 로고    scopus 로고
    • Convergence of the Monte Carlo Expectation Maximization for curved exponential families
    • Fort, G. and Moulines, E. 2003. Convergence of the Monte Carlo Expectation Maximization for curved exponential families. Ann. Statist. 31, 4, 1220-1259.
    • (2003) Ann. Statist. , vol.31 , Issue.4 , pp. 1220-1259
    • Fort, G.1    Moulines, E.2
  • 21
    • 84857323064 scopus 로고    scopus 로고
    • Convergence of a particle-based approximation of the block online expectation maximization algorithm
    • Le Corff, S. and Fort, G. 2011a. Convergence of a particle-based approximation of the Block Online Expectation Maximization algorithm. Tech. rep., arXiv.
    • (2011) Tech. Rep. ArXiv
    • Le Corff, S.1    Fort, G.2
  • 22
    • 84857279591 scopus 로고    scopus 로고
    • Online expectation maximization based algorithms for inference in hidden markov models
    • Le Corff, S. and Fort, G. 2011b. Online expectation maximization based algorithms for inference in Hidden Markov Models. Tech. rep., arXiv:1108.3968v1.
    • (2011) Tech. Rep. ArXiv , vol.1108
    • Le Corff, S.1    Fort, G.2
  • 23
    • 84857279591 scopus 로고    scopus 로고
    • Supplement paper to "Online Expectation Maximization based algorithms for inference in Hidden Markov Models
    • Le Corff, S. and Fort, G. 2011c. Supplement paper to "Online Expectation Maximization based algorithms for inference in Hidden Markov Models". Tech. rep., arXiv:1108.4130v1.
    • (2011) Tech. Rep., Arxiv , vol.1108
    • Le Corff, S.1    Fort, G.2
  • 29
    • 0345832327 scopus 로고    scopus 로고
    • On the choice of the number of blocks with the incremental EM algorithm for the fitting of normal mixtures
    • McLachlan, G. J. and Ng, S. K. 2003. On the choice of the number of blocks with the incremental EM algorithm for the fitting of normal mixtures. Stat. Comput. 13, 1, 45-55.
    • (2003) Stat. Comput. , vol.13 , Issue.1 , pp. 45-55
    • McLachlan, G.J.1    Ng, S.K.2
  • 32
    • 0000828406 scopus 로고
    • A new method of stochastic approximation type
    • Polyak, B. T. 1990. a new method of stochastic approximation type. Autom. Remote Control 51, 98-107.
    • (1990) Autom. Remote Control , vol.51 , pp. 98-107
    • Polyak, B.T.1
  • 33
    • 78649367474 scopus 로고    scopus 로고
    • Analyticity, convergence, and convergence rate of recursive maximum-likelihood estimation in hidden Markov models
    • Tadić, V. B. 2010. Analyticity, convergence, and convergence rate of recursive maximum-likelihood estimation in hidden Markov models. IEEE Trans. Inf. Theor. 56, 6406-6432.
    • (2010) IEEE Trans. Inf. Theor. , vol.56 , pp. 6406-6432
    • Tadić, V.B.1
  • 34
    • 0001593436 scopus 로고
    • Recursive parameter estimation using incomplete data
    • Titterington, D. M. 1984. Recursive parameter estimation using incomplete data. J. Roy. Statist. Soc. B 46, 2, 257-267.
    • (1984) J. Roy. Statist. Soc.B , vol.46 , Issue.2 , pp. 257-267
    • Titterington, D.M.1
  • 35
    • 0002210265 scopus 로고
    • On the convergence properties of the EM algorithm
    • Wu, C. F. J. 1983. On the convergence properties of the EM algorithm. Ann. Statist. 11, 95-103.
    • (1983) Ann. Statist. , vol.11 , pp. 95-103
    • Wu, C.F.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.