메뉴 건너뛰기




Volumn 32, Issue 6, 2004, Pages 2385-2411

Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference

Author keywords

Markov chain Monte Carlo; Particle filter; Recursive Monte Carlo filter; Resample move algorithms; Residual resampling; State space model

Indexed keywords


EID: 21644457738     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/009053604000000698     Document Type: Article
Times cited : (335)

References (33)
  • 1
    • 0036436369 scopus 로고    scopus 로고
    • Particle filtering for partially observed Gaussian state space models
    • ANDRIEU, C. and DOUCET, A. (2002). Particle filtering for partially observed Gaussian state space models. J. R. Stat. Soc. Ser. B Stat. Methodol. 64 827-836.
    • (2002) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.64 , pp. 827-836
    • Andrieu, C.1    Doucet, A.2
  • 3
    • 0002035566 scopus 로고
    • Reducing bias and inefficiency in the selection algorithm
    • (J. Grefenstette, ed.). Erlbaum, Mahwah, NJ
    • BAKER, J. E. (1987). Reducing bias and inefficiency in the selection algorithm. In Genetic Algorithms and Their Applications (J. Grefenstette, ed.) 14-21. Erlbaum, Mahwah, NJ.
    • (1987) Genetic Algorithms and their Applications , pp. 14-21
    • Baker, J.E.1
  • 8
    • 4644350330 scopus 로고    scopus 로고
    • Sequential inference and state number determination for discrete state-space models through particle filtering
    • CHOPIN, N. (2001). Sequential inference and state number determination for discrete state-space models through particle filtering. CREST Working Paper 2001-34.
    • (2001) CREST Working Paper , vol.2001 , Issue.34
    • Chopin, N.1
  • 9
    • 0012338718 scopus 로고    scopus 로고
    • A sequential particle filter method for static models
    • CHOPIN, N. (2002). A sequential particle filter method for static models. Biometrika 89 539-552.
    • (2002) Biometrika , vol.89 , pp. 539-552
    • Chopin, N.1
  • 10
    • 0003924729 scopus 로고    scopus 로고
    • Convergence of sequential Monte Carlo methods
    • Cambridge Univ.
    • CRISAN, D. and DOUCET, A. (2000). Convergence of sequential Monte Carlo methods. Technical Report CUED/F-INFENG/TR381, Cambridge Univ.
    • (2000) Technical Report , vol.CUED-F-INFENG-TR381
    • Crisan, D.1    Doucet, A.2
  • 11
    • 0032186558 scopus 로고    scopus 로고
    • Convergence of a branching particle method to the solution of the Zakai equation
    • CRISAN, D., GAINES, J. and LYONS, T. (1998). Convergence of a branching particle method to the solution of the Zakai equation. SIAM J. Appl. Math. 58 1568-1590.
    • (1998) SIAM J. Appl. Math. , vol.58 , pp. 1568-1590
    • Crisan, D.1    Gaines, J.2    Lyons, T.3
  • 12
    • 0031256242 scopus 로고    scopus 로고
    • Non-linear filtering and measure-valued processes
    • CRISAN, D. and LYONS, T. (1997). Non-linear filtering and measure-valued processes. Probab. Theory Related Fields 109 217-244.
    • (1997) Probab. Theory Related Fields , vol.109 , pp. 217-244
    • Crisan, D.1    Lyons, T.2
  • 13
    • 0033261066 scopus 로고    scopus 로고
    • A particle approximation of the solution of the Kushner-Stratonovich equation
    • CRISAN, D. and LYONS, T. (1999). A particle approximation of the solution of the Kushner-Stratonovich equation. Probab. Theory Related Fields 115 549-578.
    • (1999) Probab. Theory Related Fields , vol.115 , pp. 549-578
    • Crisan, D.1    Lyons, T.2
  • 14
    • 21644466625 scopus 로고    scopus 로고
    • Minimal entropy approximations and optimal algorithms
    • CRISAN, D. and LYONS, T. (2002). Minimal entropy approximations and optimal algorithms. Monte Carlo Methods Appl. 8 343-355.
    • (2002) Monte Carlo Methods Appl. , vol.8 , pp. 343-355
    • Crisan, D.1    Lyons, T.2
  • 15
    • 4043058995 scopus 로고    scopus 로고
    • Sequential Monte Carlo samplers
    • Cambridge Univ.
    • DEL MORAL, P. and DOUCET, A. (2002). Sequential Monte Carlo samplers. Technical Report CUED/F-INFENG/TR443, Cambridge Univ.
    • (2002) Technical Report , vol.CUED-F-INFENG-TR443
    • Del Moral, P.1    Doucet, A.2
  • 16
    • 0033438365 scopus 로고    scopus 로고
    • Central limit theorem for nonlinear filtering and interacting particle systems
    • DEL MORAL, P. and GUIONNET, A. (1999). Central limit theorem for nonlinear filtering and interacting particle systems. Ann. Appl. Probab. 9 275-297.
    • (1999) Ann. Appl. Probab. , vol.9 , pp. 275-297
    • Del Moral, P.1    Guionnet, A.2
  • 17
    • 0041332886 scopus 로고    scopus 로고
    • On the stability of interacting processes with applications to filtering and genetic algorithms
    • DEL MORAL, P. and GUIONNET, A. (2001). On the stability of interacting processes with applications to filtering and genetic algorithms. Ann. Inst. H. Poincaré Probab. Statist. 37 155-194.
    • (2001) Ann. Inst. H. Poincaré Probab. Statist. , vol.37 , pp. 155-194
    • Del Moral, P.1    Guionnet, A.2
  • 18
    • 0002936641 scopus 로고    scopus 로고
    • Branching and interacting particle systems approximations of Feynman-Kac formulae with applications to non-linear filtering
    • Springer, Berlin
    • DEL MORAL, P. and MICLO, L. (2000). Branching and interacting particle systems approximations of Feynman-Kac formulae with applications to non-linear filtering. Séminaire de Probabilités XXXIV. Lecture Notes in Math. 1729 1-145. Springer, Berlin.
    • (2000) Séminaire de Probabilités XXXIV. Lecture Notes in Math. , vol.1729 , pp. 1-145
    • Del Moral, P.1    Miclo, L.2
  • 19
    • 0002434884 scopus 로고
    • Central limit theorem for non-stationary Markov chains I, II
    • DOBRUSHIN, R. L. (1956). Central limit theorem for non-stationary Markov chains I, II. Theory Probab. Appl. 1 65-80, 329-383.
    • (1956) Theory Probab. Appl. , vol.1 , pp. 65-80
    • Dobrushin, R.L.1
  • 21
    • 0001460136 scopus 로고    scopus 로고
    • On sequential Monte Carlo sampling methods for Bayesian filtering
    • DOUCET, A., GODSILL, S. and ANDRIEU, C. (2000). On sequential Monte Carlo sampling methods for Bayesian filtering. Statist. Comput. 10 197-208.
    • (2000) Statist. Comput. , vol.10 , pp. 197-208
    • Doucet, A.1    Godsill, S.2    Andrieu, C.3
  • 22
    • 0035648076 scopus 로고    scopus 로고
    • Following a moving target - Monte Carlo inference for dynamic Bayesian models
    • GILKS, W. R. and BERZUINI, C. (2001). Following a moving target - Monte Carlo inference for dynamic Bayesian models. J. R. Stat. Soc. Ser. B Stat. Methodol. 63 127-146.
    • (2001) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.63 , pp. 127-146
    • Gilks, W.R.1    Berzuini, C.2
  • 23
    • 0027580559 scopus 로고
    • Novel approach to nonlinear/non-Gaussian Bayesian state estimation
    • GORDON, N. J., SALMOND, D. J. and SMITH, A. F. M. (1993). Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc. F Radar Signal Proc. 140 107-113.
    • (1993) IEE Proc. F Radar Signal Proc. , vol.140 , pp. 107-113
    • Gordon, N.J.1    Salmond, D.J.2    Smith, A.F.M.3
  • 24
    • 0001387339 scopus 로고    scopus 로고
    • State space and hidden Markov models
    • (O. E. Barndorff-Nielsen, D. R. Cox and C. Klüppelberg, eds.). Chapman and Hall, London
    • KÜNSCH, H.-R. (2001). State space and hidden Markov models. In Complex Stochastic Systems (O. E. Barndorff-Nielsen, D. R. Cox and C. Klüppelberg, eds.) 109-173. Chapman and Hall, London.
    • (2001) Complex Stochastic Systems , pp. 109-173
    • Künsch, H.-R.1
  • 25
    • 21644484616 scopus 로고    scopus 로고
    • Recursive Monte Carlo filters: Algorithms and theoretical analysis
    • Seminar für Statistik, ETH Zürich
    • KÜNSCH, H.-R. (2003). Recursive Monte Carlo filters: Algorithms and theoretical analysis. Technical Report 112, Seminar für Statistik, ETH Zürich.
    • (2003) Technical Report , vol.112
    • Künsch, H.-R.1
  • 26
    • 21244464134 scopus 로고    scopus 로고
    • Stability and uniform approximation of nonlinear filters using the Hilbert metric, and application to particle filters
    • LE GLAND, F. and OUDJANE, N. (2004). Stability and uniform approximation of nonlinear filters using the Hilbert metric, and application to particle filters. Ann. Appl. Probab. 14 144-187.
    • (2004) Ann. Appl. Probab. , vol.14 , pp. 144-187
    • Le Gland, F.1    Oudjane, N.2
  • 27
    • 0032359151 scopus 로고    scopus 로고
    • Sequential Monte Carlo methods for dynamic systems
    • LIU, J. and CHEN, R. (1998). Sequential Monte Carlo methods for dynamic systems. J. Amer. Statist. Assoc. 93 1032-1044.
    • (1998) J. Amer. Statist. Assoc. , vol.93 , pp. 1032-1044
    • Liu, J.1    Chen, R.2
  • 28
    • 1542427941 scopus 로고    scopus 로고
    • Filtering via simulation: Auxiliary particle filters
    • PITT, M. and SHEPHARD, N. (1999). Filtering via simulation: Auxiliary particle filters. J. Amer. Statist. Assoc. 94 590-599.
    • (1999) J. Amer. Statist. Assoc. , vol.94 , pp. 590-599
    • Pitt, M.1    Shephard, N.2
  • 30
    • 0000458272 scopus 로고
    • Using the SIR algorithm to simulate posterior distributions
    • (J. M. Bernardo, M. H. DeGroot, D. V. Lindley and A. F. M. Smith, eds.). Oxford Univ. Press
    • RUBIN, D. (1988). Using the SIR algorithm to simulate posterior distributions. In Bayesian Statistics 3 (J. M. Bernardo, M. H. DeGroot, D. V. Lindley and A. F. M. Smith, eds.) 395-402. Oxford Univ. Press.
    • (1988) Bayesian Statistics , vol.3 , pp. 395-402
    • Rubin, D.1
  • 32
    • 0001560641 scopus 로고
    • Fully exponential Laplace approximations to expectations and variances of nonpositive functions
    • TIERNEY, L., KASS, R. E. and KADANE, J. B. (1989). Fully exponential Laplace approximations to expectations and variances of nonpositive functions. J. Amer. Statist. Assoc. 84 710-716.
    • (1989) J. Amer. Statist. Assoc. , vol.84 , pp. 710-716
    • Tierney, L.1    Kass, R.E.2    Kadane, J.B.3
  • 33
    • 0002338687 scopus 로고
    • A genetic algorithm tutorial
    • WHITLEY, D. (1994). A genetic algorithm tutorial. Statist. Comput. 4 65-85.
    • (1994) Statist. Comput. , vol.4 , pp. 65-85
    • Whitley, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.