-
2
-
-
60149103563
-
The pseudo-marginal approach for efficient Monte Carlo computations
-
MR2502648
-
ANDRIEU, C. and ROBERTS, G. O. (2009). The pseudo-marginal approach for efficient Monte Carlo computations. Ann. Statist. 37 697-725. MR2502648
-
(2009)
Ann. Statist.
, vol.37
, pp. 697-725
-
-
Andrieu, C.1
Roberts, G.O.2
-
4
-
-
0043210659
-
Estimation of population growth or decline in genetically monitored populations
-
BEAUMONT, M. A. (2003). Estimation of population growth or decline in genetically monitored populations. Genetics 164 1139-1160.
-
(2003)
Genetics
, vol.164
, pp. 1139-1160
-
-
Beaumont, M.A.1
-
5
-
-
42649097792
-
Weak convergence of Metropolis algorithms for non-i.I.D. Target distributions
-
MR2344305
-
B ÉDARD, M. (2007).Weak convergence of Metropolis algorithms for non-i.i.d. target distributions. Ann. Appl. Probab. 17 1222-1244. MR2344305
-
(2007)
Ann. Appl. Probab.
, vol.17
, pp. 1222-1244
-
-
Bédard, M.1
-
6
-
-
59149089296
-
Optimal scaling ofMetropolis algorithms: Heading toward general target distributions
-
MR2532248
-
B ÉDARD, M. and ROSENTHAL, J. S. (2008). Optimal scaling ofMetropolis algorithms: Heading toward general target distributions. Canad. J. Statist. 36 483-503. MR2532248
-
(2008)
Canad. J. Statist.
, vol.36
, pp. 483-503
-
-
Bédard, M.1
Rosenthal, J.S.2
-
8
-
-
69149086344
-
Optimal scalings for local Metropolis-Hastings chains on nonproduct targets in high dimensions
-
MR2537193
-
BESKOS, A., ROBERTS, G. and STUART, A. (2009). Optimal scalings for local Metropolis-Hastings chains on nonproduct targets in high dimensions. Ann. Appl. Probab. 19 863-898. MR2537193
-
(2009)
Ann. Appl. Probab.
, vol.19
, pp. 863-898
-
-
Beskos, A.1
Roberts, G.2
Stuart, A.3
-
9
-
-
26844542053
-
Optimal scaling of MaLa for nonlinear regression
-
MR2071431
-
BREYER, L. A., PICCIONI, M. and SCARLATTI, S. (2004). Optimal scaling of MaLa for nonlinear regression. Ann. Appl. Probab. 14 1479-1505. MR2071431
-
(2004)
Ann. Appl. Probab.
, vol.14
, pp. 1479-1505
-
-
Breyer, L.A.1
Piccioni, M.2
Scarlatti, S.3
-
10
-
-
0041906743
-
From Metropolis to diffusions: Gibbs states and optimal scaling
-
MR1794535
-
BREYER, L. A. and ROBERTS, G. O. (2000). From Metropolis to diffusions: Gibbs states and optimal scaling. Stochastic Process. Appl. 90 181-206. MR1794535
-
(2000)
Stochastic Process. Appl.
, vol.90
, pp. 181-206
-
-
Breyer, L.A.1
Roberts, G.O.2
-
11
-
-
85059423352
-
-
eds. CRC Press, Boca Raton, FL. MR2742422
-
BROOKS, S., GELMAN, A., JONES, G. L. and MENG, X.-L., eds. (2011). Handbook of Markov Chain Monte Carlo. CRC Press, Boca Raton, FL. MR2742422
-
(2011)
Handbook of Markov Chain Monte Carlo
-
-
Brooks, S.1
Gelman, A.2
Jones, G.L.3
Meng, X.-L.4
-
12
-
-
0042958264
-
The penalty method for random walks with uncertain energies
-
CEPERLEY, D. M. and DEWING, M. (1999). The penalty method for random walks with uncertain energies. The Journal of Chemical Physics 110 9812.
-
(1999)
The Journal of Chemical Physics
, vol.110
, pp. 9812
-
-
Ceperley, D.M.1
Dewing, M.2
-
14
-
-
84887966425
-
-
Preprint. Available at arXiv:1210.1871v4
-
DOUCET, A., PITT, M., DELIGIANNIDIS, G. and KOHN, R. (2014). Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator. Preprint. Available at arXiv:1210.1871v4.
-
(2014)
Efficient Implementation of Markov Chain Monte Carlo When Using an Unbiased Likelihood Estimator
-
-
Doucet, A.1
Pitt, M.2
Deligiannidis, G.3
Kohn, R.4
-
17
-
-
84860901236
-
Bayesian parameter inference for stochastic biochemical network models using particle Markov chain Monte Carlo
-
GOLIGHTLY, A. andW ILKINSON, D. J. (2011). Bayesian parameter inference for stochastic biochemical network models using particle Markov chain Monte Carlo. Interface Focus 1 807-820.
-
(2011)
Interface Focus
, vol.1
, pp. 807-820
-
-
Golightly, A.1
Wilkinson, D.J.2
-
18
-
-
0027580559
-
Novel approach to nonlinear/non-Gaussian Bayesian state estimation. Radar and Signal Processing
-
GORDON, N. J., SALMOND, D. J. and SMITH, A. F. M. (1993). Novel approach to nonlinear/non-Gaussian Bayesian state estimation. Radar and Signal Processing, IEE Proceedings F 140 107-113.
-
(1993)
IEE Proceedings F
, vol.140
, pp. 107-113
-
-
Gordon, N.J.1
Salmond, D.J.2
Smith, A.F.M.3
-
19
-
-
84860249785
-
Fitting complex population models by combining particle filters with Markov chain Monte Carlo
-
KNAPE, J. and DE VALPINE, P. (2012). Fitting complex population models by combining particle filters with Markov chain Monte Carlo. Ecology 93 256-263.
-
(2012)
Ecology
, vol.93
, pp. 256-263
-
-
Knape, J.1
De Valpine, P.2
-
20
-
-
0347361674
-
Modeling linkage disequilibrium and identifying recombination hotspots using single-nucleotide polymorphism data
-
L I, N. and STEPHENS, M. (2003). Modeling linkage disequilibrium and identifying recombination hotspots using single-nucleotide polymorphism data. Genetics 165 2213-2233.
-
(2003)
Genetics
, vol.165
, pp. 2213-2233
-
-
Stephens, M.1
-
22
-
-
77949374261
-
Adaptively scaling the Metropolis algorithm using expected squared jumped distance
-
MR2640698
-
PASARICA, C. and GELMAN, A. (2010). Adaptively scaling the Metropolis algorithm using expected squared jumped distance. Statist. Sinica 20 343-364. MR2640698
-
(2010)
Statist. Sinica
, vol.20
, pp. 343-364
-
-
Pasarica, C.1
Gelman, A.2
-
23
-
-
84879614507
-
Optimal scaling and diffusion limits for the Langevin algorithm in high dimensions
-
MR3024970
-
PILLAI, N. S., STUART, A. M. and T HIÉRY, A. H. (2012). Optimal scaling and diffusion limits for the Langevin algorithm in high dimensions. Ann. Appl. Probab. 22 2320-2356. MR3024970
-
(2012)
Ann. Appl. Probab.
, vol.22
, pp. 2320-2356
-
-
Pillai, N.S.1
Stuart, A.M.2
Thiéry, A.H.3
-
24
-
-
84868208864
-
On some properties of Markov chain Monte Carlo simulation methods based on the particle filter
-
MR2991856
-
PITT, M. K., SILVA, R. D . S., GIORDANI, P. and KOHN, R. (2012). On some properties of Markov chain Monte Carlo simulation methods based on the particle filter. J. Econometrics 171 134-151. MR2991856
-
(2012)
J. Econometrics
, vol.171
, pp. 134-151
-
-
Pitt, M.K.1
Silva, R.D.S.2
Giordani, P.3
Kohn, R.4
-
25
-
-
79952176832
-
Particle approximations of the score and observed information matrix in state space models with application to parameter estimation
-
MR2804210
-
POYIADJIS, G., DOUCET, A. and SINGH, S. S. (2011). Particle approximations of the score and observed information matrix in state space models with application to parameter estimation. Biometrika 98 65-80. MR2804210
-
(2011)
Biometrika
, vol.98
, pp. 65-80
-
-
Poyiadjis, G.1
Doucet, A.2
Singh, S.S.3
-
26
-
-
0031285157
-
Weak convergence and optimal scaling of random walk Metropolis algorithms
-
MR1428751
-
ROBERTS, G. O., GELMAN, A. and GILKS, W. R. (1997). Weak convergence and optimal scaling of random walk Metropolis algorithms. Ann. Appl. Probab. 7 110-120. MR1428751
-
(1997)
Ann. Appl. Probab.
, vol.7
, pp. 110-120
-
-
Roberts, G.O.1
Gelman, A.2
Gilks, W.R.3
-
27
-
-
0000936678
-
Optimal scaling of discrete approximations to Langevin diffusions
-
MR1625691
-
ROBERTS, G. O. and ROSENTHAL, J. S. (1998). Optimal scaling of discrete approximations to Langevin diffusions. J. R. Stat. Soc. Ser. B Stat. Methodol. 60 255-268. MR1625691
-
(1998)
J. R. Stat. Soc. Ser. B Stat. Methodol.
, vol.60
, pp. 255-268
-
-
Roberts, G.O.1
Rosenthal, J.S.2
-
28
-
-
0013037129
-
Optimal scaling for various Metropolis-Hastings algorithms. Statist
-
MR1888450
-
ROBERTS, G. O. and ROSENTHAL, J. S. (2001). Optimal scaling for various Metropolis-Hastings algorithms. Statist. Sci. 16 351-367. MR1888450
-
(2001)
Sci.
, vol.16
, pp. 351-367
-
-
Roberts, G.O.1
Rosenthal, J.S.2
-
29
-
-
84892416832
-
Minimising MCMC variance via diffusion limits, with an application to simulated tempering
-
MR3161644
-
ROBERTS, G. O. and ROSENTHAL, J. S. (2014). Minimising MCMC variance via diffusion limits, with an application to simulated tempering. Ann. Appl. Probab. 24 131-149. MR3161644
-
(2014)
Ann. Appl. Probab.
, vol.24
, pp. 131-149
-
-
Roberts, G.O.1
Rosenthal, J.S.2
-
31
-
-
84879076994
-
Optimal scaling of the random walk Metropolis: General criteria for the 0.234 acceptance rule
-
MR3076768
-
SHERLOCK, C. (2013). Optimal scaling of the random walk Metropolis: General criteria for the 0.234 acceptance rule. J. Appl. Probab. 50 1-15. MR3076768
-
(2013)
J. Appl. Probab.
, vol.50
, pp. 1-15
-
-
Sherlock, C.1
-
32
-
-
78650237279
-
The random walk Metropolis: Linking theory and practice through a case study
-
MR2789988
-
SHERLOCK, C., FEARNHEAD, P. and ROBERTS, G. O. (2010). The random walk Metropolis: Linking theory and practice through a case study. Statist. Sci. 25 172-190. MR2789988
-
(2010)
Statist. Sci.
, vol.25
, pp. 172-190
-
-
Sherlock, C.1
Fearnhead, P.2
Roberts, G.O.3
-
33
-
-
72249090639
-
Optimal scaling of the random walk Metropolis on elliptically symmetric unimodal targets
-
MR2555199
-
SHERLOCK, C. and ROBERTS, G. (2009). Optimal scaling of the random walk Metropolis on elliptically symmetric unimodal targets. Bernoulli 15 774-798. MR2555199
-
(2009)
Bernoulli
, vol.15
, pp. 774-798
-
-
Sherlock, C.1
Roberts, G.2
-
34
-
-
0003053548
-
Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods (with discussion)
-
MR1210421
-
SMITH, A. F. M. and ROBERTS, G. O. (1993). Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods (with discussion). J. R. Stat. Soc. Ser. B Stat. Methodol. 55 3-23. MR1210421
-
(1993)
J. R. Stat. Soc. Ser. B Stat. Methodol.
, vol.55
, pp. 3-23
-
-
Smith, A.F.M.1
Roberts, G.O.2
-
35
-
-
0000576595
-
Markov chains for exploring posterior distributions
-
MR1329166
-
TIERNEY, L. (1994). Markov chains for exploring posterior distributions. Ann. Statist. 22 1701-1762. MR1329166
-
(1994)
Ann. Statist.
, vol.22
, pp. 1701-1762
-
-
Tierney, L.1
|