메뉴 건너뛰기




Volumn 25, Issue 1, 2015, Pages 81-92

Particle Metropolis–Hastings using gradient and Hessian information

Author keywords

Fixed lag particle smoothing; Manifold MALA; Parameter inference; Particle Markov chain Monte Carlo; Sequential Monte Carlo

Indexed keywords


EID: 84925494064     PISSN: 09603174     EISSN: 15731375     Source Type: Journal    
DOI: 10.1007/s11222-014-9510-0     Document Type: Article
Times cited : (36)

References (39)
  • 1
    • 60149103563 scopus 로고    scopus 로고
    • The pseudo-marginal approach for efficient Monte Carlo computations
    • Andrieu, C., Roberts, G.O.: The pseudo-marginal approach for efficient Monte Carlo computations. Ann. Stat. 37(2), 697–725 (2009)
    • (2009) Ann. Stat. , vol.37 , Issue.2 , pp. 697-725
    • Andrieu, C.1    Roberts, G.O.2
  • 2
    • 57849088168 scopus 로고    scopus 로고
    • A tutorial on adaptive MCMC
    • Andrieu, C., Thoms, J.: A tutorial on adaptive MCMC. Stat. Comput. 18(4), 343–373 (2008)
    • (2008) Stat. Comput. , vol.18 , Issue.4 , pp. 343-373
    • Andrieu, C.1    Thoms, J.2
  • 3
    • 84925480490 scopus 로고    scopus 로고
    • Convergence properties of pseudo-marginal Markov chain Monte Carlo algorithms
    • Andrieu, C., Vihola, M.: Convergence properties of pseudo-marginal Markov chain Monte Carlo algorithms. Pre-print arXiv:1012.1484v1 (2011)
    • (2011) Pre-print arXiv:1012.1484v1
    • Andrieu, C.1    Vihola, M.2
  • 4
    • 77953523599 scopus 로고    scopus 로고
    • Particle Markov chain Monte Carlo methods
    • Andrieu, C., Doucet, A., Holenstein, R.: Particle Markov chain Monte Carlo methods. J. R. Stat. Soc. 72(3), 269–342 (2010)
    • (2010) J. R. Stat. Soc. , vol.72 , Issue.3 , pp. 269-342
    • Andrieu, C.1    Doucet, A.2    Holenstein, R.3
  • 5
    • 0043210659 scopus 로고    scopus 로고
    • Estimation of population growth or decline in genetically monitored populations
    • Beaumont, M.A.: Estimation of population growth or decline in genetically monitored populations. Genetics 164(3), 1139–1160 (2003)
    • (2003) Genetics , vol.164 , Issue.3 , pp. 1139-1160
    • Beaumont, M.A.1
  • 8
    • 84925522050 scopus 로고    scopus 로고
    • Sequential Monte Carlo for inference in nonlinear state space models. Licentiate’s thesis no. 1652
    • Dahlin, J.: Sequential Monte Carlo for inference in nonlinear state space models. Licentiate’s thesis no. 1652, Linköping University (2014)
    • (2014) Linköping University
    • Dahlin, J.1
  • 13
    • 0034346693 scopus 로고    scopus 로고
    • Analysis of a nonreversible Markov chain sampler
    • Diaconis, P., Holmes, S., Neal, R.: Analysis of a nonreversible Markov chain sampler. Ann. Appl. Probab. 10(3), 685–1064 (2000)
    • (2000) Ann. Appl. Probab. , vol.10 , Issue.3 , pp. 685-1064
    • Diaconis, P.1    Holmes, S.2    Neal, R.3
  • 14
    • 77951131231 scopus 로고    scopus 로고
    • A tutorial on particle filtering and smoothing: fifteen years later
    • Crisan D, Rozovsky B, (eds), Oxford University Press, Oxford:
    • Doucet, A., Johansen, A.: A tutorial on particle filtering and smoothing: fifteen years later. In: Crisan, D., Rozovsky, B. (eds.) The Oxford Handbook of Nonlinear Filtering. Oxford University Press, Oxford (2011)
    • (2011) The Oxford Handbook of Nonlinear Filtering
    • Doucet, A.1    Johansen, A.2
  • 15
    • 84877754530 scopus 로고    scopus 로고
    • Discussion on Riemann manifold Langevin and Hamiltonian Monte Carlo methods
    • Doucet, A., Jacob, P., Johansen, A.M.: Discussion on Riemann manifold Langevin and Hamiltonian Monte Carlo methods. J. R. Stat. Soc. 73(2), 162 (2011)
    • (2011) J. R. Stat. Soc. , vol.73 , Issue.2 , pp. 162
    • Doucet, A.1    Jacob, P.2    Johansen, A.M.3
  • 16
    • 84925480486 scopus 로고    scopus 로고
    • Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator. arXiv.org
    • Doucet, A., Pitt, M.K., Deligiannidis, G., Kohn, R.: Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator. arXiv.org, Pre-print arXiv:1210.1871v3 (2012)
    • (2012) Pre-print arXiv:1210.1871v3
    • Doucet, A.1    Pitt, M.K.2    Deligiannidis, G.3    Kohn, R.4
  • 17
    • 84925480485 scopus 로고    scopus 로고
    • Derivative-free estimation of the score vector and observed information matrix with application to state-space models
    • Doucet, A., Jacob, P.E., Rubenthaler, S.: Derivative-free estimation of the score vector and observed information matrix with application to state-space models. Pre-print arXiv:1304.5768v2 (2013)
    • (2013) Pre-print arXiv:1304.5768v2
    • Doucet, A.1    Jacob, P.E.2    Rubenthaler, S.3
  • 19
    • 84889241685 scopus 로고    scopus 로고
    • Bayesian parameter estimation for latent Markov random fields and social networks
    • Everitt, R.G.: Bayesian parameter estimation for latent Markov random fields and social networks. J. Comput. Gr. Stat. 21(4), 940–960 (2012)
    • (2012) J. Comput. Gr. Stat. , vol.21 , Issue.4 , pp. 940-960
    • Everitt, R.G.1
  • 20
    • 80052914719 scopus 로고    scopus 로고
    • Bayesian inference based only on simulated likelihood: particle filter analysis of dynamic economic models
    • Flury, T., Shephard, N.: Bayesian inference based only on simulated likelihood: particle filter analysis of dynamic economic models. Econom. Theory 27(5), 933–956 (2011)
    • (2011) Econom. Theory , vol.27 , Issue.5 , pp. 933-956
    • Flury, T.1    Shephard, N.2
  • 21
    • 79952295497 scopus 로고    scopus 로고
    • Riemann manifold Langevin and Hamiltonian Monte Carlo methods
    • Girolami, M., Calderhead, B.: Riemann manifold Langevin and Hamiltonian Monte Carlo methods. J. R. Stat. Soc. 73(2), 1–37 (2011)
    • (2011) J. R. Stat. Soc , vol.73 , Issue.2 , pp. 1-37
    • Girolami, M.1    Calderhead, B.2
  • 22
    • 84860901236 scopus 로고    scopus 로고
    • Bayesian parameter inference for stochastic biochemical network models using particle Markov chain Monte Carlo
    • Golightly, A., Wilkinson, D.J.: Bayesian parameter inference for stochastic biochemical network models using particle Markov chain Monte Carlo. Interface Focus 1(6), 807–820 (2011)
    • (2011) Interface Focus , vol.1 , Issue.6 , pp. 807-820
    • Golightly, A.1    Wilkinson, D.J.2
  • 23
    • 0027580559 scopus 로고
    • Novel approach to nonlinear/non-Gaussian Bayesian state estimation
    • Gordon, N.J., Salmond, D.J., Smith, A.F.M.: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEEE Proc. Radar Signal Process. 140(2), 107–113 (1993)
    • (1993) IEEE Proc. Radar Signal Process. , vol.140 , Issue.2 , pp. 107-113
    • Gordon, N.J.1    Salmond, D.J.2    Smith, A.F.M.3
  • 24
    • 0042564253 scopus 로고    scopus 로고
    • Monte Carlo smoothing and self-organising state-space model
    • Doucet A, Fretias N, Gordon N, (eds), Springer, Berlin:
    • Kitagawa, G., Sato, S.: Monte Carlo smoothing and self-organising state-space model. In: Doucet, A., de Fretias, N., Gordon, N. (eds.) Sequential Monte Carlo methods in practice, pp. 177–195. Springer, Berlin (2001)
    • (2001) Sequential Monte Carlo methods in practice , pp. 177-195
    • Kitagawa, G.1    Sato, S.2
  • 25
    • 84858253075 scopus 로고    scopus 로고
    • Some applications of nonlinear and non-Gaussian state-space modelling by means of hidden Markov models
    • Langrock, R.: Some applications of nonlinear and non-Gaussian state-space modelling by means of hidden Markov models. J. Appl. Stat. 38(12), 2955–2970 (2011)
    • (2011) J. Appl. Stat. , vol.38 , Issue.12 , pp. 2955-2970
    • Langrock, R.1
  • 26
    • 79251576558 scopus 로고    scopus 로고
    • MCMC using Hamiltonian dynamics
    • Brooks S, Gelman A, Jones G, Meng XL, (eds), Chapman & Hall, London:
    • Neal, R.M.: MCMC using Hamiltonian dynamics. In: Brooks, S., Gelman, A., Jones, G., Meng, X.L. (eds.) Handbook of Markov Chain Monte Carlo. Chapman & Hall, London (2010)
    • (2010) Handbook of Markov Chain Monte Carlo
    • Neal, R.M.1
  • 27
    • 84925480484 scopus 로고    scopus 로고
    • Particle Metropolis adjusted Langevin algorithms for state-space models
    • Nemeth, C., Fearnhead, P.: Particle Metropolis adjusted Langevin algorithms for state-space models. Pre-print arXiv:1402.0694v1 (2014)
    • (2014) Pre-print arXiv:1402.0694v1
    • Nemeth, C.1    Fearnhead, P.2
  • 29
    • 41449089271 scopus 로고    scopus 로고
    • Sequential Monte Carlo smoothing with application to parameter estimation in nonlinear state space models
    • Olsson, J., Cappé, O., Douc, R., Moulines, E.: Sequential Monte Carlo smoothing with application to parameter estimation in nonlinear state space models. Bernoulli 14(1), 155–179 (2008)
    • (2008) Bernoulli , vol.14 , Issue.1 , pp. 155-179
    • Olsson, J.1    Cappé, O.2    Douc, R.3    Moulines, E.4
  • 30
    • 84925480483 scopus 로고    scopus 로고
    • Ecological non-linear state space model selection via adaptive particle Markov chain Monte Carlo
    • Peters, G.W., Hosack, G.R., Hayes, K.R.: Ecological non-linear state space model selection via adaptive particle Markov chain Monte Carlo. Pre-print arXiv:1005.2238v1 (2010)
    • (2010) Pre-print arXiv:1005.2238v1
    • Peters, G.W.1    Hosack, G.R.2    Hayes, K.R.3
  • 31
    • 1542427941 scopus 로고    scopus 로고
    • Filtering via simulation: auxiliary particle filters
    • Pitt, M.K., Shephard, N.: Filtering via simulation: auxiliary particle filters. J. Am. Stat. Assoc. 94(446), 590–599 (1999)
    • (1999) J. Am. Stat. Assoc. , vol.94 , Issue.446 , pp. 590-599
    • Pitt, M.K.1    Shephard, N.2
  • 32
    • 84868208864 scopus 로고    scopus 로고
    • On some properties of Markov chain Monte Carlo simulation methods based on the particle filter
    • Pitt, M.K., Silva, R.S., Giordani, P., Kohn, R.: On some properties of Markov chain Monte Carlo simulation methods based on the particle filter. J. Econom. 171(2), 134–151 (2012)
    • (2012) J. Econom. , vol.171 , Issue.2 , pp. 134-151
    • Pitt, M.K.1    Silva, R.S.2    Giordani, P.3    Kohn, R.4
  • 33
    • 79952176832 scopus 로고    scopus 로고
    • Particle approximations of the score and observed information matrix in state space models with application to parameter estimation
    • Poyiadjis, G., Doucet, A., Singh, S.S.: Particle approximations of the score and observed information matrix in state space models with application to parameter estimation. Biometrika 98(1), 65–80 (2011)
    • (2011) Biometrika , vol.98 , Issue.1 , pp. 65-80
    • Poyiadjis, G.1    Doucet, A.2    Singh, S.S.3
  • 34
    • 21644483999 scopus 로고
    • Maximum likelihood estimates of linear dynamic systems
    • Rauch, H.E., Tung, F., Striebel, C.T.: Maximum likelihood estimates of linear dynamic systems. AIAA J. 3(8), 1445–1450 (1965)
    • (1965) AIAA J. , vol.3 , Issue.8 , pp. 1445-1450
    • Rauch, H.E.1    Tung, F.2    Striebel, C.T.3
  • 36
    • 0000936678 scopus 로고    scopus 로고
    • Optimal scaling of discrete approximations to Langevin diffusions
    • Roberts, G.O., Rosenthal, J.S.: Optimal scaling of discrete approximations to Langevin diffusions. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 60(1), 255–268 (1998)
    • (1998) J. R. Stat. Soc. Ser. B (Stat. Methodol.) , vol.60 , Issue.1 , pp. 255-268
    • Roberts, G.O.1    Rosenthal, J.S.2
  • 37
    • 15244341043 scopus 로고    scopus 로고
    • Langevin diffusions and Metropolis–Hastings algorithms
    • Roberts, G.O., Stramer, O.: Langevin diffusions and Metropolis–Hastings algorithms. Methodol. Comput. Appl. Probab. 4(4), 337–357 (2003)
    • (2003) Methodol. Comput. Appl. Probab. , vol.4 , Issue.4 , pp. 337-357
    • Roberts, G.O.1    Stramer, O.2
  • 38
    • 0031285157 scopus 로고    scopus 로고
    • Weak convergence and optimal scaling of random walk Metropolis algorithms
    • Roberts, G.O., Gelman, A., Gilks, W.R.: Weak convergence and optimal scaling of random walk Metropolis algorithms. Ann. Appl. Probab. 7(1), 110–120 (1997)
    • (1997) Ann. Appl. Probab. , vol.7 , Issue.1 , pp. 110-120
    • Roberts, G.O.1    Gelman, A.2    Gilks, W.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.