메뉴 건너뛰기




Volumn , Issue , 2009, Pages 37-40

Online sequential Monte Carlo EM algorithm

Author keywords

[No Author keywords available]

Indexed keywords

DISCRETE HIDDEN MARKOV MODEL; EXPECTATION MAXIMIZATION; MODEL PARAMETERS; NON-LINEAR NON-GAUSSIAN; NUMERICAL EXAMPLE; ONLINE EM; POINT ESTIMATION; SEQUENTIAL MONTE CARLO; STATE-SPACE MODELS;

EID: 72349096106     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/SSP.2009.5278646     Document Type: Conference Paper
Times cited : (38)

References (16)
  • 1
    • 0141854970 scopus 로고    scopus 로고
    • Online expectation-maximization type algorithms for parameter estimation in general state space models
    • C. Andrieu and A. Doucet. Online expectation-maximization type algorithms for parameter estimation in general state space models. In Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., volume 6, pages 69-72, 2003.
    • (2003) Proc. IEEE Int. Conf. Acoust., Speech, Signal Process , vol.6 , pp. 69-72
    • Andrieu, C.1    Doucet, A.2
  • 2
    • 72349098511 scopus 로고    scopus 로고
    • Online simulation-based methods for parameter estimation in non linear non gaussian state-space models
    • C. Andrieu, A. Doucet, and V. B. Tadic. Online simulation-based methods for parameter estimation in non linear non gaussian state-space models. In Proc. IEEE Conf. Decis. Control, 2005.
    • (2005) Proc. IEEE Conf. Decis. Control
    • Andrieu, C.1    Doucet, A.2    Tadic, V.B.3
  • 3
    • 72349096220 scopus 로고    scopus 로고
    • Online EM algorithm for hidden Markov models
    • preprint
    • O. Cappé. Online EM algorithm for hidden Markov models. preprint, 2009.
    • (2009)
    • Cappé, O.1
  • 4
    • 66849104300 scopus 로고    scopus 로고
    • On-line expectation-maximization algorithm for latent data models
    • O. Cappé and E. Moulines. On-line expectation-maximization algorithm for latent data models. J. Roy. Statist. Soc. B, 71(3):593-613, 2009.
    • (2009) J. Roy. Statist. Soc. B , vol.71 , Issue.3 , pp. 593-613
    • Cappé, O.1    Moulines, E.2
  • 6
    • 0003665481 scopus 로고    scopus 로고
    • A. Doucet, N. De Freitas, and N. Gordon, editors, Springer, New York
    • A. Doucet, N. De Freitas, and N. Gordon, editors. Sequential Monte Carlo Methods in Practice. Springer, New York, 2001.
    • (2001) Sequential Monte Carlo Methods in Practice
  • 8
    • 0036929961 scopus 로고    scopus 로고
    • Markov chain Monte Carlo, sufficient statistics and particle filter
    • P. Fearnhead. Markov chain Monte Carlo, sufficient statistics and particle filter. J. Comput. Graph. Statist., 11(4):848-862, 2002.
    • (2002) J. Comput. Graph. Statist , vol.11 , Issue.4 , pp. 848-862
    • Fearnhead, P.1
  • 9
    • 0027580559 scopus 로고
    • Novel approach to nonlinear/non-Gaussian Bayesian state estimation
    • N. Gordon, D. Salmond, and A. F. Smith. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc. F, Radar Signal Process., 140:107-113, 1993.
    • (1993) IEE Proc. F, Radar Signal Process , vol.140 , pp. 107-113
    • Gordon, N.1    Salmond, D.2    Smith, A.F.3
  • 11
    • 0027797470 scopus 로고
    • On-line estimation of hidden Markov model parameters based on the kullback-leibler information measure
    • V. Krishnamurthy and J. B. Moore. On-line estimation of hidden Markov model parameters based on the kullback-leibler information measure. IEEE Trans. Signal Process., 41(8):2557-2573, 1993.
    • (1993) IEEE Trans. Signal Process , vol.41 , Issue.8 , pp. 2557-2573
    • Krishnamurthy, V.1    Moore, J.B.2
  • 12
    • 0001225908 scopus 로고    scopus 로고
    • Combined parameter and state estimation in simulation-based filtering
    • A. Doucet, N. De Fre-itas, and N. Gordon, editors, Springer
    • J. Liu and M. West. Combined parameter and state estimation in simulation-based filtering. In A. Doucet, N. De Fre-itas, and N. Gordon, editors, Sequential Monte Carlo Methods in Practice. Springer, 2001.
    • (2001) Sequential Monte Carlo Methods in Practice
    • Liu, J.1    West, M.2
  • 13
    • 46749096639 scopus 로고    scopus 로고
    • Online learning with hidden Markov models
    • G. Mongillo and S. Denève. Online learning with hidden Markov models. Neural Computation, 20(7):1706-1716, 2008.
    • (2008) Neural Computation , vol.20 , Issue.7 , pp. 1706-1716
    • Mongillo, G.1    Denève, S.2
  • 14
    • 0031065861 scopus 로고    scopus 로고
    • On recursive estimation for hidden Markov models
    • T. Rydén. On recursive estimation for hidden Markov models. Stochastic Process. Appl., 66(1):79-96, 1997.
    • (1997) Stochastic Process. Appl , vol.66 , Issue.1 , pp. 79-96
    • Rydén, T.1
  • 15
    • 0036475891 scopus 로고    scopus 로고
    • Particle filters for state-space models with the presence of unknown static parameters
    • G. Storvik. Particle filters for state-space models with the presence of unknown static parameters. IEEE Trans. Signal Process., pages 281-289, 2002.
    • (2002) IEEE Trans. Signal Process , pp. 281-289
    • Storvik, G.1
  • 16
    • 0024035304 scopus 로고
    • Exact filters for the estimation of the number of transitions of finite-state continuous-time Markov processes
    • July
    • O. Zeitouni and A. Dembo. Exact filters for the estimation of the number of transitions of finite-state continuous-time Markov processes. IEEE Trans. Inform. Theory, 34(4), July 1988.
    • (1988) IEEE Trans. Inform. Theory , vol.34 , Issue.4
    • Zeitouni, O.1    Dembo, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.