-
1
-
-
77953523599
-
Particle Markov chainMonte Carlo methods (with Discussion
-
ANDRIEU, C., DOUCET, A. & HOLENSTEIN, R. (2010). Particle Markov chainMonte Carlo methods (with Discussion). J. R. Statist. Soc. B 72, 269-342.
-
(2010)
J. R. Statist. Soc. B
, vol.72
, pp. 269-342
-
-
Andrieu, C.1
Doucet, A.2
Holenstein, R.3
-
2
-
-
60149103563
-
The pseudo-marginal approach for efficient Monte Carlo computations
-
ANDRIEU, C. & ROBERTS, G. O. (2009). The pseudo-marginal approach for efficient Monte Carlo computations. Ann. Statist. 37, 697-725.
-
(2009)
Ann. Statist.
, vol.37
, pp. 697-725
-
-
Andrieu, C.1
Roberts, G.O.2
-
3
-
-
84923502443
-
Convergence properties of pseudo-marginal Markov chain Monte Carlo algorithms
-
ANDRIEU, C. & VIHOLA, M. (2015). Convergence properties of pseudo-marginal Markov chain Monte Carlo algorithms. Ann. Appl. Prob. 25, 1030-77.
-
(2015)
Ann. Appl. Prob.
, vol.25
, pp. 1030-1077
-
-
Andrieu, C.1
Vihola, M.2
-
4
-
-
14544277112
-
Renewal theory and computable convergence rates for geometrically ergodic Markov chains
-
BAXENDALE, P. (2005). Renewal theory and computable convergence rates for geometrically ergodic Markov chains. Ann. Appl. Prob. 15, 700-38.
-
(2005)
Ann. Appl. Prob.
, vol.15
, pp. 700-738
-
-
Baxendale, P.1
-
5
-
-
0043210659
-
Estimation of population growth or decline in genetically monitored populations
-
BEAUMONT, M. (2003). Estimation of population growth or decline in genetically monitored populations. Genetics 164, 1139-60.
-
(2003)
Genetics
, vol.164
, pp. 1139-1160
-
-
Beaumont, M.1
-
6
-
-
84907708429
-
A lognormal central limit theorem for particle approximations of normalizing constants
-
BÉRARD, J., DEL MORAL, P. & DOUCET, A. (2014). A lognormal central limit theorem for particle approximations of normalizing constants. Electron. J. Prob. 19, 1-28.
-
(2014)
Electron. J. Prob.
, vol.19
, pp. 1-28
-
-
Bérard, J.1
Del Moral, P.2
Doucet, A.3
-
7
-
-
0242268781
-
Alternative models of stock price dynamics
-
CHERNOV, M., GALLANT, A. R., GHYSELS, E. & TAUCHEN, G. (2003). Alternative models of stock price dynamics. J. Economet. 116, 225-57.
-
(2003)
J. Economet.
, vol.116
, pp. 225-257
-
-
Chernov, M.1
Gallant, A.R.2
Ghysels, E.3
Tauchen, G.4
-
8
-
-
79551578073
-
A vanilla Rao-Blackwellization of Metropolis-Hastings algorithms
-
DOUC, R. & ROBERT, C. P. (2011). A vanilla Rao-Blackwellization of Metropolis-Hastings algorithms. Ann. Statist. 39, 261-77.
-
(2011)
Ann. Statist.
, vol.39
, pp. 261-277
-
-
Douc, R.1
Robert, C.P.2
-
9
-
-
84972511893
-
Practical Markov chain Monte Carlo
-
GEYER, C. J. (1992). Practical Markov chain Monte Carlo. Statist. Sci. 7, 473-83.
-
(1992)
Statist. Sci.
, vol.7
, pp. 473-483
-
-
Geyer, C.J.1
-
10
-
-
37449027766
-
On variance conditions for Markov chain central limit theorems
-
HÄGGSTRÖM, O. & ROSENTHAL, J. S. (2007). On variance conditions for Markov chain central limit theorems. Electron. Commun. Prob. 12, 454-64.
-
(2007)
Electron. Commun. Prob.
, vol.12
, pp. 454-464
-
-
Häggström, O.1
Rosenthal, J.S.2
-
11
-
-
26444481610
-
The relative contribution of jumps to total price variation
-
HUANG, X. & TAUCHEN, G. (2005). The relative contribution of jumps to total price variation. J. Finan. Economet. 3, 456-99.
-
(2005)
J. Finan. Economet.
, vol.3
, pp. 456-499
-
-
Huang, X.1
Tauchen, G.2
-
12
-
-
34250130646
-
Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions
-
KIPNIS, C.&VARADHAN, S. R. S. (1986). Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Commun. Math. Phys. 104, 1-19.
-
(1986)
Commun. Math. Phys.
, vol.104
, pp. 1-19
-
-
Kipnis, C.1
Varadhan, S.R.S.2
-
13
-
-
17044435029
-
A noisy Monte Carlo algorithm
-
article no. 074505
-
LIN, L., LIU, K. F. & SLOAN, J. (2000). A noisy Monte Carlo algorithm. Phys. Rev. D 61, article no. 074505.
-
(2000)
Phys. Rev. D
, vol.61
-
-
Lin, L.1
Liu, K.F.2
Sloan, J.3
-
14
-
-
0015730787
-
Optimum Monte-Carlo sampling using Markov chains
-
PESKUN, P. H. (1973). Optimum Monte-Carlo sampling using Markov chains. Biometrika 60, 607-12.
-
(1973)
Biometrika
, vol.60
, pp. 607-612
-
-
Peskun, P.H.1
-
15
-
-
84868208864
-
On some properties ofMarkov chain Monte Carlo simulation methods based on the particle filter
-
PITT, M. K., SILVA, R., GIORDANI, P.&KOHN, R. (2012). On some properties ofMarkov chain Monte Carlo simulation methods based on the particle filter. J. Economet. 171, 134-51.
-
(2012)
J. Economet.
, vol.171
, pp. 134-151
-
-
Pitt, M.K.1
Silva, R.2
Giordani, P.3
Kohn, R.4
-
16
-
-
33746388444
-
Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms
-
ROBERTS, G. O. & TWEEDIE, R. L. (1996). Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms. Biometrika 83, 95-110.
-
(1996)
Biometrika
, vol.83
, pp. 95-110
-
-
Roberts, G.O.1
Tweedie, R.L.2
-
17
-
-
84879715166
-
Positivity of hit-and-run and related algorithms
-
RUDOLF, D.&ULLRICH, M. (2013). Positivity of hit-and-run and related algorithms. Electron. Commun. Prob. 18, 1-8.
-
(2013)
Electron. Commun. Prob.
, vol.18
, pp. 1-8
-
-
Rudolf, D.1
Ullrich, M.2
-
18
-
-
84922540951
-
On the efficiency of pseudo-marginal random walk Metropolis algorithms
-
SHERLOCK, C., THIERY, A. H., ROBERTS, G. O. & ROSENTHAL, J. S. (2015). On the efficiency of pseudo-marginal random walk Metropolis algorithms. Ann. Statist. 43, 238-75.
-
(2015)
Ann. Statist.
, vol.43
, pp. 238-275
-
-
Sherlock, C.1
Thiery, A.H.2
Roberts, G.O.3
Rosenthal, J.S.4
-
19
-
-
0000576595
-
Markov chains for exploring posterior distributions (with Discussion
-
TIERNEY, L. (1994). Markov chains for exploring posterior distributions (with Discussion). Ann. Statist. 21, 1701-62.
-
(1994)
Ann. Statist.
, vol.21
, pp. 1701-1762
-
-
Tierney, L.1
-
20
-
-
0032382065
-
A note on Metropolis-Hastings kernels for general state spaces
-
TIERNEY, L. (1998). A note on Metropolis-Hastings kernels for general state spaces. Ann. Appl. Prob. 8, 1-9.
-
(1998)
Ann. Appl. Prob.
, vol.8
, pp. 1-9
-
-
Tierney, L.1
|