메뉴 건너뛰기




Volumn 89, Issue 3, 2002, Pages 539-551

A sequential particle filter method for static models

Author keywords

Batch importance sampling; Generalised linear model; Importance sampling; Markov chain Monte Carlo; Metropolis Hastings; Mixture model; Parallel processing; Particle filter

Indexed keywords


EID: 0012338718     PISSN: 00063444     EISSN: None     Source Type: Journal    
DOI: 10.1093/biomet/89.3.539     Document Type: Review
Times cited : (536)

References (11)
  • 1
    • 84916537550 scopus 로고
    • Bayesian analysis of binary and polychotomous response data
    • ALBERT, J. H. & CHIB, S. (1993). Bayesian analysis of binary and polychotomous response data. J. Am. Statist. Assoc. 88, 669-79.
    • (1993) J. Am. Statist. Assoc. , vol.88 , pp. 669-679
    • Albert, J.H.1    Chib, S.2
  • 3
    • 2242491935 scopus 로고    scopus 로고
    • Computational and inferential difficulties with mixture posterior distributions
    • CELEUX, G., HURN, M. & ROBERT, C. P. (2000). Computational and inferential difficulties with mixture posterior distributions. J. Am. Statist. Assoc. 95, 957-70.
    • (2000) J. Am. Statist. Assoc. , vol.95 , pp. 957-970
    • Celeux, G.1    Hurn, M.2    Robert, C.P.3
  • 4
    • 0039644192 scopus 로고
    • Bayesian inference for generalised linear and proportional hazards models via Gibbs sampling
    • DELLAPORTAS, P. & SMITH, A. F. M. (1993). Bayesian inference for generalised linear and proportional hazards models via Gibbs sampling. Appl. Statist. 42, 443-59.
    • (1993) Appl. Statist. , vol.42 , pp. 443-459
    • Dellaportas, P.1    Smith, A.F.M.2
  • 6
    • 0001667705 scopus 로고
    • Bayesian inference in econometric models using Monte Carlo integration
    • GEWEKE, J. (1989). Bayesian inference in econometric models using Monte Carlo integration. Econometrica 57, 1317-39.
    • (1989) Econometrica , vol.57 , pp. 1317-1339
    • Geweke, J.1
  • 7
    • 0035648076 scopus 로고    scopus 로고
    • Following a moving target: Monte Carlo inference for dynamic Bayesian models
    • GILKS, W. R. & BERZUINI, C. (2001). Following a moving target: Monte Carlo inference for dynamic Bayesian models. J. R. Statist. Soc. B 63, 127-46.
    • (2001) J. R. Statist. Soc. B , vol.63 , pp. 127-146
    • Gilks, W.R.1    Berzuini, C.2
  • 8
    • 0027580559 scopus 로고
    • Novel approach to nonlinear/non-Gaussian Bayesian state estimation
    • GORDON, N. J., SALMOND, D. J. & SMITH, A. F. M. (1993). Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc. Radar Sig. Proces. 140, 107-13.
    • (1993) IEE Proc. Radar Sig. Proces. , vol.140 , pp. 107-113
    • Gordon, N.J.1    Salmond, D.J.2    Smith, A.F.M.3
  • 9
    • 0032359151 scopus 로고    scopus 로고
    • Sequential Monte Carlo methods for dynamic systems
    • LIU, J. & CHEN, R. (1998). Sequential Monte Carlo methods for dynamic systems. J. Am. Statist. Assoc. 93, 1032-44.
    • (1998) J. Am. Statist. Assoc. , vol.93 , pp. 1032-1044
    • Liu, J.1    Chen, R.2
  • 11
    • 0033611397 scopus 로고    scopus 로고
    • Reparameterisation issues in mixture modelling and their bearing on MCMC algorithms
    • ROBERT, C.P. & MENGERSEN, K. L. (1999). Reparameterisation issues in mixture modelling and their bearing on MCMC algorithms. Comp. Statist. Data Anal. 29, 325-43.
    • (1999) Comp. Statist. Data Anal. , vol.29 , pp. 325-343
    • Robert, C.P.1    Mengersen, K.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.