-
1
-
-
77954977618
-
Neuroinflammation in Alzheimer's disease: mechanisms, pathologic consequences, and potential for therapeutic manipulation
-
Hensley K. Neuroinflammation in Alzheimer's disease: mechanisms, pathologic consequences, and potential for therapeutic manipulation. J. Alzheimers Dis. 2010, 21:1-14.
-
(2010)
J. Alzheimers Dis.
, vol.21
, pp. 1-14
-
-
Hensley, K.1
-
2
-
-
84872168596
-
Microglia: scapegoat, saboteur, or something else?
-
Aguzzi A., et al. Microglia: scapegoat, saboteur, or something else?. Science 2013, 339:156-161.
-
(2013)
Science
, vol.339
, pp. 156-161
-
-
Aguzzi, A.1
-
3
-
-
2542596183
-
Parkinson's disease
-
Samii A., et al. Parkinson's disease. Lancet 2004, 363:1783-1793.
-
(2004)
Lancet
, vol.363
, pp. 1783-1793
-
-
Samii, A.1
-
4
-
-
84865468329
-
The genetics and neuropathology of Alzheimer's disease
-
Schellenberg G.D., Montine T.J. The genetics and neuropathology of Alzheimer's disease. Acta Neuropathol. 2012, 124:305-323.
-
(2012)
Acta Neuropathol.
, vol.124
, pp. 305-323
-
-
Schellenberg, G.D.1
Montine, T.J.2
-
5
-
-
68249112361
-
Distinct neuroinflammatory profile in post-mortem human Huntington's disease
-
Silvestroni A., et al. Distinct neuroinflammatory profile in post-mortem human Huntington's disease. Neuroreport 2009, 20:1098-1103.
-
(2009)
Neuroreport
, vol.20
, pp. 1098-1103
-
-
Silvestroni, A.1
-
6
-
-
0027480960
-
A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes
-
MacDonald M.E., et al. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 1993, 72:971-983.
-
(1993)
Cell
, vol.72
, pp. 971-983
-
-
MacDonald, M.E.1
-
7
-
-
80052074316
-
The role of immunity in Huntington's disease
-
Soulet D., Cicchetti F. The role of immunity in Huntington's disease. Mol. Psychiatry 2011, 16:889-902.
-
(2011)
Mol. Psychiatry
, vol.16
, pp. 889-902
-
-
Soulet, D.1
Cicchetti, F.2
-
8
-
-
73749085726
-
Altered white matter microstructure in the corpus callosum in Huntington's disease: implications for cortical 'disconnection'
-
Rosas H.D., et al. Altered white matter microstructure in the corpus callosum in Huntington's disease: implications for cortical 'disconnection'. Neuroimage 2009, 49:2995-3004.
-
(2009)
Neuroimage
, vol.49
, pp. 2995-3004
-
-
Rosas, H.D.1
-
9
-
-
33750975077
-
Clinical correlates of levodopa-induced dopamine release in Parkinson disease: a PET study
-
Pavese N., et al. Clinical correlates of levodopa-induced dopamine release in Parkinson disease: a PET study. Neurology 2006, 67:1612-1617.
-
(2006)
Neurology
, vol.67
, pp. 1612-1617
-
-
Pavese, N.1
-
10
-
-
34447636065
-
Microglial activation in presymptomatic Huntington's disease gene carriers
-
Tai Y.F., et al. Microglial activation in presymptomatic Huntington's disease gene carriers. Brain 2007, 130:1759-1766.
-
(2007)
Brain
, vol.130
, pp. 1759-1766
-
-
Tai, Y.F.1
-
11
-
-
33847788629
-
Imaging microglial activation in Huntington's disease
-
Tai Y.F., et al. Imaging microglial activation in Huntington's disease. Brain Res. Bull. 2007, 72:148-151.
-
(2007)
Brain Res. Bull.
, vol.72
, pp. 148-151
-
-
Tai, Y.F.1
-
12
-
-
49249089029
-
A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington's disease
-
Bjorkqvist M., et al. A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington's disease. J. Exp. Med. 2008, 205:1869-1877.
-
(2008)
J. Exp. Med.
, vol.205
, pp. 1869-1877
-
-
Bjorkqvist, M.1
-
13
-
-
0035111235
-
Early and progressive accumulation of reactive microglia in the Huntington disease brain
-
Sapp E., et al. Early and progressive accumulation of reactive microglia in the Huntington disease brain. J. Neuropathol. Exp. Neurol. 2001, 60:161-172.
-
(2001)
J. Neuropathol. Exp. Neurol.
, vol.60
, pp. 161-172
-
-
Sapp, E.1
-
14
-
-
0021883670
-
Regional mitochondrial respiratory activity in Huntington's disease brain
-
Brennan W.A., et al. Regional mitochondrial respiratory activity in Huntington's disease brain. J. Neurochem. 1985, 44:1948-1950.
-
(1985)
J. Neurochem.
, vol.44
, pp. 1948-1950
-
-
Brennan, W.A.1
-
15
-
-
0032900574
-
Biochemical abnormalities and excitotoxicity in Huntington's disease brain
-
Tabrizi S.J., et al. Biochemical abnormalities and excitotoxicity in Huntington's disease brain. Ann. Neurol. 1999, 45:25-32.
-
(1999)
Ann. Neurol.
, vol.45
, pp. 25-32
-
-
Tabrizi, S.J.1
-
16
-
-
48449091060
-
Proteomic and oxidative stress analysis in human brain samples of Huntington disease
-
Sorolla M.A., et al. Proteomic and oxidative stress analysis in human brain samples of Huntington disease. Free Radic. Biol. Med. 2008, 45:667-678.
-
(2008)
Free Radic. Biol. Med.
, vol.45
, pp. 667-678
-
-
Sorolla, M.A.1
-
17
-
-
0030919567
-
Oxidative damage and metabolic dysfunction in Huntington's disease: selective vulnerability of the basal ganglia
-
Browne S.E., et al. Oxidative damage and metabolic dysfunction in Huntington's disease: selective vulnerability of the basal ganglia. Ann. Neurol. 1997, 41:646-653.
-
(1997)
Ann. Neurol.
, vol.41
, pp. 646-653
-
-
Browne, S.E.1
-
18
-
-
84887224661
-
The role of iron imaging in Huntington's disease
-
van den Bogaard S.J., et al. The role of iron imaging in Huntington's disease. Int. Rev. Neurobiol. 2013, 110:241-250.
-
(2013)
Int. Rev. Neurobiol.
, vol.110
, pp. 241-250
-
-
van den Bogaard, S.J.1
-
19
-
-
67650095269
-
Beyond the brain: widespread pathology in Huntington's disease
-
van der Burg J.M., et al. Beyond the brain: widespread pathology in Huntington's disease. Lancet Neurol. 2009, 8:765-774.
-
(2009)
Lancet Neurol.
, vol.8
, pp. 765-774
-
-
van der Burg, J.M.1
-
20
-
-
35448968328
-
Analysis of potential transcriptomic biomarkers for Huntington's disease in peripheral blood
-
Runne H., et al. Analysis of potential transcriptomic biomarkers for Huntington's disease in peripheral blood. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:14424-14429.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 14424-14429
-
-
Runne, H.1
-
21
-
-
34547167008
-
Proteomic profiling of plasma in Huntington's disease reveals neuroinflammatory activation and biomarker candidates
-
Dalrymple A., et al. Proteomic profiling of plasma in Huntington's disease reveals neuroinflammatory activation and biomarker candidates. J. Proteome Res. 2007, 6:2833-2840.
-
(2007)
J. Proteome Res.
, vol.6
, pp. 2833-2840
-
-
Dalrymple, A.1
-
22
-
-
84918528603
-
Plasma inflammatory biomarkers for Huntington's disease patients and mouse model
-
Chang K.H., et al. Plasma inflammatory biomarkers for Huntington's disease patients and mouse model. Brain Behav. Immunity 2015, 44:121-127.
-
(2015)
Brain Behav. Immunity
, vol.44
, pp. 121-127
-
-
Chang, K.H.1
-
23
-
-
84855975733
-
Abnormal peripheral chemokine profile in Huntington's disease
-
Wild E., et al. Abnormal peripheral chemokine profile in Huntington's disease. PLoS Curr. 2011, 3:1231.
-
(2011)
PLoS Curr.
, vol.3
, pp. 1231
-
-
Wild, E.1
-
24
-
-
84865112006
-
Oxidative stress and inflammation biomarkers in the blood of patients with Huntington's disease
-
Sanchez-Lopez F., et al. Oxidative stress and inflammation biomarkers in the blood of patients with Huntington's disease. Neurol. Res. 2012, 34:721-724.
-
(2012)
Neurol. Res.
, vol.34
, pp. 721-724
-
-
Sanchez-Lopez, F.1
-
25
-
-
85017875833
-
JAK/STAT signalling in Huntington's disease immune cells
-
Trager U., et al. JAK/STAT signalling in Huntington's disease immune cells. PLoS Curr. 2014, 5:125-134.
-
(2014)
PLoS Curr.
, vol.5
, pp. 125-134
-
-
Trager, U.1
-
26
-
-
84867148826
-
Mutant huntingtin fragmentation in immune cells tracks Huntington's disease progression
-
Weiss A., et al. Mutant huntingtin fragmentation in immune cells tracks Huntington's disease progression. J. Clin. Invest. 2012, 122:3731-3736.
-
(2012)
J. Clin. Invest.
, vol.122
, pp. 3731-3736
-
-
Weiss, A.1
-
27
-
-
0345830687
-
Antigliadin antibodies in Huntington's disease
-
Bushara K.O., et al. Antigliadin antibodies in Huntington's disease. Neurology 2004, 62:132-133.
-
(2004)
Neurology
, vol.62
, pp. 132-133
-
-
Bushara, K.O.1
-
28
-
-
84925883980
-
Increase of angiotensin II type 1 receptor auto-antibodies in Huntington's disease
-
Lee D.H., et al. Increase of angiotensin II type 1 receptor auto-antibodies in Huntington's disease. Mol. Neurodegener. 2014, 9:49.
-
(2014)
Mol. Neurodegener.
, vol.9
, pp. 49
-
-
Lee, D.H.1
-
29
-
-
0025220976
-
Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain
-
Lawson L.J., et al. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 1990, 39:151-170.
-
(1990)
Neuroscience
, vol.39
, pp. 151-170
-
-
Lawson, L.J.1
-
30
-
-
67650966680
-
Microglial physiology: unique stimuli, specialized responses
-
Ransohoff R.M., Perry V.H. Microglial physiology: unique stimuli, specialized responses. Annu. Rev. Immunol. 2009, 27:119-145.
-
(2009)
Annu. Rev. Immunol.
, vol.27
, pp. 119-145
-
-
Ransohoff, R.M.1
Perry, V.H.2
-
31
-
-
19744380563
-
Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo
-
Nimmerjahn A., et al. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005, 308:1314-1318.
-
(2005)
Science
, vol.308
, pp. 1314-1318
-
-
Nimmerjahn, A.1
-
32
-
-
77949342162
-
Microglia in ischemic brain injury
-
Weinstein J.R., et al. Microglia in ischemic brain injury. Future Neurol. 2010, 5:227-246.
-
(2010)
Future Neurol.
, vol.5
, pp. 227-246
-
-
Weinstein, J.R.1
-
33
-
-
35548986304
-
Microglia: active sensor and versatile effector cells in the normal and pathologic brain
-
Hanisch U.K., Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci. 2007, 10:1387-1394.
-
(2007)
Nat. Neurosci.
, vol.10
, pp. 1387-1394
-
-
Hanisch, U.K.1
Kettenmann, H.2
-
34
-
-
84897405847
-
Mutant Huntingtin promotes autonomous microglia activation via myeloid lineage-determining factors
-
Crotti A., et al. Mutant Huntingtin promotes autonomous microglia activation via myeloid lineage-determining factors. Nat. Neurosci. 2014, 4:513-521.
-
(2014)
Nat. Neurosci.
, vol.4
, pp. 513-521
-
-
Crotti, A.1
-
35
-
-
81955167911
-
Age-dependent neurovascular abnormalities and altered microglial morphology in the YAC128 mouse model of Huntington disease
-
Franciosi S., et al. Age-dependent neurovascular abnormalities and altered microglial morphology in the YAC128 mouse model of Huntington disease. Neurobiol. Dis. 2011, 45:438-449.
-
(2011)
Neurobiol. Dis.
, vol.45
, pp. 438-449
-
-
Franciosi, S.1
-
36
-
-
78149360132
-
Fate mapping analysis reveals that adult microglia derive from primitive macrophages
-
Ginhoux F., et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010, 330:841-845.
-
(2010)
Science
, vol.330
, pp. 841-845
-
-
Ginhoux, F.1
-
37
-
-
84859508307
-
A lineage of myeloid cells independent of Myb and hematopoietic stem cells
-
Schulz C., et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 2012, 336:86-90.
-
(2012)
Science
, vol.336
, pp. 86-90
-
-
Schulz, C.1
-
38
-
-
84920724792
-
Environment drives selection and function of enhancers controlling tissue-specific macrophage identities
-
Gosselin D., et al. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 2014, 159:1327-1340.
-
(2014)
Cell
, vol.159
, pp. 1327-1340
-
-
Gosselin, D.1
-
39
-
-
84920724791
-
Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment
-
Lavin Y., et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 2014, 159:1312-1326.
-
(2014)
Cell
, vol.159
, pp. 1312-1326
-
-
Lavin, Y.1
-
40
-
-
70350697391
-
Microglial CB2 cannabinoid receptors are neuroprotective in Huntington's disease excitotoxicity
-
Palazuelos J., et al. Microglial CB2 cannabinoid receptors are neuroprotective in Huntington's disease excitotoxicity. Brain 2009, 132:3152-3164.
-
(2009)
Brain
, vol.132
, pp. 3152-3164
-
-
Palazuelos, J.1
-
41
-
-
84871027393
-
Cannabinoid receptor 2 signaling in peripheral immune cells modulates disease onset and severity in mouse models of Huntington's disease
-
Bouchard J., et al. Cannabinoid receptor 2 signaling in peripheral immune cells modulates disease onset and severity in mouse models of Huntington's disease. J. Neurosci. 2012, 32:18259-18268.
-
(2012)
J. Neurosci.
, vol.32
, pp. 18259-18268
-
-
Bouchard, J.1
-
42
-
-
69649091696
-
Cannabinoid CB2 receptor agonists protect the striatum against malonate toxicity: relevance for Huntington's disease
-
Sagredo O., et al. Cannabinoid CB2 receptor agonists protect the striatum against malonate toxicity: relevance for Huntington's disease. Glia 2009, 57:1154-1167.
-
(2009)
Glia
, vol.57
, pp. 1154-1167
-
-
Sagredo, O.1
-
43
-
-
84862077856
-
Sativex-like combination of phytocannabinoids is neuroprotective in malonate-lesioned rats, an inflammatory model of Huntington's disease: role of CB1 and CB2 receptors
-
Valdeolivas S., et al. Sativex-like combination of phytocannabinoids is neuroprotective in malonate-lesioned rats, an inflammatory model of Huntington's disease: role of CB1 and CB2 receptors. ACS Chem. Neurosci. 2012, 3:400-406.
-
(2012)
ACS Chem. Neurosci.
, vol.3
, pp. 400-406
-
-
Valdeolivas, S.1
-
44
-
-
84905994809
-
Cannabinoid receptor CB2 is expressed on vascular cells, but not astroglial cells in the post-mortem human Huntington's disease brain
-
Dowie M.J., et al. Cannabinoid receptor CB2 is expressed on vascular cells, but not astroglial cells in the post-mortem human Huntington's disease brain. J. Chem. Neuroanat. 2014, 59-60:62-71.
-
(2014)
J. Chem. Neuroanat.
, pp. 62-71
-
-
Dowie, M.J.1
-
45
-
-
0032873347
-
Increased complement biosynthesis by microglia and complement activation on neurons in Huntington's disease
-
Singhrao S.K., et al. Increased complement biosynthesis by microglia and complement activation on neurons in Huntington's disease. Exp. Neurol. 1999, 159:362-376.
-
(1999)
Exp. Neurol.
, vol.159
, pp. 362-376
-
-
Singhrao, S.K.1
-
46
-
-
84929877921
-
Genetic deficiency of complement Component 3 does not alter disease progression in a mouse model of Huntington's disease
-
Larkin P.B., Muchowski P.J. Genetic deficiency of complement Component 3 does not alter disease progression in a mouse model of Huntington's disease. J. Huntingtons Dis. 2012, 1:107-118.
-
(2012)
J. Huntingtons Dis.
, vol.1
, pp. 107-118
-
-
Larkin, P.B.1
Muchowski, P.J.2
-
47
-
-
36849076770
-
The classical complement cascade mediates CNS synapse elimination
-
Stevens B., et al. The classical complement cascade mediates CNS synapse elimination. Cell 2007, 131:1164-1178.
-
(2007)
Cell
, vol.131
, pp. 1164-1178
-
-
Stevens, B.1
-
48
-
-
84861427387
-
Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner
-
Schafer D.P., et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 2012, 74:691-705.
-
(2012)
Neuron
, vol.74
, pp. 691-705
-
-
Schafer, D.P.1
-
49
-
-
77952403414
-
Enhanced synaptic connectivity and epilepsy in C1q knockout mice
-
Chu Y., et al. Enhanced synaptic connectivity and epilepsy in C1q knockout mice. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:7975-7980.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 7975-7980
-
-
Chu, Y.1
-
50
-
-
84455173005
-
In vitro and in vivo aggregation of a fragment of huntingtin protein directly causes free radical production
-
Hands S., et al. In vitro and in vivo aggregation of a fragment of huntingtin protein directly causes free radical production. J. Biol. Chem. 2011, 286:44512-44520.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 44512-44520
-
-
Hands, S.1
-
51
-
-
0036566675
-
Heat shock protein 27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused by huntingtin
-
Wyttenbach A., et al. Heat shock protein 27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused by huntingtin. Hum. Mol. Genet. 2002, 11:1137-1151.
-
(2002)
Hum. Mol. Genet.
, vol.11
, pp. 1137-1151
-
-
Wyttenbach, A.1
-
52
-
-
79955970952
-
Cysteine oxidation within N-terminal mutant huntingtin promotes oligomerization and delays clearance of soluble protein
-
Fox J.H., et al. Cysteine oxidation within N-terminal mutant huntingtin promotes oligomerization and delays clearance of soluble protein. J. Biol. Chem. 2011, 286:18320-18330.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 18320-18330
-
-
Fox, J.H.1
-
53
-
-
33845768784
-
Microglia-mediated neurotoxicity: uncovering the molecular mechanisms
-
Block M.L., et al. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat. Rev. Neurosci. 2007, 8:57-69.
-
(2007)
Nat. Rev. Neurosci.
, vol.8
, pp. 57-69
-
-
Block, M.L.1
-
54
-
-
4544322045
-
Free radicals and aging
-
Barja G. Free radicals and aging. Trends Neurosci. 2004, 27:595-600.
-
(2004)
Trends Neurosci.
, vol.27
, pp. 595-600
-
-
Barja, G.1
-
55
-
-
79952585486
-
Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington's disease: implications for selective neuronal damage
-
Shirendeb U., et al. Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington's disease: implications for selective neuronal damage. Hum. Mol. Genet. 2011, 20:1438-1455.
-
(2011)
Hum. Mol. Genet.
, vol.20
, pp. 1438-1455
-
-
Shirendeb, U.1
-
56
-
-
0034703860
-
Huntingtin: an iron-regulated protein essential for normal nuclear and perinuclear organelles
-
Hilditch-Maguire P., et al. Huntingtin: an iron-regulated protein essential for normal nuclear and perinuclear organelles. Hum. Mol. Genet. 2000, 9:2789-2797.
-
(2000)
Hum. Mol. Genet.
, vol.9
, pp. 2789-2797
-
-
Hilditch-Maguire, P.1
-
57
-
-
33751080354
-
Huntingtin inclusion bodies are iron-dependent centers of oxidative events
-
Firdaus W.J., et al. Huntingtin inclusion bodies are iron-dependent centers of oxidative events. FEBS J. 2006, 273:5428-5441.
-
(2006)
FEBS J.
, vol.273
, pp. 5428-5441
-
-
Firdaus, W.J.1
-
58
-
-
34447520021
-
Ferritin accumulation in dystrophic microglia is an early event in the development of Huntington's disease
-
Simmons D.A., et al. Ferritin accumulation in dystrophic microglia is an early event in the development of Huntington's disease. Glia 2007, 55:1074-1084.
-
(2007)
Glia
, vol.55
, pp. 1074-1084
-
-
Simmons, D.A.1
-
59
-
-
0034941118
-
Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease
-
Curtis A.R., et al. Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease. Nat. Genet. 2001, 28:350-354.
-
(2001)
Nat. Genet.
, vol.28
, pp. 350-354
-
-
Curtis, A.R.1
-
60
-
-
19444375216
-
Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling
-
Rhee S.G., et al. Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic. Biol. Med. 2005, 38:1543-1552.
-
(2005)
Free Radic. Biol. Med.
, vol.38
, pp. 1543-1552
-
-
Rhee, S.G.1
-
61
-
-
84885020652
-
Glutathione peroxidase activity is neuroprotective in models of Huntington's disease
-
Mason R.P., et al. Glutathione peroxidase activity is neuroprotective in models of Huntington's disease. Nat. Genet. 2013, 45:1249-1254.
-
(2013)
Nat. Genet.
, vol.45
, pp. 1249-1254
-
-
Mason, R.P.1
-
62
-
-
76849100874
-
Of mice, rats and men: revisiting the quinolinic acid hypothesis of Huntington's disease
-
Schwarcz R., et al. Of mice, rats and men: revisiting the quinolinic acid hypothesis of Huntington's disease. Prog. Neurobiol. 2009, 90:230-245.
-
(2009)
Prog. Neurobiol.
, vol.90
, pp. 230-245
-
-
Schwarcz, R.1
-
63
-
-
0025161567
-
Kynurenine pathway measurements in Huntington's disease striatum: evidence for reduced formation of kynurenic acid
-
Beal M.F., et al. Kynurenine pathway measurements in Huntington's disease striatum: evidence for reduced formation of kynurenic acid. J. Neurochem. 1990, 55:1327-1339.
-
(1990)
J. Neurochem.
, vol.55
, pp. 1327-1339
-
-
Beal, M.F.1
-
64
-
-
18144406846
-
A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington disease
-
Giorgini F., et al. A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington disease. Nat. Genet. 2005, 37:526-531.
-
(2005)
Nat. Genet.
, vol.37
, pp. 526-531
-
-
Giorgini, F.1
-
65
-
-
1042302739
-
Expression of the kynurenine pathway enzymes in human microglia and macrophages
-
Guillemin G.J., et al. Expression of the kynurenine pathway enzymes in human microglia and macrophages. Adv. Exp. Med. Biol. 2003, 527:105-112.
-
(2003)
Adv. Exp. Med. Biol.
, vol.527
, pp. 105-112
-
-
Guillemin, G.J.1
-
66
-
-
43149110841
-
Histone deacetylase inhibition modulates kynurenine pathway activation in yeast, microglia. and mice expressing a mutant huntingtin fragment
-
Giorgini F., et al. Histone deacetylase inhibition modulates kynurenine pathway activation in yeast, microglia. and mice expressing a mutant huntingtin fragment. J. Biol. Chem. 2008, 283:7390-7400.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 7390-7400
-
-
Giorgini, F.1
-
67
-
-
84920374074
-
HDAC inhibition imparts beneficial transgenerational effects in Huntington's disease mice via altered DNA and histone methylation
-
Jia H., et al. HDAC inhibition imparts beneficial transgenerational effects in Huntington's disease mice via altered DNA and histone methylation. Proc. Natl. Acad. Sci. U.S.A. 2015, 112:E56-E64.
-
(2015)
Proc. Natl. Acad. Sci. U.S.A.
, vol.112
, pp. E56-E64
-
-
Jia, H.1
-
70
-
-
63049083734
-
A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death
-
Saijo K., et al. A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell 2009, 137:47-59.
-
(2009)
Cell
, vol.137
, pp. 47-59
-
-
Saijo, K.1
-
71
-
-
84890547494
-
Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways
-
Chung W.S., et al. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 2013, 504:394-400.
-
(2013)
Nature
, vol.504
, pp. 394-400
-
-
Chung, W.S.1
-
72
-
-
84858851237
-
Engulfing astrocytes protect neurons from contact-induced apoptosis following injury
-
Loov C., et al. Engulfing astrocytes protect neurons from contact-induced apoptosis following injury. PLoS ONE 2012, 7:e33090.
-
(2012)
PLoS ONE
, vol.7
, pp. e33090
-
-
Loov, C.1
-
73
-
-
0035164743
-
Impaired glutamate uptake in the R6 Huntington's disease transgenic mice
-
Lievens J.C., et al. Impaired glutamate uptake in the R6 Huntington's disease transgenic mice. Neurobiol. Dis. 2001, 8:807-821.
-
(2001)
Neurobiol. Dis.
, vol.8
, pp. 807-821
-
-
Lievens, J.C.1
-
74
-
-
29144460321
-
Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity
-
Shin J.Y., et al. Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity. J. Cell Biol. 2005, 171:1001-1012.
-
(2005)
J. Cell Biol.
, vol.171
, pp. 1001-1012
-
-
Shin, J.Y.1
-
75
-
-
84862835713
-
Corticostriatal dysfunction and glutamate transporter 1 (GLT1) in Huntington's disease: interactions between neurons and astrocytes
-
Estrada-Sanchez A.M., Rebec G.V. Corticostriatal dysfunction and glutamate transporter 1 (GLT1) in Huntington's disease: interactions between neurons and astrocytes. Basal Ganglia 2012, 2:57-66.
-
(2012)
Basal Ganglia
, vol.2
, pp. 57-66
-
-
Estrada-Sanchez, A.M.1
Rebec, G.V.2
-
76
-
-
76049118058
-
Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms
-
Bradford J., et al. Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:22480-22485.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 22480-22485
-
-
Bradford, J.1
-
77
-
-
41549117229
-
Expanded-polyglutamine huntingtin protein suppresses the secretion and production of a chemokine (CCL5/RANTES) by astrocytes
-
Chou S.Y., et al. Expanded-polyglutamine huntingtin protein suppresses the secretion and production of a chemokine (CCL5/RANTES) by astrocytes. J. Neurosci. 2008, 28:3277-3290.
-
(2008)
J. Neurosci.
, vol.28
, pp. 3277-3290
-
-
Chou, S.Y.1
-
78
-
-
2942620844
-
Dendritic spine pathology and deficits in experience-dependent dendritic plasticity in R6/1 Huntington's disease transgenic mice
-
Spires T.L., et al. Dendritic spine pathology and deficits in experience-dependent dendritic plasticity in R6/1 Huntington's disease transgenic mice. Eur. J. Neurosci. 2004, 19:2799-2807.
-
(2004)
Eur. J. Neurosci.
, vol.19
, pp. 2799-2807
-
-
Spires, T.L.1
-
79
-
-
20244376896
-
Striatal potassium channel dysfunction in Huntington's disease transgenic mice
-
Ariano M.A., et al. Striatal potassium channel dysfunction in Huntington's disease transgenic mice. J. Neurophysiol. 2005, 93:2565-2574.
-
(2005)
J. Neurophysiol.
, vol.93
, pp. 2565-2574
-
-
Ariano, M.A.1
-
80
-
-
84899525577
-
Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington's disease model mice
-
Tong X., et al. Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington's disease model mice. Nat. Neurosci. 2014, 5:694-703.
-
(2014)
Nat. Neurosci.
, vol.5
, pp. 694-703
-
-
Tong, X.1
-
81
-
-
84875951681
-
A critical role of astrocyte-mediated nuclear factor-kappaB-dependent inflammation in Huntington's disease
-
Hsiao H.Y., et al. A critical role of astrocyte-mediated nuclear factor-kappaB-dependent inflammation in Huntington's disease. Hum. Mol. Genet. 2013, 22:1826-1842.
-
(2013)
Hum. Mol. Genet.
, vol.22
, pp. 1826-1842
-
-
Hsiao, H.Y.1
-
82
-
-
84904742785
-
Inhibition of soluble tumor necrosis factor is therapeutic in Huntington's disease
-
Hsiao H.Y., et al. Inhibition of soluble tumor necrosis factor is therapeutic in Huntington's disease. Hum. Mol. Genet. 2014, 23:4328-4344.
-
(2014)
Hum. Mol. Genet.
, vol.23
, pp. 4328-4344
-
-
Hsiao, H.Y.1
-
83
-
-
84901267507
-
AAV-dominant negative tumor necrosis factor (DN-TNF) gene transfer to the striatum does not rescue medium spiny neurons in the YAC128 mouse model of Huntington's disease
-
Alto L.T., et al. AAV-dominant negative tumor necrosis factor (DN-TNF) gene transfer to the striatum does not rescue medium spiny neurons in the YAC128 mouse model of Huntington's disease. PLoS ONE 2014, 9:e96544.
-
(2014)
PLoS ONE
, vol.9
, pp. e96544
-
-
Alto, L.T.1
-
84
-
-
84922485980
-
The JAK/STAT3 pathway is a common inducer of astrocyte reactivity in Alzheimer's and Huntington's diseases
-
Ben Haim L., et al. The JAK/STAT3 pathway is a common inducer of astrocyte reactivity in Alzheimer's and Huntington's diseases. J. Neurosci. 2015, 35:2817-2829.
-
(2015)
J. Neurosci.
, vol.35
, pp. 2817-2829
-
-
Ben Haim, L.1
-
85
-
-
84894545327
-
HTT-lowering reverses Huntington's disease immune dysfunction caused by NFkappaB pathway dysregulation
-
Trager U., et al. HTT-lowering reverses Huntington's disease immune dysfunction caused by NFkappaB pathway dysregulation. Brain 2014, 137:819-833.
-
(2014)
Brain
, vol.137
, pp. 819-833
-
-
Trager, U.1
-
86
-
-
84889986456
-
Changes of peripheral TGF-beta1 depend on monocytes-derived macrophages in Huntington disease
-
Di Pardo A., et al. Changes of peripheral TGF-beta1 depend on monocytes-derived macrophages in Huntington disease. Mol. Brain 2013, 6:55.
-
(2013)
Mol. Brain
, vol.6
, pp. 55
-
-
Di Pardo, A.1
-
87
-
-
84870534288
-
Mutant huntingtin impairs immune cell migration in Huntington disease
-
Kwan W., et al. Mutant huntingtin impairs immune cell migration in Huntington disease. J. Clin. Invest. 2012, 122:4737-4747.
-
(2012)
J. Clin. Invest.
, vol.122
, pp. 4737-4747
-
-
Kwan, W.1
-
88
-
-
84909609615
-
Characterisation of immune cell function in fragment and full-length Huntington's disease mouse models
-
Trager U., et al. Characterisation of immune cell function in fragment and full-length Huntington's disease mouse models. Neurobiol. Dis. 2014, 73C:388-398.
-
(2014)
Neurobiol. Dis.
, vol.73 C
, pp. 388-398
-
-
Trager, U.1
-
89
-
-
33847759064
-
Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration
-
Qin L., et al. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 2007, 55:453-462.
-
(2007)
Glia
, vol.55
, pp. 453-462
-
-
Qin, L.1
-
90
-
-
84855920796
-
Bone marrow transplantation confers modest benefits in mouse models of Huntington's disease
-
Kwan W., et al. Bone marrow transplantation confers modest benefits in mouse models of Huntington's disease. J. Neurosci. 2012, 32:133-142.
-
(2012)
J. Neurosci.
, vol.32
, pp. 133-142
-
-
Kwan, W.1
-
91
-
-
35748986138
-
Investigation into the role of macrophages in the formation and degradation of beta2-microglobulin amyloid fibrils
-
Morten I.J., et al. Investigation into the role of macrophages in the formation and degradation of beta2-microglobulin amyloid fibrils. J. Biol. Chem. 2007, 282:29691-29700.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 29691-29700
-
-
Morten, I.J.1
-
92
-
-
0036850529
-
Aggregated polyglutamine peptides delivered to nuclei are toxic to mammalian cells
-
Yang W., et al. Aggregated polyglutamine peptides delivered to nuclei are toxic to mammalian cells. Hum. Mol. Genet. 2002, 11:2905-2917.
-
(2002)
Hum. Mol. Genet.
, vol.11
, pp. 2905-2917
-
-
Yang, W.1
-
93
-
-
84904787076
-
Mutant huntingtin is present in neuronal grafts in Huntington's disease patients
-
Cicchetti F., et al. Mutant huntingtin is present in neuronal grafts in Huntington's disease patients. Ann. Neurol. 2014, 1:31-42.
-
(2014)
Ann. Neurol.
, vol.1
, pp. 31-42
-
-
Cicchetti, F.1
-
94
-
-
84905023942
-
Transneuronal propagation of mutant huntingtin contributes to non-cell autonomous pathology in neurons
-
Pecho-Vrieseling E., et al. Transneuronal propagation of mutant huntingtin contributes to non-cell autonomous pathology in neurons. Nat. Neurosci. 2014, 17:1064-1072.
-
(2014)
Nat. Neurosci.
, vol.17
, pp. 1064-1072
-
-
Pecho-Vrieseling, E.1
-
95
-
-
84902996303
-
Neuronal targets for reducing mutant huntingtin expression to ameliorate disease in a mouse model of Huntington's disease
-
Wang N., et al. Neuronal targets for reducing mutant huntingtin expression to ameliorate disease in a mouse model of Huntington's disease. Nat. Med. 2014, 20:536-541.
-
(2014)
Nat. Med.
, vol.20
, pp. 536-541
-
-
Wang, N.1
-
96
-
-
34249864115
-
Pathological cell-cell interactions are necessary for striatal pathogenesis in a conditional mouse model of Huntington's disease
-
Gu X., et al. Pathological cell-cell interactions are necessary for striatal pathogenesis in a conditional mouse model of Huntington's disease. Mol. Neurodegener. 2007, 2:8.
-
(2007)
Mol. Neurodegener.
, vol.2
, pp. 8
-
-
Gu, X.1
-
97
-
-
84872088087
-
Variant of TREM2 associated with the risk of Alzheimer's disease
-
Jonsson T., et al. Variant of TREM2 associated with the risk of Alzheimer's disease. N. Engl. J. Med. 2013, 368:107-116.
-
(2013)
N. Engl. J. Med.
, vol.368
, pp. 107-116
-
-
Jonsson, T.1
-
98
-
-
14244268775
-
Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2
-
Takahashi K., et al. Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J. Exp. Med. 2005, 201:647-657.
-
(2005)
J. Exp. Med.
, vol.201
, pp. 647-657
-
-
Takahashi, K.1
-
99
-
-
84904479732
-
TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis
-
243ra86
-
Kleinberger G., et al. TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Sci. Transl. Med. 2014, 6:243ra86.
-
(2014)
Sci. Transl. Med.
, vol.6
-
-
Kleinberger, G.1
-
100
-
-
84925464993
-
TREM2 lipid sensing sustains the microglial response in an Alzheimer's disease model
-
Wang Y., et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer's disease model. Cell 2015, 160:1061-1071.
-
(2015)
Cell
, vol.160
, pp. 1061-1071
-
-
Wang, Y.1
-
101
-
-
84878433339
-
Alzheimer's disease risk gene CD33 inhibits microglial uptake of amyloid beta
-
Griciuc A., et al. Alzheimer's disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron 2013, 78:631-643.
-
(2013)
Neuron
, vol.78
, pp. 631-643
-
-
Griciuc, A.1
-
102
-
-
84926370173
-
Neuroinflammation in Alzheimer's disease
-
Heneka M.T., et al. Neuroinflammation in Alzheimer's disease. Lancet Neurol. 2015, 14:388-405.
-
(2015)
Lancet Neurol.
, vol.14
, pp. 388-405
-
-
Heneka, M.T.1
-
103
-
-
84897954445
-
Microglial dysfunction in brain aging and Alzheimer's disease
-
Mosher K.I., Wyss-Coray T. Microglial dysfunction in brain aging and Alzheimer's disease. Biochem. Pharmacol. 2014, 88:594-604.
-
(2014)
Biochem. Pharmacol.
, vol.88
, pp. 594-604
-
-
Mosher, K.I.1
Wyss-Coray, T.2
|