메뉴 건너뛰기




Volumn 36, Issue 6, 2015, Pages 364-373

The choreography of neuroinflammation in Huntington's disease

Author keywords

Astrocytes; Huntington's disease; Macrophages; Microglia; Neuroinflammation

Indexed keywords

HUNTINGTIN; CYTOKINE; HTT PROTEIN, HUMAN; NERVE PROTEIN;

EID: 84930822255     PISSN: 14714906     EISSN: 14714981     Source Type: Journal    
DOI: 10.1016/j.it.2015.04.007     Document Type: Review
Times cited : (194)

References (104)
  • 1
    • 77954977618 scopus 로고    scopus 로고
    • Neuroinflammation in Alzheimer's disease: mechanisms, pathologic consequences, and potential for therapeutic manipulation
    • Hensley K. Neuroinflammation in Alzheimer's disease: mechanisms, pathologic consequences, and potential for therapeutic manipulation. J. Alzheimers Dis. 2010, 21:1-14.
    • (2010) J. Alzheimers Dis. , vol.21 , pp. 1-14
    • Hensley, K.1
  • 2
    • 84872168596 scopus 로고    scopus 로고
    • Microglia: scapegoat, saboteur, or something else?
    • Aguzzi A., et al. Microglia: scapegoat, saboteur, or something else?. Science 2013, 339:156-161.
    • (2013) Science , vol.339 , pp. 156-161
    • Aguzzi, A.1
  • 3
    • 2542596183 scopus 로고    scopus 로고
    • Parkinson's disease
    • Samii A., et al. Parkinson's disease. Lancet 2004, 363:1783-1793.
    • (2004) Lancet , vol.363 , pp. 1783-1793
    • Samii, A.1
  • 4
    • 84865468329 scopus 로고    scopus 로고
    • The genetics and neuropathology of Alzheimer's disease
    • Schellenberg G.D., Montine T.J. The genetics and neuropathology of Alzheimer's disease. Acta Neuropathol. 2012, 124:305-323.
    • (2012) Acta Neuropathol. , vol.124 , pp. 305-323
    • Schellenberg, G.D.1    Montine, T.J.2
  • 5
    • 68249112361 scopus 로고    scopus 로고
    • Distinct neuroinflammatory profile in post-mortem human Huntington's disease
    • Silvestroni A., et al. Distinct neuroinflammatory profile in post-mortem human Huntington's disease. Neuroreport 2009, 20:1098-1103.
    • (2009) Neuroreport , vol.20 , pp. 1098-1103
    • Silvestroni, A.1
  • 6
    • 0027480960 scopus 로고
    • A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes
    • MacDonald M.E., et al. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 1993, 72:971-983.
    • (1993) Cell , vol.72 , pp. 971-983
    • MacDonald, M.E.1
  • 7
    • 80052074316 scopus 로고    scopus 로고
    • The role of immunity in Huntington's disease
    • Soulet D., Cicchetti F. The role of immunity in Huntington's disease. Mol. Psychiatry 2011, 16:889-902.
    • (2011) Mol. Psychiatry , vol.16 , pp. 889-902
    • Soulet, D.1    Cicchetti, F.2
  • 8
    • 73749085726 scopus 로고    scopus 로고
    • Altered white matter microstructure in the corpus callosum in Huntington's disease: implications for cortical 'disconnection'
    • Rosas H.D., et al. Altered white matter microstructure in the corpus callosum in Huntington's disease: implications for cortical 'disconnection'. Neuroimage 2009, 49:2995-3004.
    • (2009) Neuroimage , vol.49 , pp. 2995-3004
    • Rosas, H.D.1
  • 9
    • 33750975077 scopus 로고    scopus 로고
    • Clinical correlates of levodopa-induced dopamine release in Parkinson disease: a PET study
    • Pavese N., et al. Clinical correlates of levodopa-induced dopamine release in Parkinson disease: a PET study. Neurology 2006, 67:1612-1617.
    • (2006) Neurology , vol.67 , pp. 1612-1617
    • Pavese, N.1
  • 10
    • 34447636065 scopus 로고    scopus 로고
    • Microglial activation in presymptomatic Huntington's disease gene carriers
    • Tai Y.F., et al. Microglial activation in presymptomatic Huntington's disease gene carriers. Brain 2007, 130:1759-1766.
    • (2007) Brain , vol.130 , pp. 1759-1766
    • Tai, Y.F.1
  • 11
    • 33847788629 scopus 로고    scopus 로고
    • Imaging microglial activation in Huntington's disease
    • Tai Y.F., et al. Imaging microglial activation in Huntington's disease. Brain Res. Bull. 2007, 72:148-151.
    • (2007) Brain Res. Bull. , vol.72 , pp. 148-151
    • Tai, Y.F.1
  • 12
    • 49249089029 scopus 로고    scopus 로고
    • A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington's disease
    • Bjorkqvist M., et al. A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington's disease. J. Exp. Med. 2008, 205:1869-1877.
    • (2008) J. Exp. Med. , vol.205 , pp. 1869-1877
    • Bjorkqvist, M.1
  • 13
    • 0035111235 scopus 로고    scopus 로고
    • Early and progressive accumulation of reactive microglia in the Huntington disease brain
    • Sapp E., et al. Early and progressive accumulation of reactive microglia in the Huntington disease brain. J. Neuropathol. Exp. Neurol. 2001, 60:161-172.
    • (2001) J. Neuropathol. Exp. Neurol. , vol.60 , pp. 161-172
    • Sapp, E.1
  • 14
    • 0021883670 scopus 로고
    • Regional mitochondrial respiratory activity in Huntington's disease brain
    • Brennan W.A., et al. Regional mitochondrial respiratory activity in Huntington's disease brain. J. Neurochem. 1985, 44:1948-1950.
    • (1985) J. Neurochem. , vol.44 , pp. 1948-1950
    • Brennan, W.A.1
  • 15
    • 0032900574 scopus 로고    scopus 로고
    • Biochemical abnormalities and excitotoxicity in Huntington's disease brain
    • Tabrizi S.J., et al. Biochemical abnormalities and excitotoxicity in Huntington's disease brain. Ann. Neurol. 1999, 45:25-32.
    • (1999) Ann. Neurol. , vol.45 , pp. 25-32
    • Tabrizi, S.J.1
  • 16
    • 48449091060 scopus 로고    scopus 로고
    • Proteomic and oxidative stress analysis in human brain samples of Huntington disease
    • Sorolla M.A., et al. Proteomic and oxidative stress analysis in human brain samples of Huntington disease. Free Radic. Biol. Med. 2008, 45:667-678.
    • (2008) Free Radic. Biol. Med. , vol.45 , pp. 667-678
    • Sorolla, M.A.1
  • 17
    • 0030919567 scopus 로고    scopus 로고
    • Oxidative damage and metabolic dysfunction in Huntington's disease: selective vulnerability of the basal ganglia
    • Browne S.E., et al. Oxidative damage and metabolic dysfunction in Huntington's disease: selective vulnerability of the basal ganglia. Ann. Neurol. 1997, 41:646-653.
    • (1997) Ann. Neurol. , vol.41 , pp. 646-653
    • Browne, S.E.1
  • 18
    • 84887224661 scopus 로고    scopus 로고
    • The role of iron imaging in Huntington's disease
    • van den Bogaard S.J., et al. The role of iron imaging in Huntington's disease. Int. Rev. Neurobiol. 2013, 110:241-250.
    • (2013) Int. Rev. Neurobiol. , vol.110 , pp. 241-250
    • van den Bogaard, S.J.1
  • 19
    • 67650095269 scopus 로고    scopus 로고
    • Beyond the brain: widespread pathology in Huntington's disease
    • van der Burg J.M., et al. Beyond the brain: widespread pathology in Huntington's disease. Lancet Neurol. 2009, 8:765-774.
    • (2009) Lancet Neurol. , vol.8 , pp. 765-774
    • van der Burg, J.M.1
  • 20
    • 35448968328 scopus 로고    scopus 로고
    • Analysis of potential transcriptomic biomarkers for Huntington's disease in peripheral blood
    • Runne H., et al. Analysis of potential transcriptomic biomarkers for Huntington's disease in peripheral blood. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:14424-14429.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 14424-14429
    • Runne, H.1
  • 21
    • 34547167008 scopus 로고    scopus 로고
    • Proteomic profiling of plasma in Huntington's disease reveals neuroinflammatory activation and biomarker candidates
    • Dalrymple A., et al. Proteomic profiling of plasma in Huntington's disease reveals neuroinflammatory activation and biomarker candidates. J. Proteome Res. 2007, 6:2833-2840.
    • (2007) J. Proteome Res. , vol.6 , pp. 2833-2840
    • Dalrymple, A.1
  • 22
    • 84918528603 scopus 로고    scopus 로고
    • Plasma inflammatory biomarkers for Huntington's disease patients and mouse model
    • Chang K.H., et al. Plasma inflammatory biomarkers for Huntington's disease patients and mouse model. Brain Behav. Immunity 2015, 44:121-127.
    • (2015) Brain Behav. Immunity , vol.44 , pp. 121-127
    • Chang, K.H.1
  • 23
    • 84855975733 scopus 로고    scopus 로고
    • Abnormal peripheral chemokine profile in Huntington's disease
    • Wild E., et al. Abnormal peripheral chemokine profile in Huntington's disease. PLoS Curr. 2011, 3:1231.
    • (2011) PLoS Curr. , vol.3 , pp. 1231
    • Wild, E.1
  • 24
    • 84865112006 scopus 로고    scopus 로고
    • Oxidative stress and inflammation biomarkers in the blood of patients with Huntington's disease
    • Sanchez-Lopez F., et al. Oxidative stress and inflammation biomarkers in the blood of patients with Huntington's disease. Neurol. Res. 2012, 34:721-724.
    • (2012) Neurol. Res. , vol.34 , pp. 721-724
    • Sanchez-Lopez, F.1
  • 25
    • 85017875833 scopus 로고    scopus 로고
    • JAK/STAT signalling in Huntington's disease immune cells
    • Trager U., et al. JAK/STAT signalling in Huntington's disease immune cells. PLoS Curr. 2014, 5:125-134.
    • (2014) PLoS Curr. , vol.5 , pp. 125-134
    • Trager, U.1
  • 26
    • 84867148826 scopus 로고    scopus 로고
    • Mutant huntingtin fragmentation in immune cells tracks Huntington's disease progression
    • Weiss A., et al. Mutant huntingtin fragmentation in immune cells tracks Huntington's disease progression. J. Clin. Invest. 2012, 122:3731-3736.
    • (2012) J. Clin. Invest. , vol.122 , pp. 3731-3736
    • Weiss, A.1
  • 27
    • 0345830687 scopus 로고    scopus 로고
    • Antigliadin antibodies in Huntington's disease
    • Bushara K.O., et al. Antigliadin antibodies in Huntington's disease. Neurology 2004, 62:132-133.
    • (2004) Neurology , vol.62 , pp. 132-133
    • Bushara, K.O.1
  • 28
    • 84925883980 scopus 로고    scopus 로고
    • Increase of angiotensin II type 1 receptor auto-antibodies in Huntington's disease
    • Lee D.H., et al. Increase of angiotensin II type 1 receptor auto-antibodies in Huntington's disease. Mol. Neurodegener. 2014, 9:49.
    • (2014) Mol. Neurodegener. , vol.9 , pp. 49
    • Lee, D.H.1
  • 29
    • 0025220976 scopus 로고
    • Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain
    • Lawson L.J., et al. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 1990, 39:151-170.
    • (1990) Neuroscience , vol.39 , pp. 151-170
    • Lawson, L.J.1
  • 30
    • 67650966680 scopus 로고    scopus 로고
    • Microglial physiology: unique stimuli, specialized responses
    • Ransohoff R.M., Perry V.H. Microglial physiology: unique stimuli, specialized responses. Annu. Rev. Immunol. 2009, 27:119-145.
    • (2009) Annu. Rev. Immunol. , vol.27 , pp. 119-145
    • Ransohoff, R.M.1    Perry, V.H.2
  • 31
    • 19744380563 scopus 로고    scopus 로고
    • Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo
    • Nimmerjahn A., et al. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005, 308:1314-1318.
    • (2005) Science , vol.308 , pp. 1314-1318
    • Nimmerjahn, A.1
  • 32
    • 77949342162 scopus 로고    scopus 로고
    • Microglia in ischemic brain injury
    • Weinstein J.R., et al. Microglia in ischemic brain injury. Future Neurol. 2010, 5:227-246.
    • (2010) Future Neurol. , vol.5 , pp. 227-246
    • Weinstein, J.R.1
  • 33
    • 35548986304 scopus 로고    scopus 로고
    • Microglia: active sensor and versatile effector cells in the normal and pathologic brain
    • Hanisch U.K., Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci. 2007, 10:1387-1394.
    • (2007) Nat. Neurosci. , vol.10 , pp. 1387-1394
    • Hanisch, U.K.1    Kettenmann, H.2
  • 34
    • 84897405847 scopus 로고    scopus 로고
    • Mutant Huntingtin promotes autonomous microglia activation via myeloid lineage-determining factors
    • Crotti A., et al. Mutant Huntingtin promotes autonomous microglia activation via myeloid lineage-determining factors. Nat. Neurosci. 2014, 4:513-521.
    • (2014) Nat. Neurosci. , vol.4 , pp. 513-521
    • Crotti, A.1
  • 35
    • 81955167911 scopus 로고    scopus 로고
    • Age-dependent neurovascular abnormalities and altered microglial morphology in the YAC128 mouse model of Huntington disease
    • Franciosi S., et al. Age-dependent neurovascular abnormalities and altered microglial morphology in the YAC128 mouse model of Huntington disease. Neurobiol. Dis. 2011, 45:438-449.
    • (2011) Neurobiol. Dis. , vol.45 , pp. 438-449
    • Franciosi, S.1
  • 36
    • 78149360132 scopus 로고    scopus 로고
    • Fate mapping analysis reveals that adult microglia derive from primitive macrophages
    • Ginhoux F., et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010, 330:841-845.
    • (2010) Science , vol.330 , pp. 841-845
    • Ginhoux, F.1
  • 37
    • 84859508307 scopus 로고    scopus 로고
    • A lineage of myeloid cells independent of Myb and hematopoietic stem cells
    • Schulz C., et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 2012, 336:86-90.
    • (2012) Science , vol.336 , pp. 86-90
    • Schulz, C.1
  • 38
    • 84920724792 scopus 로고    scopus 로고
    • Environment drives selection and function of enhancers controlling tissue-specific macrophage identities
    • Gosselin D., et al. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 2014, 159:1327-1340.
    • (2014) Cell , vol.159 , pp. 1327-1340
    • Gosselin, D.1
  • 39
    • 84920724791 scopus 로고    scopus 로고
    • Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment
    • Lavin Y., et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 2014, 159:1312-1326.
    • (2014) Cell , vol.159 , pp. 1312-1326
    • Lavin, Y.1
  • 40
    • 70350697391 scopus 로고    scopus 로고
    • Microglial CB2 cannabinoid receptors are neuroprotective in Huntington's disease excitotoxicity
    • Palazuelos J., et al. Microglial CB2 cannabinoid receptors are neuroprotective in Huntington's disease excitotoxicity. Brain 2009, 132:3152-3164.
    • (2009) Brain , vol.132 , pp. 3152-3164
    • Palazuelos, J.1
  • 41
    • 84871027393 scopus 로고    scopus 로고
    • Cannabinoid receptor 2 signaling in peripheral immune cells modulates disease onset and severity in mouse models of Huntington's disease
    • Bouchard J., et al. Cannabinoid receptor 2 signaling in peripheral immune cells modulates disease onset and severity in mouse models of Huntington's disease. J. Neurosci. 2012, 32:18259-18268.
    • (2012) J. Neurosci. , vol.32 , pp. 18259-18268
    • Bouchard, J.1
  • 42
    • 69649091696 scopus 로고    scopus 로고
    • Cannabinoid CB2 receptor agonists protect the striatum against malonate toxicity: relevance for Huntington's disease
    • Sagredo O., et al. Cannabinoid CB2 receptor agonists protect the striatum against malonate toxicity: relevance for Huntington's disease. Glia 2009, 57:1154-1167.
    • (2009) Glia , vol.57 , pp. 1154-1167
    • Sagredo, O.1
  • 43
    • 84862077856 scopus 로고    scopus 로고
    • Sativex-like combination of phytocannabinoids is neuroprotective in malonate-lesioned rats, an inflammatory model of Huntington's disease: role of CB1 and CB2 receptors
    • Valdeolivas S., et al. Sativex-like combination of phytocannabinoids is neuroprotective in malonate-lesioned rats, an inflammatory model of Huntington's disease: role of CB1 and CB2 receptors. ACS Chem. Neurosci. 2012, 3:400-406.
    • (2012) ACS Chem. Neurosci. , vol.3 , pp. 400-406
    • Valdeolivas, S.1
  • 44
    • 84905994809 scopus 로고    scopus 로고
    • Cannabinoid receptor CB2 is expressed on vascular cells, but not astroglial cells in the post-mortem human Huntington's disease brain
    • Dowie M.J., et al. Cannabinoid receptor CB2 is expressed on vascular cells, but not astroglial cells in the post-mortem human Huntington's disease brain. J. Chem. Neuroanat. 2014, 59-60:62-71.
    • (2014) J. Chem. Neuroanat. , pp. 62-71
    • Dowie, M.J.1
  • 45
    • 0032873347 scopus 로고    scopus 로고
    • Increased complement biosynthesis by microglia and complement activation on neurons in Huntington's disease
    • Singhrao S.K., et al. Increased complement biosynthesis by microglia and complement activation on neurons in Huntington's disease. Exp. Neurol. 1999, 159:362-376.
    • (1999) Exp. Neurol. , vol.159 , pp. 362-376
    • Singhrao, S.K.1
  • 46
    • 84929877921 scopus 로고    scopus 로고
    • Genetic deficiency of complement Component 3 does not alter disease progression in a mouse model of Huntington's disease
    • Larkin P.B., Muchowski P.J. Genetic deficiency of complement Component 3 does not alter disease progression in a mouse model of Huntington's disease. J. Huntingtons Dis. 2012, 1:107-118.
    • (2012) J. Huntingtons Dis. , vol.1 , pp. 107-118
    • Larkin, P.B.1    Muchowski, P.J.2
  • 47
    • 36849076770 scopus 로고    scopus 로고
    • The classical complement cascade mediates CNS synapse elimination
    • Stevens B., et al. The classical complement cascade mediates CNS synapse elimination. Cell 2007, 131:1164-1178.
    • (2007) Cell , vol.131 , pp. 1164-1178
    • Stevens, B.1
  • 48
    • 84861427387 scopus 로고    scopus 로고
    • Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner
    • Schafer D.P., et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 2012, 74:691-705.
    • (2012) Neuron , vol.74 , pp. 691-705
    • Schafer, D.P.1
  • 49
    • 77952403414 scopus 로고    scopus 로고
    • Enhanced synaptic connectivity and epilepsy in C1q knockout mice
    • Chu Y., et al. Enhanced synaptic connectivity and epilepsy in C1q knockout mice. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:7975-7980.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 7975-7980
    • Chu, Y.1
  • 50
    • 84455173005 scopus 로고    scopus 로고
    • In vitro and in vivo aggregation of a fragment of huntingtin protein directly causes free radical production
    • Hands S., et al. In vitro and in vivo aggregation of a fragment of huntingtin protein directly causes free radical production. J. Biol. Chem. 2011, 286:44512-44520.
    • (2011) J. Biol. Chem. , vol.286 , pp. 44512-44520
    • Hands, S.1
  • 51
    • 0036566675 scopus 로고    scopus 로고
    • Heat shock protein 27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused by huntingtin
    • Wyttenbach A., et al. Heat shock protein 27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused by huntingtin. Hum. Mol. Genet. 2002, 11:1137-1151.
    • (2002) Hum. Mol. Genet. , vol.11 , pp. 1137-1151
    • Wyttenbach, A.1
  • 52
    • 79955970952 scopus 로고    scopus 로고
    • Cysteine oxidation within N-terminal mutant huntingtin promotes oligomerization and delays clearance of soluble protein
    • Fox J.H., et al. Cysteine oxidation within N-terminal mutant huntingtin promotes oligomerization and delays clearance of soluble protein. J. Biol. Chem. 2011, 286:18320-18330.
    • (2011) J. Biol. Chem. , vol.286 , pp. 18320-18330
    • Fox, J.H.1
  • 53
    • 33845768784 scopus 로고    scopus 로고
    • Microglia-mediated neurotoxicity: uncovering the molecular mechanisms
    • Block M.L., et al. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat. Rev. Neurosci. 2007, 8:57-69.
    • (2007) Nat. Rev. Neurosci. , vol.8 , pp. 57-69
    • Block, M.L.1
  • 54
    • 4544322045 scopus 로고    scopus 로고
    • Free radicals and aging
    • Barja G. Free radicals and aging. Trends Neurosci. 2004, 27:595-600.
    • (2004) Trends Neurosci. , vol.27 , pp. 595-600
    • Barja, G.1
  • 55
    • 79952585486 scopus 로고    scopus 로고
    • Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington's disease: implications for selective neuronal damage
    • Shirendeb U., et al. Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington's disease: implications for selective neuronal damage. Hum. Mol. Genet. 2011, 20:1438-1455.
    • (2011) Hum. Mol. Genet. , vol.20 , pp. 1438-1455
    • Shirendeb, U.1
  • 56
    • 0034703860 scopus 로고    scopus 로고
    • Huntingtin: an iron-regulated protein essential for normal nuclear and perinuclear organelles
    • Hilditch-Maguire P., et al. Huntingtin: an iron-regulated protein essential for normal nuclear and perinuclear organelles. Hum. Mol. Genet. 2000, 9:2789-2797.
    • (2000) Hum. Mol. Genet. , vol.9 , pp. 2789-2797
    • Hilditch-Maguire, P.1
  • 57
    • 33751080354 scopus 로고    scopus 로고
    • Huntingtin inclusion bodies are iron-dependent centers of oxidative events
    • Firdaus W.J., et al. Huntingtin inclusion bodies are iron-dependent centers of oxidative events. FEBS J. 2006, 273:5428-5441.
    • (2006) FEBS J. , vol.273 , pp. 5428-5441
    • Firdaus, W.J.1
  • 58
    • 34447520021 scopus 로고    scopus 로고
    • Ferritin accumulation in dystrophic microglia is an early event in the development of Huntington's disease
    • Simmons D.A., et al. Ferritin accumulation in dystrophic microglia is an early event in the development of Huntington's disease. Glia 2007, 55:1074-1084.
    • (2007) Glia , vol.55 , pp. 1074-1084
    • Simmons, D.A.1
  • 59
    • 0034941118 scopus 로고    scopus 로고
    • Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease
    • Curtis A.R., et al. Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease. Nat. Genet. 2001, 28:350-354.
    • (2001) Nat. Genet. , vol.28 , pp. 350-354
    • Curtis, A.R.1
  • 60
    • 19444375216 scopus 로고    scopus 로고
    • Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling
    • Rhee S.G., et al. Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic. Biol. Med. 2005, 38:1543-1552.
    • (2005) Free Radic. Biol. Med. , vol.38 , pp. 1543-1552
    • Rhee, S.G.1
  • 61
    • 84885020652 scopus 로고    scopus 로고
    • Glutathione peroxidase activity is neuroprotective in models of Huntington's disease
    • Mason R.P., et al. Glutathione peroxidase activity is neuroprotective in models of Huntington's disease. Nat. Genet. 2013, 45:1249-1254.
    • (2013) Nat. Genet. , vol.45 , pp. 1249-1254
    • Mason, R.P.1
  • 62
    • 76849100874 scopus 로고    scopus 로고
    • Of mice, rats and men: revisiting the quinolinic acid hypothesis of Huntington's disease
    • Schwarcz R., et al. Of mice, rats and men: revisiting the quinolinic acid hypothesis of Huntington's disease. Prog. Neurobiol. 2009, 90:230-245.
    • (2009) Prog. Neurobiol. , vol.90 , pp. 230-245
    • Schwarcz, R.1
  • 63
    • 0025161567 scopus 로고
    • Kynurenine pathway measurements in Huntington's disease striatum: evidence for reduced formation of kynurenic acid
    • Beal M.F., et al. Kynurenine pathway measurements in Huntington's disease striatum: evidence for reduced formation of kynurenic acid. J. Neurochem. 1990, 55:1327-1339.
    • (1990) J. Neurochem. , vol.55 , pp. 1327-1339
    • Beal, M.F.1
  • 64
    • 18144406846 scopus 로고    scopus 로고
    • A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington disease
    • Giorgini F., et al. A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington disease. Nat. Genet. 2005, 37:526-531.
    • (2005) Nat. Genet. , vol.37 , pp. 526-531
    • Giorgini, F.1
  • 65
    • 1042302739 scopus 로고    scopus 로고
    • Expression of the kynurenine pathway enzymes in human microglia and macrophages
    • Guillemin G.J., et al. Expression of the kynurenine pathway enzymes in human microglia and macrophages. Adv. Exp. Med. Biol. 2003, 527:105-112.
    • (2003) Adv. Exp. Med. Biol. , vol.527 , pp. 105-112
    • Guillemin, G.J.1
  • 66
    • 43149110841 scopus 로고    scopus 로고
    • Histone deacetylase inhibition modulates kynurenine pathway activation in yeast, microglia. and mice expressing a mutant huntingtin fragment
    • Giorgini F., et al. Histone deacetylase inhibition modulates kynurenine pathway activation in yeast, microglia. and mice expressing a mutant huntingtin fragment. J. Biol. Chem. 2008, 283:7390-7400.
    • (2008) J. Biol. Chem. , vol.283 , pp. 7390-7400
    • Giorgini, F.1
  • 67
    • 84920374074 scopus 로고    scopus 로고
    • HDAC inhibition imparts beneficial transgenerational effects in Huntington's disease mice via altered DNA and histone methylation
    • Jia H., et al. HDAC inhibition imparts beneficial transgenerational effects in Huntington's disease mice via altered DNA and histone methylation. Proc. Natl. Acad. Sci. U.S.A. 2015, 112:E56-E64.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , pp. E56-E64
    • Jia, H.1
  • 70
    • 63049083734 scopus 로고    scopus 로고
    • A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death
    • Saijo K., et al. A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell 2009, 137:47-59.
    • (2009) Cell , vol.137 , pp. 47-59
    • Saijo, K.1
  • 71
    • 84890547494 scopus 로고    scopus 로고
    • Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways
    • Chung W.S., et al. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 2013, 504:394-400.
    • (2013) Nature , vol.504 , pp. 394-400
    • Chung, W.S.1
  • 72
    • 84858851237 scopus 로고    scopus 로고
    • Engulfing astrocytes protect neurons from contact-induced apoptosis following injury
    • Loov C., et al. Engulfing astrocytes protect neurons from contact-induced apoptosis following injury. PLoS ONE 2012, 7:e33090.
    • (2012) PLoS ONE , vol.7 , pp. e33090
    • Loov, C.1
  • 73
    • 0035164743 scopus 로고    scopus 로고
    • Impaired glutamate uptake in the R6 Huntington's disease transgenic mice
    • Lievens J.C., et al. Impaired glutamate uptake in the R6 Huntington's disease transgenic mice. Neurobiol. Dis. 2001, 8:807-821.
    • (2001) Neurobiol. Dis. , vol.8 , pp. 807-821
    • Lievens, J.C.1
  • 74
    • 29144460321 scopus 로고    scopus 로고
    • Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity
    • Shin J.Y., et al. Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity. J. Cell Biol. 2005, 171:1001-1012.
    • (2005) J. Cell Biol. , vol.171 , pp. 1001-1012
    • Shin, J.Y.1
  • 75
    • 84862835713 scopus 로고    scopus 로고
    • Corticostriatal dysfunction and glutamate transporter 1 (GLT1) in Huntington's disease: interactions between neurons and astrocytes
    • Estrada-Sanchez A.M., Rebec G.V. Corticostriatal dysfunction and glutamate transporter 1 (GLT1) in Huntington's disease: interactions between neurons and astrocytes. Basal Ganglia 2012, 2:57-66.
    • (2012) Basal Ganglia , vol.2 , pp. 57-66
    • Estrada-Sanchez, A.M.1    Rebec, G.V.2
  • 76
    • 76049118058 scopus 로고    scopus 로고
    • Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms
    • Bradford J., et al. Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:22480-22485.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 22480-22485
    • Bradford, J.1
  • 77
    • 41549117229 scopus 로고    scopus 로고
    • Expanded-polyglutamine huntingtin protein suppresses the secretion and production of a chemokine (CCL5/RANTES) by astrocytes
    • Chou S.Y., et al. Expanded-polyglutamine huntingtin protein suppresses the secretion and production of a chemokine (CCL5/RANTES) by astrocytes. J. Neurosci. 2008, 28:3277-3290.
    • (2008) J. Neurosci. , vol.28 , pp. 3277-3290
    • Chou, S.Y.1
  • 78
    • 2942620844 scopus 로고    scopus 로고
    • Dendritic spine pathology and deficits in experience-dependent dendritic plasticity in R6/1 Huntington's disease transgenic mice
    • Spires T.L., et al. Dendritic spine pathology and deficits in experience-dependent dendritic plasticity in R6/1 Huntington's disease transgenic mice. Eur. J. Neurosci. 2004, 19:2799-2807.
    • (2004) Eur. J. Neurosci. , vol.19 , pp. 2799-2807
    • Spires, T.L.1
  • 79
    • 20244376896 scopus 로고    scopus 로고
    • Striatal potassium channel dysfunction in Huntington's disease transgenic mice
    • Ariano M.A., et al. Striatal potassium channel dysfunction in Huntington's disease transgenic mice. J. Neurophysiol. 2005, 93:2565-2574.
    • (2005) J. Neurophysiol. , vol.93 , pp. 2565-2574
    • Ariano, M.A.1
  • 80
    • 84899525577 scopus 로고    scopus 로고
    • Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington's disease model mice
    • Tong X., et al. Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington's disease model mice. Nat. Neurosci. 2014, 5:694-703.
    • (2014) Nat. Neurosci. , vol.5 , pp. 694-703
    • Tong, X.1
  • 81
    • 84875951681 scopus 로고    scopus 로고
    • A critical role of astrocyte-mediated nuclear factor-kappaB-dependent inflammation in Huntington's disease
    • Hsiao H.Y., et al. A critical role of astrocyte-mediated nuclear factor-kappaB-dependent inflammation in Huntington's disease. Hum. Mol. Genet. 2013, 22:1826-1842.
    • (2013) Hum. Mol. Genet. , vol.22 , pp. 1826-1842
    • Hsiao, H.Y.1
  • 82
    • 84904742785 scopus 로고    scopus 로고
    • Inhibition of soluble tumor necrosis factor is therapeutic in Huntington's disease
    • Hsiao H.Y., et al. Inhibition of soluble tumor necrosis factor is therapeutic in Huntington's disease. Hum. Mol. Genet. 2014, 23:4328-4344.
    • (2014) Hum. Mol. Genet. , vol.23 , pp. 4328-4344
    • Hsiao, H.Y.1
  • 83
    • 84901267507 scopus 로고    scopus 로고
    • AAV-dominant negative tumor necrosis factor (DN-TNF) gene transfer to the striatum does not rescue medium spiny neurons in the YAC128 mouse model of Huntington's disease
    • Alto L.T., et al. AAV-dominant negative tumor necrosis factor (DN-TNF) gene transfer to the striatum does not rescue medium spiny neurons in the YAC128 mouse model of Huntington's disease. PLoS ONE 2014, 9:e96544.
    • (2014) PLoS ONE , vol.9 , pp. e96544
    • Alto, L.T.1
  • 84
    • 84922485980 scopus 로고    scopus 로고
    • The JAK/STAT3 pathway is a common inducer of astrocyte reactivity in Alzheimer's and Huntington's diseases
    • Ben Haim L., et al. The JAK/STAT3 pathway is a common inducer of astrocyte reactivity in Alzheimer's and Huntington's diseases. J. Neurosci. 2015, 35:2817-2829.
    • (2015) J. Neurosci. , vol.35 , pp. 2817-2829
    • Ben Haim, L.1
  • 85
    • 84894545327 scopus 로고    scopus 로고
    • HTT-lowering reverses Huntington's disease immune dysfunction caused by NFkappaB pathway dysregulation
    • Trager U., et al. HTT-lowering reverses Huntington's disease immune dysfunction caused by NFkappaB pathway dysregulation. Brain 2014, 137:819-833.
    • (2014) Brain , vol.137 , pp. 819-833
    • Trager, U.1
  • 86
    • 84889986456 scopus 로고    scopus 로고
    • Changes of peripheral TGF-beta1 depend on monocytes-derived macrophages in Huntington disease
    • Di Pardo A., et al. Changes of peripheral TGF-beta1 depend on monocytes-derived macrophages in Huntington disease. Mol. Brain 2013, 6:55.
    • (2013) Mol. Brain , vol.6 , pp. 55
    • Di Pardo, A.1
  • 87
    • 84870534288 scopus 로고    scopus 로고
    • Mutant huntingtin impairs immune cell migration in Huntington disease
    • Kwan W., et al. Mutant huntingtin impairs immune cell migration in Huntington disease. J. Clin. Invest. 2012, 122:4737-4747.
    • (2012) J. Clin. Invest. , vol.122 , pp. 4737-4747
    • Kwan, W.1
  • 88
    • 84909609615 scopus 로고    scopus 로고
    • Characterisation of immune cell function in fragment and full-length Huntington's disease mouse models
    • Trager U., et al. Characterisation of immune cell function in fragment and full-length Huntington's disease mouse models. Neurobiol. Dis. 2014, 73C:388-398.
    • (2014) Neurobiol. Dis. , vol.73 C , pp. 388-398
    • Trager, U.1
  • 89
    • 33847759064 scopus 로고    scopus 로고
    • Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration
    • Qin L., et al. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 2007, 55:453-462.
    • (2007) Glia , vol.55 , pp. 453-462
    • Qin, L.1
  • 90
    • 84855920796 scopus 로고    scopus 로고
    • Bone marrow transplantation confers modest benefits in mouse models of Huntington's disease
    • Kwan W., et al. Bone marrow transplantation confers modest benefits in mouse models of Huntington's disease. J. Neurosci. 2012, 32:133-142.
    • (2012) J. Neurosci. , vol.32 , pp. 133-142
    • Kwan, W.1
  • 91
    • 35748986138 scopus 로고    scopus 로고
    • Investigation into the role of macrophages in the formation and degradation of beta2-microglobulin amyloid fibrils
    • Morten I.J., et al. Investigation into the role of macrophages in the formation and degradation of beta2-microglobulin amyloid fibrils. J. Biol. Chem. 2007, 282:29691-29700.
    • (2007) J. Biol. Chem. , vol.282 , pp. 29691-29700
    • Morten, I.J.1
  • 92
    • 0036850529 scopus 로고    scopus 로고
    • Aggregated polyglutamine peptides delivered to nuclei are toxic to mammalian cells
    • Yang W., et al. Aggregated polyglutamine peptides delivered to nuclei are toxic to mammalian cells. Hum. Mol. Genet. 2002, 11:2905-2917.
    • (2002) Hum. Mol. Genet. , vol.11 , pp. 2905-2917
    • Yang, W.1
  • 93
    • 84904787076 scopus 로고    scopus 로고
    • Mutant huntingtin is present in neuronal grafts in Huntington's disease patients
    • Cicchetti F., et al. Mutant huntingtin is present in neuronal grafts in Huntington's disease patients. Ann. Neurol. 2014, 1:31-42.
    • (2014) Ann. Neurol. , vol.1 , pp. 31-42
    • Cicchetti, F.1
  • 94
    • 84905023942 scopus 로고    scopus 로고
    • Transneuronal propagation of mutant huntingtin contributes to non-cell autonomous pathology in neurons
    • Pecho-Vrieseling E., et al. Transneuronal propagation of mutant huntingtin contributes to non-cell autonomous pathology in neurons. Nat. Neurosci. 2014, 17:1064-1072.
    • (2014) Nat. Neurosci. , vol.17 , pp. 1064-1072
    • Pecho-Vrieseling, E.1
  • 95
    • 84902996303 scopus 로고    scopus 로고
    • Neuronal targets for reducing mutant huntingtin expression to ameliorate disease in a mouse model of Huntington's disease
    • Wang N., et al. Neuronal targets for reducing mutant huntingtin expression to ameliorate disease in a mouse model of Huntington's disease. Nat. Med. 2014, 20:536-541.
    • (2014) Nat. Med. , vol.20 , pp. 536-541
    • Wang, N.1
  • 96
    • 34249864115 scopus 로고    scopus 로고
    • Pathological cell-cell interactions are necessary for striatal pathogenesis in a conditional mouse model of Huntington's disease
    • Gu X., et al. Pathological cell-cell interactions are necessary for striatal pathogenesis in a conditional mouse model of Huntington's disease. Mol. Neurodegener. 2007, 2:8.
    • (2007) Mol. Neurodegener. , vol.2 , pp. 8
    • Gu, X.1
  • 97
    • 84872088087 scopus 로고    scopus 로고
    • Variant of TREM2 associated with the risk of Alzheimer's disease
    • Jonsson T., et al. Variant of TREM2 associated with the risk of Alzheimer's disease. N. Engl. J. Med. 2013, 368:107-116.
    • (2013) N. Engl. J. Med. , vol.368 , pp. 107-116
    • Jonsson, T.1
  • 98
    • 14244268775 scopus 로고    scopus 로고
    • Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2
    • Takahashi K., et al. Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J. Exp. Med. 2005, 201:647-657.
    • (2005) J. Exp. Med. , vol.201 , pp. 647-657
    • Takahashi, K.1
  • 99
    • 84904479732 scopus 로고    scopus 로고
    • TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis
    • 243ra86
    • Kleinberger G., et al. TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Sci. Transl. Med. 2014, 6:243ra86.
    • (2014) Sci. Transl. Med. , vol.6
    • Kleinberger, G.1
  • 100
    • 84925464993 scopus 로고    scopus 로고
    • TREM2 lipid sensing sustains the microglial response in an Alzheimer's disease model
    • Wang Y., et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer's disease model. Cell 2015, 160:1061-1071.
    • (2015) Cell , vol.160 , pp. 1061-1071
    • Wang, Y.1
  • 101
    • 84878433339 scopus 로고    scopus 로고
    • Alzheimer's disease risk gene CD33 inhibits microglial uptake of amyloid beta
    • Griciuc A., et al. Alzheimer's disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron 2013, 78:631-643.
    • (2013) Neuron , vol.78 , pp. 631-643
    • Griciuc, A.1
  • 102
    • 84926370173 scopus 로고    scopus 로고
    • Neuroinflammation in Alzheimer's disease
    • Heneka M.T., et al. Neuroinflammation in Alzheimer's disease. Lancet Neurol. 2015, 14:388-405.
    • (2015) Lancet Neurol. , vol.14 , pp. 388-405
    • Heneka, M.T.1
  • 103
    • 84897954445 scopus 로고    scopus 로고
    • Microglial dysfunction in brain aging and Alzheimer's disease
    • Mosher K.I., Wyss-Coray T. Microglial dysfunction in brain aging and Alzheimer's disease. Biochem. Pharmacol. 2014, 88:594-604.
    • (2014) Biochem. Pharmacol. , vol.88 , pp. 594-604
    • Mosher, K.I.1    Wyss-Coray, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.