-
1
-
-
0037019586
-
Relationship between obesity, insulin resistance, and coronary heart disease risk
-
Abbasi F, Brown BW Jr, Lamendola C, McLaughlin T, Reaven GM. Relationship between obesity, insulin resistance, and coronary heart disease risk. J Am Coll Cardiol. 2002;40:937-943.
-
(2002)
J Am Coll Cardiol
, vol.40
, pp. 937-943
-
-
Abbasi, F.1
Brown, B.W.2
Lamendola, C.3
McLaughlin, T.4
Reaven, G.M.5
-
2
-
-
46249093117
-
Overproduction of very low-density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome
-
Adiels M, Olofsson SO, Taskinen MR, Boren J. Overproduction of very low-density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome. Arterioscler Thromb Vasc Biol. 2008;28:1225-1236.
-
(2008)
Arterioscler Thromb Vasc Biol
, vol.28
, pp. 1225-1236
-
-
Adiels, M.1
Olofsson, S.O.2
Taskinen, M.R.3
Boren, J.4
-
3
-
-
40749137040
-
Fatty liver, insulin resistance, and dyslipidemia
-
Adiels M, Taskinen MR, Boren J. Fatty liver, insulin resistance, and dyslipidemia. Curr Diab Rep. 2008;8:60-64.
-
(2008)
Curr Diab Rep
, vol.8
, pp. 60-64
-
-
Adiels, M.1
Taskinen, M.R.2
Boren, J.3
-
4
-
-
70350245011
-
Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity
-
Alberti KG, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009;120:1640-1645.
-
(2009)
Circulation
, vol.120
, pp. 1640-1645
-
-
Alberti, K.G.1
Eckel, R.H.2
Grundy, S.M.3
-
5
-
-
20044368479
-
Inhibition of microsomal triglyceride transfer protein expression and apolipo-protein B100 secretion by the citrus flavonoid naringenin and by insulin involves activation of the mitogen-activated protein kinase pathway in hepatocytes
-
Allister EM, Borradaile NM, Edwards JY, Huff MW. Inhibition of microsomal triglyceride transfer protein expression and apolipo-protein B100 secretion by the citrus flavonoid naringenin and by insulin involves activation of the mitogen-activated protein kinase pathway in hepatocytes. Diabetes. 2005;54:1676-1683.
-
(2005)
Diabetes
, vol.54
, pp. 1676-1683
-
-
Allister, E.M.1
Borradaile, N.M.2
Edwards, J.Y.3
Huff, M.W.4
-
6
-
-
67049138804
-
Inhibition of apoB secretion from HepG2 cells by insulin is amplified by naringenin, independent of the insulin receptor
-
Allister EM, Mulvihill EE, Barrett PH, Edwards JY, Carter LP, Huff MW. Inhibition of apoB secretion from HepG2 cells by insulin is amplified by naringenin, independent of the insulin receptor. J Lipid Res. 2008;49:2218-2229.
-
(2008)
J Lipid Res
, vol.49
, pp. 2218-2229
-
-
Allister, E.M.1
Mulvihill, E.E.2
Barrett, P.H.3
Edwards, J.Y.4
Carter, L.P.5
Huff, M.W.6
-
7
-
-
0033043969
-
Regulation of HepG2 cell apolipoprotein B metabolism by the citrus flavanones hesperetin and naringenin
-
Borradaile NM, Carroll KK, Kurowska EM. Regulation of HepG2 cell apolipoprotein B metabolism by the citrus flavanones hesperetin and naringenin. Lipids. 1999;34:591-598.
-
(1999)
Lipids
, vol.34
, pp. 591-598
-
-
Borradaile, N.M.1
Carroll, K.K.2
Kurowska, E.M.3
-
8
-
-
0037432066
-
Hepatocyte apoB-containing lipoprotein secretion is decreased by the grapefruit flavonoid, naringenin, via inhibition of MTP-mediated microsomal triglyceride accumulation
-
Borradaile NM, de Dreu LE, Barrett PH, Behrsin CD, Huff MW. Hepatocyte apoB-containing lipoprotein secretion is decreased by the grapefruit flavonoid, naringenin, via inhibition of MTP-mediated microsomal triglyceride accumulation. Biochemistry. 2003;42:1283-1291.
-
(2003)
Biochemistry
, vol.42
, pp. 1283-1291
-
-
Borradaile, N.M.1
De Dreu, L.E.2
Barrett, P.H.3
Behrsin, C.D.4
Huff, M.W.5
-
9
-
-
0036740573
-
Inhibition of hepatocyte apoB secretion by naringenin: Enhanced rapid intracellular degradation independent of reduced microsomal cholesteryl esters
-
Borradaile NM, de Dreu LE, Barrett PH, Huff MW. Inhibition of hepatocyte apoB secretion by naringenin: enhanced rapid intracellular degradation independent of reduced microsomal cholesteryl esters. J Lipid Res. 2002;43:1544-1554.
-
(2002)
J Lipid Res
, vol.43
, pp. 1544-1554
-
-
Borradaile, N.M.1
De Dreu, L.E.2
Barrett, P.H.3
Huff, M.W.4
-
10
-
-
0141643289
-
Inhibition of net HepG2 cell apolipoprotein B secretion by the citrus flavonoid naringenin involves activation of phosphatidylinositol 3-kinase, independent of insulin receptor substrate-1 phosphorylation
-
Borradaile NM, de Dreu LE, Huff MW. Inhibition of net HepG2 cell apolipoprotein B secretion by the citrus flavonoid naringenin involves activation of phosphatidylinositol 3-kinase, independent of insulin receptor substrate-1 phosphorylation. Diabetes. 2003;52:2554-2561.
-
(2003)
Diabetes
, vol.52
, pp. 2554-2561
-
-
Borradaile, N.M.1
De Dreu, L.E.2
Huff, M.W.3
-
12
-
-
70349651441
-
Naringenin prevents dyslipidemia, apolipoprotein B overproduction, and hyperinsulin-emia in LDL receptor-null mice with diet-induced insulin resistance
-
Mulvihill EE, Allister EM, Sutherland BG, et al. Naringenin prevents dyslipidemia, apolipoprotein B overproduction, and hyperinsulin-emia in LDL receptor-null mice with diet-induced insulin resistance. Diabetes. 2009;58:2198-2210.
-
(2009)
Diabetes
, vol.58
, pp. 2198-2210
-
-
Mulvihill, E.E.1
Allister, E.M.2
Sutherland, B.G.3
-
13
-
-
77950914240
-
Naringenin decreases progression of atherosclerosis by improving dyslipidemia in highfat-fed low-density lipoprotein receptor-null mice
-
Mulvihill EE, Assini JM, Sutherland BG, et al. Naringenin decreases progression of atherosclerosis by improving dyslipidemia in highfat-fed low-density lipoprotein receptor-null mice. Arterioscler Thromb Vasc Biol. 2010;30:742-748.
-
(2010)
Arterioscler Thromb Vasc Biol
, vol.30
, pp. 742-748
-
-
Mulvihill, E.E.1
Assini, J.M.2
Sutherland, B.G.3
-
14
-
-
84862299874
-
Protection from metabolic dysregulation, obesity, and atherosclerosis by citrus flavonoids: Activation of hepatic PGC1α-mediated fatty acid oxidation
-
Mulvihill EE, Huff MW. Protection from metabolic dysregulation, obesity, and atherosclerosis by citrus flavonoids: activation of hepatic PGC1α-mediated fatty acid oxidation. PPAR Res. 2012;2012:857142.
-
(2012)
PPAR Res
, vol.2012
-
-
Mulvihill, E.E.1
Huff, M.W.2
-
15
-
-
78851469588
-
Effect of resveratrol on fat mobilization
-
Baile CA, Yang JY, Rayalam S, et al. Effect of resveratrol on fat mobilization. Ann NY Acad Sci. 2011;1215:40-47.
-
(2011)
Ann NY Acad Sci
, vol.1215
, pp. 40-47
-
-
Baile, C.A.1
Yang, J.Y.2
Rayalam, S.3
-
16
-
-
34249686631
-
Endocrine regulation of the fasting response by PPARα-mediated induction of fibroblast growth factor 21
-
Inagaki T, Dutchak P, Zhao G, et al. Endocrine regulation of the fasting response by PPARα-mediated induction of fibroblast growth factor 21. Cell Metab. 2007;5:415-425.
-
(2007)
Cell Metab
, vol.5
, pp. 415-425
-
-
Inagaki, T.1
Dutchak, P.2
Zhao, G.3
-
17
-
-
48349127924
-
The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARα activation in man
-
Galman C, Lundasen T, Kharitonenkov A, et al. The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARα activation in man. Cell Metab. 2008;8:169-174.
-
(2008)
Cell Metab
, vol.8
, pp. 169-174
-
-
Galman, C.1
Lundasen, T.2
Kharitonenkov, A.3
-
18
-
-
34249711964
-
Hepatic fibroblast growth factor 21 is regulated by PPARα and is a key mediator of hepatic lipid metabolism in ketotic states
-
Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E. Hepatic fibroblast growth factor 21 is regulated by PPARα and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab. 2007;5:426-437.
-
(2007)
Cell Metab
, vol.5
, pp. 426-437
-
-
Badman, M.K.1
Pissios, P.2
Kennedy, A.R.3
Koukos, G.4
Flier, J.S.5
Maratos-Flier, E.6
-
19
-
-
84907015381
-
FGF21 is an endocrine signal of protein restriction
-
Laeger T, Henagan TM, Albarado DC, Redman LM, Bray GA, Noland RC, Munzberg H, Hutson SM, Gettys TW, Schwartz MW, Morrison CD. FGF21 is an endocrine signal of protein restriction. J Clin Invest. 2014;124:3913-3922.
-
(2014)
J Clin Invest
, vol.124
, pp. 3913-3922
-
-
Laeger, T.1
Henagan, T.M.2
Albarado, D.C.3
Redman, L.M.4
Bray, G.A.5
Noland, R.C.6
Munzberg, H.7
Hutson, S.M.8
Gettys, T.W.9
Schwartz, M.W.10
Morrison, C.D.11
-
21
-
-
34247565954
-
Molecular insights into the klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members
-
Goetz R, Beenken A, Ibrahimi OA, et al. Molecular insights into the klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members. Mol Cell Biol. 2007;27:3417-3428.
-
(2007)
Mol Cell Biol
, vol.27
, pp. 3417-3428
-
-
Goetz, R.1
Beenken, A.2
Ibrahimi, O.A.3
-
22
-
-
39149091423
-
FGF-21/FGF-21 receptor interaction and activation is determined by βKlotho
-
Kharitonenkov A, Dunbar JD, Bina HA, et al. FGF-21/FGF-21 receptor interaction and activation is determined by βKlotho. J Cell Physiol. 2008;215:1-7.
-
(2008)
J Cell Physiol
, vol.215
, pp. 1-7
-
-
Kharitonenkov, A.1
Dunbar, J.D.2
Bina, H.A.3
-
23
-
-
34848869695
-
Tissue-specific expression of βKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21
-
Kurosu H, Choi M, Ogawa Y, et al. 2007 Tissue-specific expression of βKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J Biol Chem. 282:26687-26695.
-
(2007)
J Biol Chem
, vol.282
, pp. 26687-26695
-
-
Kurosu, H.1
Choi, M.2
Ogawa, Y.3
-
24
-
-
34249697012
-
βKlotho is required for metabolic activity of fibroblast growth factor 21
-
Ogawa Y, Kurosu H, Yamamoto M, et al. βKlotho is required for metabolic activity of fibroblast growth factor 21. Proc Natl Acad Sci USA. 2007;104:7432-7437.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 7432-7437
-
-
Ogawa, Y.1
Kurosu, H.2
Yamamoto, M.3
-
25
-
-
41649109108
-
βKlotho is required for fibroblast growth factor (FGF) 21 signaling through FGF receptor (FGFR) 1c and FGFR3c
-
Suzuki M, Uehara Y, Motomura-Matsuzaka K, et al. βKlotho is required for fibroblast growth factor (FGF) 21 signaling through FGF receptor (FGFR) 1c and FGFR3c. Mol Endocrinol. 2008;22:1006-1014.
-
(2008)
Mol Endocrinol
, vol.22
, pp. 1006-1014
-
-
Suzuki, M.1
Uehara, Y.2
Motomura-Matsuzaka, K.3
-
26
-
-
76549112800
-
Relevant use of Klotho in FGF19 subfamily signaling system in vivo
-
Tomiyama K, Maeda R, Urakawa I, et al. Relevant use of Klotho in FGF19 subfamily signaling system in vivo. Proc Natl Acad Sci USA. 2010;107:1666-1671.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 1666-1671
-
-
Tomiyama, K.1
Maeda, R.2
Urakawa, I.3
-
27
-
-
57349098220
-
Fibroblast growth factor 21 corrects obesity in mice
-
Coskun T, Bina HA, Schneider MA, et al. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology. 2008;149:6018-6027.
-
(2008)
Endocrinology
, vol.149
, pp. 6018-6027
-
-
Coskun, T.1
Bina, H.A.2
Schneider, M.A.3
-
28
-
-
67649823642
-
FGF21 induces PGC-1α and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response
-
Potthoff MJ, Inagaki T, Satapati S, et al. FGF21 induces PGC-1α and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc Natl Acad Sci USA. 2009;106:10853-10858.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, pp. 10853-10858
-
-
Potthoff, M.J.1
Inagaki, T.2
Satapati, S.3
-
29
-
-
79960726293
-
Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo
-
Fisher FM, Estall JL, Adams AC, et al. Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo. Endocrinology. 2011;152:2996-3004.
-
(2011)
Endocrinology
, vol.152
, pp. 2996-3004
-
-
Fisher, F.M.1
Estall, J.L.2
Adams, A.C.3
-
30
-
-
79960844094
-
The link between fibroblast growth factor 21 and sterol regulatory element binding protein 1c during lipogenesis in hepatocytes
-
Zhang Y, Lei T, Huang JF, et al. The link between fibroblast growth factor 21 and sterol regulatory element binding protein 1c during lipogenesis in hepatocytes. Mol Cell Endocrinol. 2011;342:41-47.
-
(2011)
Mol Cell Endocrinol
, vol.342
, pp. 41-47
-
-
Zhang, Y.1
Lei, T.2
Huang, J.F.3
-
31
-
-
61649127208
-
Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice
-
Xu J, Lloyd DJ, Hale C, et al. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes. 2009;58:250-259.
-
(2009)
Diabetes
, vol.58
, pp. 250-259
-
-
Xu, J.1
Lloyd, D.J.2
Hale, C.3
-
32
-
-
70350455732
-
Acute glucose-lowering and insulin-sensitizing action of FGF21 in insulin-resistant mouse models-association with liver and adipose tissue effects
-
Xu J, Stanislaus S, Chinookoswong N, et al. Acute glucose-lowering and insulin-sensitizing action of FGF21 in insulin-resistant mouse models-association with liver and adipose tissue effects. Am J Physiol Endocrinol Metab. 2009;297:E1105-E1114.
-
(2009)
Am J Physiol Endocrinol Metab
, vol.297
, pp. E1105-E1114
-
-
Xu, J.1
Stanislaus, S.2
Chinookoswong, N.3
-
33
-
-
84865442538
-
Long-acting FGF21 has enhanced efficacy in diet-induced obese mice and in obese rhesus monkeys
-
Veniant MM, Komorowski R, Chen P, et al. Long-acting FGF21 has enhanced efficacy in diet-induced obese mice and in obese rhesus monkeys. Endocrinology. 2012;153:4192-4203.
-
(2012)
Endocrinology
, vol.153
, pp. 4192-4203
-
-
Veniant, M.M.1
Komorowski, R.2
Chen, P.3
-
35
-
-
84881508008
-
The starvation hormone, fibroblast growth factor-21, extends life span in mice
-
Zhang Y, Xie Y, Berglund ED, et al. The starvation hormone, fibroblast growth factor-21, extends life span in mice. Elife. 2012;1:e00065.
-
(2012)
Elife
, vol.1
-
-
Zhang, Y.1
Xie, Y.2
Berglund, E.D.3
-
36
-
-
70350322694
-
Fibroblast growth factor 21-deficient mice demonstrate impaired adaptation to ketosis
-
Badman MK, Koester A, Flier JS, Kharitonenkov A, Maratos-Flier E. Fibroblast growth factor 21-deficient mice demonstrate impaired adaptation to ketosis. Endocrinology. 2009;150:4931-4940.
-
(2009)
Endocrinology
, vol.150
, pp. 4931-4940
-
-
Badman, M.K.1
Koester, A.2
Flier, J.S.3
Kharitonenkov, A.4
Maratos-Flier, E.5
-
37
-
-
70350093621
-
Fibroblast growth factor 21 reduces the severity of cerulein-induced pancreatitis in mice
-
Johnson CL, Weston JY, Chadi SA, et al. Fibroblast growth factor 21 reduces the severity of cerulein-induced pancreatitis in mice. Gastroenterology. 2009;137:1795-1804.
-
(2009)
Gastroenterology
, vol.137
, pp. 1795-1804
-
-
Johnson, C.L.1
Weston, J.Y.2
Chadi, S.A.3
-
38
-
-
79959389136
-
Nobiletin attenuates VLDL overproduction, dyslipidemia, and atherosclerosis in mice with diet-induced insulin resistance
-
Mulvihill EE, Assini JM, Lee JK, et al. Nobiletin attenuates VLDL overproduction, dyslipidemia, and atherosclerosis in mice with diet-induced insulin resistance. Diabetes. 2011;60:1446-1457.
-
(2011)
Diabetes
, vol.60
, pp. 1446-1457
-
-
Mulvihill, E.E.1
Assini, J.M.2
Lee, J.K.3
-
39
-
-
78149299473
-
Rapid in vivo whole body composition of rats using cone beam μCT
-
Granton PV, Norley CJ, Umoh J, et al. Rapid in vivo whole body composition of rats using cone beam μCT. J Appl Physiol. 2010;109:1162-1169.
-
(2010)
J Appl Physiol
, vol.109
, pp. 1162-1169
-
-
Granton, P.V.1
Norley, C.J.2
Umoh, J.3
-
40
-
-
57849127155
-
In vivo quantification of subcutaneous and visceral adiposity by micro-computed tomography in a small animal model
-
Luu YK, Lublinsky S, Ozcivici E, et al. In vivo quantification of subcutaneous and visceral adiposity by micro-computed tomography in a small animal model. Med Eng Phys. 2009;31:34-41.
-
(2009)
Med Eng Phys
, vol.31
, pp. 34-41
-
-
Luu, Y.K.1
Lublinsky, S.2
Ozcivici, E.3
-
41
-
-
70349324370
-
Fibroblast growth factor 21 regulates lipolysis in white adipose tissue but is not required for ketogenesis and triglyceride clearance in liver
-
Hotta Y, Nakamura H, Konishi M, et al. Fibroblast growth factor 21 regulates lipolysis in white adipose tissue but is not required for ketogenesis and triglyceride clearance in liver. Endocrinology. 2009;150:4625-4633.
-
(2009)
Endocrinology
, vol.150
, pp. 4625-4633
-
-
Hotta, Y.1
Nakamura, H.2
Konishi, M.3
-
42
-
-
84877272187
-
An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice
-
Holland WL, Adams AC, Brozinick JT, et al. An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice. Cell Metab. 2013;17:790-797.
-
(2013)
Cell Metab
, vol.17
, pp. 790-797
-
-
Holland, W.L.1
Adams, A.C.2
Brozinick, J.T.3
-
43
-
-
59749094309
-
Impact of increased adipose tissue mass on inflammation, insulin resistance, and dyslipidemia
-
Gutierrez DA, Puglisi MJ, Hasty AH. Impact of increased adipose tissue mass on inflammation, insulin resistance, and dyslipidemia. Curr Diab Rep. 2009;9:26-32.
-
(2009)
Curr Diab Rep
, vol.9
, pp. 26-32
-
-
Gutierrez, D.A.1
Puglisi, M.J.2
Hasty, A.H.3
-
44
-
-
84863012022
-
FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis
-
Fisher FM, Kleiner S, Douris N, et al. FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 2012;26:271-281.
-
(2012)
Genes Dev
, vol.26
, pp. 271-281
-
-
Fisher, F.M.1
Kleiner, S.2
Douris, N.3
-
45
-
-
84921921537
-
ATGL-catalyzed lipolysis regulates SIRT1 to control PGC-1α/PPAR-α signaling
-
Khan SA, Sathyanarayan A, Mashek MT, Ong KT, Wollaston-Hayden EE, Mashek DG. ATGL-catalyzed lipolysis regulates SIRT1 to control PGC-1α/PPAR-α signaling. Diabetes. 2015;64:418-426.
-
(2015)
Diabetes
, vol.64
, pp. 418-426
-
-
Khan, S.A.1
Sathyanarayan, A.2
Mashek, M.T.3
Ong, K.T.4
Wollaston-Hayden, E.E.5
Mashek, D.G.6
-
46
-
-
84899573610
-
Hepatic ATGL mediates PPAR-α signaling and fatty acid channeling through an L-FABP independent mechanism
-
Ong KT, Mashek MT, Davidson NO, Mashek DG. Hepatic ATGL mediates PPAR-α signaling and fatty acid channeling through an L-FABP independent mechanism. J Lipid Res. 2014;55:808-815.
-
(2014)
J Lipid Res
, vol.55
, pp. 808-815
-
-
Ong, K.T.1
Mashek, M.T.2
Davidson, N.O.3
Mashek, D.G.4
-
47
-
-
34249799917
-
The physiology of obese-hyperglycemic mice [ob/ob mice]
-
Lindstrom P. The physiology of obese-hyperglycemic mice [ob/ob mice]. ScientificWorldJournal. 2007;7:666-685.
-
(2007)
ScientificWorldJournal
, vol.7
, pp. 666-685
-
-
Lindstrom, P.1
-
48
-
-
84883260199
-
Fibroblast growth factor 21 is not required for the antidiabetic actions of the thiazoladinediones
-
Adams AC, Coskun T, Cheng CC, O Farrell LS, Dubois SL, Kharitonenkov A. Fibroblast growth factor 21 is not required for the antidiabetic actions of the thiazoladinediones. Mol Metab. 2013;2:205-214.
-
(2013)
Mol Metab
, vol.2
, pp. 205-214
-
-
Adams, A.C.1
Coskun, T.2
Cheng, C.C.3
OFarrell, L.S.4
Dubois, S.L.5
Kharitonenkov, A.6
-
49
-
-
33846970555
-
Metabolic syndrome: A multiplex cardiovascular risk factor
-
Grundy SM. Metabolic syndrome: a multiplex cardiovascular risk factor. J Clin Endocrinol Metab. 2007;92:399-404.
-
(2007)
J Clin Endocrinol Metab
, vol.92
, pp. 399-404
-
-
Grundy, S.M.1
-
50
-
-
0036300137
-
Increased lipolysis and decreased leptin production by human omental as compared with subcutaneous preadipocytes
-
van Harmelen V, Dicker A, Ryden M, et al. Increased lipolysis and decreased leptin production by human omental as compared with subcutaneous preadipocytes. Diabetes. 2002;51:2029-2036.
-
(2002)
Diabetes
, vol.51
, pp. 2029-2036
-
-
Van Harmelen, V.1
Dicker, A.2
Ryden, M.3
-
51
-
-
2942741295
-
The case of visceral fat: Argument for the defense
-
Klein S. The case of visceral fat: argument for the defense. J Clin Invest. 2004;113:1530-1532.
-
(2004)
J Clin Invest
, vol.113
, pp. 1530-1532
-
-
Klein, S.1
-
52
-
-
85047690933
-
Splanchnic lipolysis in human obesity
-
Nielsen S, Guo Z, Johnson CM, Hensrud DD, Jensen MD. Splanchnic lipolysis in human obesity. J Clin Invest. 2004;113:1582-1588.
-
(2004)
J Clin Invest
, vol.113
, pp. 1582-1588
-
-
Nielsen, S.1
Guo, Z.2
Johnson, C.M.3
Hensrud, D.D.4
Jensen, M.D.5
-
53
-
-
37449020075
-
Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance
-
Koves TR, Ussher JR, Noland RC, et al. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab. 2008;7:45-56.
-
(2008)
Cell Metab
, vol.7
, pp. 45-56
-
-
Koves, T.R.1
Ussher, J.R.2
Noland, R.C.3
-
54
-
-
0345086474
-
Free fatty acid-induced insulin resistance is associated with activation of protein kinase C θ and alterations in the insulin signaling cascade
-
Griffin ME, Marcucci MJ, Cline GW, et al. Free fatty acid-induced insulin resistance is associated with activation of protein kinase C θ and alterations in the insulin signaling cascade. Diabetes. 1999;48:1270-1274.
-
(1999)
Diabetes
, vol.48
, pp. 1270-1274
-
-
Griffin, M.E.1
Marcucci, M.J.2
Cline, G.W.3
-
55
-
-
84897109882
-
Inventing new medicines: The FGF21 story
-
Kharitonenkov A, Adams AC. Inventing new medicines: the FGF21 story. Mol Metab. 2014;3:221-229.
-
(2014)
Mol Metab
, vol.3
, pp. 221-229
-
-
Kharitonenkov, A.1
Adams, A.C.2
-
56
-
-
84863012459
-
Fibroblast growth factor-21 regulates PPARγ activity and the antidiabetic actions of thiazolidinediones
-
Dutchak PA, Katafuchi T, Bookout AL, et al. Fibroblast growth factor-21 regulates PPARγ activity and the antidiabetic actions of thiazolidinediones. Cell. 2012;148:556-567.
-
(2012)
Cell
, vol.148
, pp. 556-567
-
-
Dutchak, P.A.1
Katafuchi, T.2
Bookout, A.L.3
-
57
-
-
84877260638
-
Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice
-
Lin Z, Tian H, Lam KS, et al. Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab. 2013;17:779-789.
-
(2013)
Cell Metab
, vol.17
, pp. 779-789
-
-
Lin, Z.1
Tian, H.2
Lam, K.S.3
-
58
-
-
84908018672
-
FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss
-
Owen BM, Ding X, Morgan DA, et al. FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab. 2014;20:670-6077.
-
(2014)
Cell Metab
, vol.20
, pp. 670-6077
-
-
Owen, B.M.1
Ding, X.2
Morgan, D.A.3
-
60
-
-
18344394556
-
Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity
-
Tomlinson E, Fu L, John L, et al. Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. Endocrinology. 2002;143:1741-1747.
-
(2002)
Endocrinology
, vol.143
, pp. 1741-1747
-
-
Tomlinson, E.1
Fu, L.2
John, L.3
-
61
-
-
2542505481
-
Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes
-
Fu L, John LM, Adams SH, et al. Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes. Endocrinology. 2004;145:2594-2603.
-
(2004)
Endocrinology
, vol.145
, pp. 2594-2603
-
-
Fu, L.1
John, L.M.2
Adams, S.H.3
|