메뉴 건너뛰기




Volumn 9781597452908, Issue , 2012, Pages 1-635

Introduction to data mining for the life sciences

(1)  Sullivan, Rob a  

a NONE   (United States)

Author keywords

[No Author keywords available]

Indexed keywords

PATTERN RECOGNITION;

EID: 84930035933     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1007/978-1-59745-290-8     Document Type: Book
Times cited : (18)

References (439)
  • 4
    • 0001771370 scopus 로고    scopus 로고
    • From hypertention to angina to Viagra
    • 33-34, 36, 38
    • Kling J (1998) From hypertention to angina to Viagra. Mod Drug Discov 1:31, 33-34, 36, 38
    • (1998) Mod Drug Discov , vol.1 , pp. 31
    • Kling, J.1
  • 14
    • 0000135489 scopus 로고
    • Simulation of biological cell sorting using a two-dimensional extended Potts model
    • Graner F, Glazier JA (1992) Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys Rev Lett 69:2014-2016
    • (1992) Phys Rev Lett , vol.69 , pp. 2014-2016
    • Graner, F.1    Glazier, J.A.2
  • 17
    • 0035401757 scopus 로고    scopus 로고
    • Local feature selection with dynamic integration of classifiers
    • Puuronen S, Tsymbal A (2001) Local feature selection with dynamic integration of classifiers. Fundam Inform 47:91-117
    • (2001) Fundam Inform , vol.47 , pp. 91-117
    • Puuronen, S.1    Tsymbal, A.2
  • 18
    • 33845432604 scopus 로고
    • Probabilistic algorithm for testing primality
    • Rabin MO (1980) Probabilistic algorithm for testing primality. J Number Theory 12:128-138
    • (1980) J Number Theory , vol.12 , pp. 128-138
    • Rabin, M.O.1
  • 25
    • 77955397866 scopus 로고    scopus 로고
    • Local-learning-based feature selection for high-dimensional data analysis
    • Yijun S (2010) Local-learning-based feature selection for high-dimensional data analysis. IEEE Trans Pattern Anal Mach Intell 32:1610-1626
    • (2010) IEEE Trans Pattern Anal Mach Intell , vol.32 , pp. 1610-1626
    • Yijun, S.1
  • 30
    • 0014797273 scopus 로고
    • A relational model of data for large shared data banks
    • Codd EF (1970) A relational model of data for large shared data banks. Commun ACM 13:377-387
    • (1970) Commun ACM , vol.13 , pp. 377-387
    • Codd, E.F.1
  • 31
    • 75749095148 scopus 로고    scopus 로고
    • New challenges for biological text-mining in the next decade
    • Dai H-J et al (2010) New challenges for biological text-mining in the next decade. J Comput Sci Technol 25:169-179
    • (2010) J Comput Sci Technol , vol.25 , pp. 169-179
    • Dai, H.-J.1
  • 36
    • 84930021700 scopus 로고    scopus 로고
    • Multiscale integration of brain data: New insights into glial architecture in health and disease
    • Berkeley, USA
    • Martone ME (2007) Multiscale integration of brain data: new insights into glial architecture in health and disease. In: Gulliver multiscale bioimaging workshop, Berkeley, USA
    • (2007) Gulliver Multiscale Bioimaging Workshop
    • Martone, M.E.1
  • 37
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using EM
    • Nigam K et al (2000) Text classification from labeled and unlabeled documents using EM. Mach Learn 39:103-134
    • (2000) Mach Learn , vol.39 , pp. 103-134
    • Nigam, K.1
  • 38
    • 44649178742 scopus 로고    scopus 로고
    • New challenges for text mining: Mapping between text and manually curated pathways
    • Oda K et al (2008) New challenges for text mining: mapping between text and manually curated pathways. BMC Bioinformatics 9:S5
    • (2008) BMC Bioinformatics , vol.9 , pp. S5
    • Oda, K.1
  • 40
    • 0031125707 scopus 로고    scopus 로고
    • An interactive system for finding complementary literatures: A stimulus to scientific discovery
    • Swanson DR, Smalheiser NR (1997) An interactive system for finding complementary literatures: a stimulus to scientific discovery. Artif Intell 91:183-203
    • (1997) Artif Intell , vol.91 , pp. 183-203
    • Swanson, D.R.1    Smalheiser, N.R.2
  • 42
    • 85011032473 scopus 로고    scopus 로고
    • DataScope: Viewing database contents in Google Maps' way
    • VLDB Endowment, Vienna, Austria
    • Wu T et al (2007) DataScope: viewing database contents in Google Maps' way. In: Proceedings of the 33rd international conference on very large data bases. VLDB Endowment, Vienna, Austria, pp 1314-1317
    • (2007) Proceedings of the 33rd International Conference on Very Large Data Bases , pp. 1314-1317
    • Wu, T.1
  • 46
    • 1642317557 scopus 로고    scopus 로고
    • Gene expression profile of adult T-cell acute lymphocytic leukemia identifies distinct subsets of patients with different response to therapy and survival
    • Chiaretti S et al (2004) Gene expression profile of adult T-cell acute lymphocytic leukemia identifies distinct subsets of patients with different response to therapy and survival. Blood 103:2771-2778
    • (2004) Blood , vol.103 , pp. 2771-2778
    • Chiaretti, S.1
  • 47
    • 28744458859 scopus 로고    scopus 로고
    • Bioconductor: Open software development for computational biology and bioinformatics
    • Gentleman RC et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80
    • (2004) Genome Biol , vol.5 , pp. R80
    • Gentleman, R.C.1
  • 48
    • 0041592516 scopus 로고    scopus 로고
    • Genome visualization made fast and simple
    • Gibson R, Smith DR (2003) Genome visualization made fast and simple. Bioinformatics 19:1449-1450
    • (2003) Bioinformatics , vol.19 , pp. 1449-1450
    • Gibson, R.1    Smith, D.R.2
  • 49
    • 78649505567 scopus 로고    scopus 로고
    • Biochemistry and occurrence of O-demethylation in plant metabolism
    • Hagel J, Facchini P (2010) Biochemistry and occurrence of O-demethylation in plant metabolism. Front Physiol 1:14
    • (2010) Front Physiol , vol.1 , pp. 14
    • Hagel, J.1    Facchini, P.2
  • 52
    • 1842821076 scopus 로고    scopus 로고
    • Visualization for genomics: The Microbial Genome Viewer
    • Kerkhoven R et al (2004) Visualization for genomics: the Microbial Genome Viewer. Bioinformatics 20:1812-1814
    • (2004) Bioinformatics , vol.20 , pp. 1812-1814
    • Kerkhoven, R.1
  • 53
    • 69649109364 scopus 로고    scopus 로고
    • Circos: An information aesthetic for comparative genomics
    • Krzywinski MI et al (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639-1645
    • (2009) Genome Res , vol.19 , pp. 1639-1645
    • Krzywinski, M.I.1
  • 54
    • 77951094805 scopus 로고    scopus 로고
    • Big science: The cancer genome challenge
    • Ledford H (2010) Big science: the cancer genome challenge. Nature 464:972-974
    • (2010) Nature , vol.464 , pp. 972-974
    • Ledford, H.1
  • 55
    • 79951776750 scopus 로고    scopus 로고
    • Flapjack - Graphical genotype visualization
    • Milne I et al (2010) Flapjack - graphical genotype visualization. Bioinformatics 26:3133-3134
    • (2010) Bioinformatics , vol.26 , pp. 3133-3134
    • Milne, I.1
  • 56
    • 77954500550 scopus 로고    scopus 로고
    • Evoker: A visualization tool for genotype intensity data
    • Morris JA et al (2010) Evoker: a visualization tool for genotype intensity data. Bioinformatics 26:1786-1787
    • (2010) Bioinformatics , vol.26 , pp. 1786-1787
    • Morris, J.A.1
  • 58
    • 68449103579 scopus 로고    scopus 로고
    • The systems biology graphical notation
    • Novere NL et al (2009) The systems biology graphical notation. Nat Biotechnol 27:735-741
    • (2009) Nat Biotechnol , vol.27 , pp. 735-741
    • Novere, N.L.1
  • 59
    • 77949531040 scopus 로고    scopus 로고
    • NeatMap - Non-clustering heat map alternatives in R
    • Rajaram S, Oono Y (2010) NeatMap - non-clustering heat map alternatives in R. BMC Bioinformatics 11:45
    • (2010) BMC Bioinformatics , vol.11 , pp. 45
    • Rajaram, S.1    Oono, Y.2
  • 60
    • 0029741063 scopus 로고    scopus 로고
    • The future of genetic studies of complex human diseases
    • Risch N, Merikangas K (1996) The future of genetic studies of complex human diseases. Science 273:1516-1517
    • (1996) Science , vol.273 , pp. 1516-1517
    • Risch, N.1    Merikangas, K.2
  • 61
    • 27144530248 scopus 로고    scopus 로고
    • Towards a proteome-scale map of the human protein-protein interaction network
    • Rual J-F et al (2005) Towards a proteome-scale map of the human protein-protein interaction network. Nature 437:1173-1178
    • (2005) Nature , vol.437 , pp. 1173-1178
    • Rual, J.-F.1
  • 62
    • 0042388219 scopus 로고    scopus 로고
    • GenoMap, a circular genome data viewer
    • Sato N, Ehira S (2003) GenoMap, a circular genome data viewer. Bioinformatics 19:1583-1584
    • (2003) Bioinformatics , vol.19 , pp. 1583-1584
    • Sato, N.1    Ehira, S.2
  • 63
    • 14644438364 scopus 로고    scopus 로고
    • Circular genome visualization and exploration using CGView
    • Stothard P, Wishart DS (2005) Circular genome visualization and exploration using CGView. Bioinformatics 21:537-539
    • (2005) Bioinformatics , vol.21 , pp. 537-539
    • Stothard, P.1    Wishart, D.S.2
  • 71
    • 0036066548 scopus 로고    scopus 로고
    • Single nucleotide polymorphism mapping using genome wide unique sequences
    • Chen LYY et al (2002) Single nucleotide polymorphism mapping using genome wide unique sequences. J Genome Res
    • (2002) J Genome Res
    • Chen, L.Y.Y.1
  • 72
    • 33744839368 scopus 로고
    • A formula to estimate the approximate surface area if height and weight be known
    • Du Bois D, Du Bois E (1916) A formula to estimate the approximate surface area if height and weight be known. Arch Intern Med 17:863-871
    • (1916) Arch Intern Med , vol.17 , pp. 863-871
    • Du Bois, D.1    Du Bois, E.2
  • 73
    • 23044525261 scopus 로고    scopus 로고
    • Multiple imputation in practice: Comparison of software packages for regression models with missing variables
    • Horton NJ, Lipsitz SR (2001) Multiple imputation in practice: comparison of software packages for regression models with missing variables. Am Stat 55:244-254
    • (2001) Am Stat , vol.55 , pp. 244-254
    • Horton, N.J.1    Lipsitz, S.R.2
  • 74
    • 25644453578 scopus 로고    scopus 로고
    • A space-efficient construction of the Burrows-Wheeler transform for genomic data
    • Lippert R, Mobarry C, Walenz B (2005) A space-efficient construction of the Burrows-Wheeler transform for genomic data. J Comput Biol 12:943-951
    • (2005) J Comput Biol , vol.12 , pp. 943-951
    • Lippert, R.1    Mobarry, C.2    Walenz, B.3
  • 76
    • 34248177183 scopus 로고    scopus 로고
    • The problem of disguised missing data
    • Pearson RK (2006) The problem of disguised missing data. SIGKDD Explorations Newsl 8:83-92
    • (2006) SIGKDD Explorations Newsl , vol.8 , pp. 83-92
    • Pearson, R.K.1
  • 81
    • 79951999565 scopus 로고    scopus 로고
    • MBRole: Enrichment analysis of metabolomic data
    • Chagoyen M, Pazos F (2011) MBRole: enrichment analysis of metabolomic data. Bioinformatics 27:730-731
    • (2011) Bioinformatics , vol.27 , pp. 730-731
    • Chagoyen, M.1    Pazos, F.2
  • 83
    • 0015844831 scopus 로고
    • Hypertension in terminal renal failure: Observations pre and post bilateral nephrectomy
    • Del Greco F, Burgess JL (1973) Hypertension in terminal renal failure: observations pre and post bilateral nephrectomy. J Chronic Dis 26:471-501
    • (1973) J Chronic Dis , vol.26 , pp. 471-501
    • Del Greco, F.1    Burgess, J.L.2
  • 85
    • 28744458859 scopus 로고    scopus 로고
    • Bioconductor: Open software development for computational biology and bioinformatics
    • Gentleman RC et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80
    • (2004) Genome Biol , vol.5 , pp. R80
    • Gentleman, R.C.1
  • 86
    • 0004285343 scopus 로고    scopus 로고
    • McGraw-Hill Medical Pub, Division, New York
    • Glantz SA (2005) Primer of biostatistics. McGraw-Hill Medical Pub. Division, New York
    • (2005) Primer of Biostatistics
    • Glantz, S.A.1
  • 87
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • Golub TR et al (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286:531-537
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1
  • 89
    • 19844373641 scopus 로고    scopus 로고
    • An alternative to null-hypothesis significance tests
    • Killeen PR (2005) An alternative to null-hypothesis significance tests. Psychol Sci 16:345-353
    • (2005) Psychol Sci , vol.16 , pp. 345-353
    • Killeen, P.R.1
  • 90
    • 84993698726 scopus 로고    scopus 로고
    • Correlations and multiple comparisons in functional imaging: A statistical perspective (Commentary on Vul et al. 2009)
    • Lindquist MA, Gelman A (2009) Correlations and multiple comparisons in functional imaging: a statistical perspective (Commentary on Vul et al. 2009). Perspect Psychol Sci 4:310-313
    • (2009) Perspect Psychol Sci , vol.4 , pp. 310-313
    • Lindquist, M.A.1    Gelman, A.2
  • 91
    • 0021957424 scopus 로고
    • Sister chromatid exchanges: A reexamination of the evidence for sex and race differences in humans
    • Margolin BH, Shelby MD (1985) Sister chromatid exchanges: a reexamination of the evidence for sex and race differences in humans. Environ Mutagen 7:63-72
    • (1985) Environ Mutagen , vol.7 , pp. 63-72
    • Margolin, B.H.1    Shelby, M.D.2
  • 93
    • 27344435774 scopus 로고    scopus 로고
    • Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles
    • Subramanian A et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545-15550
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 15545-15550
    • Subramanian, A.1
  • 94
    • 84993746898 scopus 로고    scopus 로고
    • Puzzlingly high correlations in fMRI studies of emotion, personality, and social cognition
    • Vul E et al (2009) Puzzlingly high correlations in fMRI studies of emotion, personality, and social cognition. Perspect Psychol Sci 4:274-290
    • (2009) Perspect Psychol Sci , vol.4 , pp. 274-290
    • Vul, E.1
  • 95
    • 79960641926 scopus 로고    scopus 로고
    • Variable set enrichment analysis in genome-wide association studies
    • Yang W et al (2011) Variable set enrichment analysis in genome-wide association studies. Eur J Hum Genet 19(8):893-900
    • (2011) Eur J Hum Genet , vol.19 , Issue.8 , pp. 893-900
    • Yang, W.1
  • 96
    • 0035875343 scopus 로고    scopus 로고
    • GeneMarkS: A self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions
    • Besemer J, Lomsadze A, Borodovsky M (2001) GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 29:2607-2618
    • (2001) Nucleic Acids Res , vol.29 , pp. 2607-2618
    • Besemer, J.1    Lomsadze, A.2    Borodovsky, M.3
  • 99
    • 0000241874 scopus 로고
    • GeneMark: Parallel gene recognition for both DNA strands
    • Borodovsky M, McIninch J (1993) GeneMark: parallel gene recognition for both DNA strands. Comput Chem 17:123-133
    • (1993) Comput Chem , vol.17 , pp. 123-133
    • Borodovsky, M.1    McIninch, J.2
  • 101
    • 0035874091 scopus 로고    scopus 로고
    • Prediction of protein cellular attributes using pseudo amino acid composition
    • Chou K-C (2001) Prediction of protein cellular attributes using pseudo amino acid composition. Proteins 43:246-255
    • (2001) Proteins , vol.43 , pp. 246-255
    • Chou, K.-C.1
  • 103
    • 33750959359 scopus 로고    scopus 로고
    • Mining housekeeping genes with a Naive Bayes classifier
    • De Ferrari L, Aitken S (2006) Mining housekeeping genes with a Naive Bayes classifier. BMC Genomics 7:277
    • (2006) BMC Genomics , vol.7 , pp. 277
    • De Ferrari, L.1    Aitken, S.2
  • 104
    • 34548390530 scopus 로고    scopus 로고
    • Conrad: Gene prediction using conditional random fields
    • De Caprio D et al (2007) Conrad: gene prediction using conditional random fields. Genome Res 17:1389-1398
    • (2007) Genome Res , vol.17 , pp. 1389-1398
    • De Caprio, D.1
  • 105
    • 40349108567 scopus 로고    scopus 로고
    • ADaCGH: A parallelized web-based application and R package for the analysis of aCGH data
    • Díaz-Uriarte R, Rueda OM (2007) ADaCGH: a parallelized web-based application and R package for the analysis of aCGH data. PLoS One 2:e737
    • (2007) PLoS One , vol.2 , pp. e737
    • Díaz-Uriarte, R.1    Rueda, O.M.2
  • 106
    • 5044223128 scopus 로고    scopus 로고
    • What is a hidden Markov model?
    • Eddy SR (2004) What is a hidden Markov model? Nat Biotechnol 22:1315-1316
    • (2004) Nat Biotechnol , vol.22 , pp. 1315-1316
    • Eddy, S.R.1
  • 110
    • 70249088690 scopus 로고    scopus 로고
    • Analysis of array-CGH data using the R and Bioconductor software suite
    • Hofmann WA et al (2009) Analysis of array-CGH data using the R and Bioconductor software suite. Comp Funct Genomics 2009:8
    • (2009) Comp Funct Genomics , vol.2009 , pp. 8
    • Hofmann, W.A.1
  • 111
    • 18744410117 scopus 로고    scopus 로고
    • Applications of beta-mixture models in bioinformatics
    • Ji Y et al (2005) Applications of beta-mixture models in bioinformatics. Bioinformatics 21:2118-2122
    • (2005) Bioinformatics , vol.21 , pp. 2118-2122
    • Ji, Y.1
  • 112
    • 84972491799 scopus 로고
    • Comment: Codifying chance
    • Kadane J (1990) Comment: codifying chance. Statistical Science 5(1):18-20
    • (1990) Statistical Science , vol.5 , Issue.1 , pp. 18-20
    • Kadane, J.1
  • 114
    • 68149172457 scopus 로고    scopus 로고
    • Bayesian classifier for predicting malignant renal cysts on MDCT: Early clinical experience
    • Lee Y et al (2009) Bayesian classifier for predicting malignant renal cysts on MDCT: early clinical experience. Am J Roentgenol 193:W106-W111
    • (2009) Am J Roentgenol , vol.193 , pp. W106-W111
    • Lee, Y.1
  • 115
    • 26444535298 scopus 로고    scopus 로고
    • Segmentation Conditional Random Fields (SCRFs): A new approach for protein fold recognition
    • S. Miyano, J. Mesirov, S. Kasif, S. Istrail, P. Pevzner & M. Waterman Eds., Springer Berlin/Heidelberg
    • Liu Y, Carbonell J, Weigele P, Gopalakrishnan V (2005) Segmentation Conditional Random Fields (SCRFs): A New Approach for Protein Fold Recognition. In S. Miyano, J. Mesirov, S. Kasif, S. Istrail, P. Pevzner & M. Waterman (Eds.), Research in Computational Molecular Biology 3500:408-422: Springer Berlin/Heidelberg
    • (2005) Research in Computational Molecular Biology , vol.3500 , pp. 408-422
    • Liu, Y.1    Carbonell, J.2    Weigele, P.3    Gopalakrishnan, V.4
  • 117
    • 78449246686 scopus 로고    scopus 로고
    • from, Accessed on July 26, 2009
    • Moore AW (2004) Naive Bayes Classifiers, from http://www.autonlab.org/tutorials/naive02.pdf. Accessed on July 26, 2009
    • (2004) Naive Bayes Classifiers
    • Moore, A.W.1
  • 118
    • 84972511825 scopus 로고
    • Quantifying probabilistic expressions
    • Mosteller F, Youtz C (1990) Quantifying probabilistic expressions. Statistical Science 5(1):2-12
    • (1990) Statistical Science , vol.5 , Issue.1 , pp. 2-12
    • Mosteller, F.1    Youtz, C.2
  • 119
    • 47049106896 scopus 로고    scopus 로고
    • Integrated gene copy number and expression microarray analysis of gastric cancer highlights potential target genes
    • Myllykangas S et al (2008) Integrated gene copy number and expression microarray analysis of gastric cancer highlights potential target genes. Int J Cancer 123:817-825
    • (2008) Int J Cancer , vol.123 , pp. 817-825
    • Myllykangas, S.1
  • 120
    • 0028239038 scopus 로고
    • Discrimination of intracellular and extracellular proteins using amino acid composition and residue-pair frequencies
    • Nakashima H, Nishikawa K (1994) Discrimination of intracellular and extracellular proteins using amino acid composition and residue-pair frequencies. J Mol Biol 238:54-61
    • (1994) J Mol Biol , vol.238 , pp. 54-61
    • Nakashima, H.1    Nishikawa, K.2
  • 122
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • Rabiner LR (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE 77:257-286
    • (1989) Proc IEEE , vol.77 , pp. 257-286
    • Rabiner, L.R.1
  • 123
    • 70949106297 scopus 로고    scopus 로고
    • Exploiting amino acid composition for predicting protein-protein interactions
    • Roy S et al (2009) Exploiting amino acid composition for predicting protein-protein interactions. PLoS One 4:e7813
    • (2009) PLoS One , vol.4 , pp. e7813
    • Roy, S.1
  • 124
    • 77955097924 scopus 로고    scopus 로고
    • CGHpower: Exploring sample size calculations for chromosomal copy number experiments
    • Scheinin I et al (2010) CGHpower: exploring sample size calculations for chromosomal copy number experiments. BMC Bioinforma 11:331
    • (2010) BMC Bioinforma , vol.11 , pp. 331
    • Scheinin, I.1
  • 125
    • 51249083916 scopus 로고    scopus 로고
    • The array CGH and its clinical applications
    • Shinawi M, Cheung SW (2008) The array CGH and its clinical applications. Drug Discov Today 13:760-770
    • (2008) Drug Discov Today , vol.13 , pp. 760-770
    • Shinawi, M.1    Cheung, S.W.2
  • 126
    • 0003632945 scopus 로고    scopus 로고
    • Oxford Science Publications/Clarendon Press/Oxford University Press, Oxford/New York
    • Sivia DS (1996) Data analysis: a Bayesian tutorial. Oxford Science Publications/Clarendon Press/Oxford University Press, Oxford/New York
    • (1996) Data Analysis: A Bayesian Tutorial
    • Sivia, D.S.1
  • 127
    • 26944481683 scopus 로고    scopus 로고
    • Department of Computer and Information Science, University of Pennsylvania, Philadelphia
    • Wallach HM (2004) Conditional random fields: an introduction. Department of Computer and Information Science, University of Pennsylvania, Philadelphia
    • (2004) Conditional Random Fields: An Introduction
    • Wallach, H.M.1
  • 129
    • 44349150513 scopus 로고    scopus 로고
    • OnD-CRF: Predicting order and disorder in proteins conditional random fields
    • Wang L, Sauer UH (2008) OnD-CRF: predicting order and disorder in proteins conditional random fields. Bioinformatics 24:1401-1402
    • (2008) Bioinformatics , vol.24 , pp. 1401-1402
    • Wang, L.1    Sauer, U.H.2
  • 132
    • 58049209792 scopus 로고    scopus 로고
    • Conditional random pattern algorithm for LOH inference and segmentation
    • Wu L-Y et al (2009) Conditional random pattern algorithm for LOH inference and segmentation. Bioinformatics 25:61-67
    • (2009) Bioinformatics , vol.25 , pp. 61-67
    • Wu, L.-Y.1
  • 134
    • 34249079154 scopus 로고    scopus 로고
    • Network motifs: Theory and experimental approaches
    • Alon U (2007b) Network motifs: theory and experimental approaches. Nat Rev Genet 8:450-461
    • (2007) Nat Rev Genet , vol.8 , pp. 450-461
    • Alon, U.1
  • 135
    • 84975860562 scopus 로고    scopus 로고
    • Biomolecular network motif counting and discovery by color coding
    • Alon N et al (2008) Biomolecular network motif counting and discovery by color coding. Bioinformatics 24:i241-i249
    • (2008) Bioinformatics , vol.24 , pp. i241-i249
    • Alon, N.1
  • 137
    • 0030801002 scopus 로고    scopus 로고
    • Gapped BLAST and PSI-BLAST: A new generation of protein database search programs
    • Altschul SF et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389-3402
    • (1997) Nucleic Acids Res , vol.25 , pp. 3389-3402
    • Altschul, S.F.1
  • 139
    • 0031813405 scopus 로고    scopus 로고
    • The PRINTS protein fingerprint database in its fifth year
    • Attwood TK et al (1998) The PRINTS protein fingerprint database in its fifth year. Nucleic Acids Res 26:304-308
    • (1998) Nucleic Acids Res , vol.26 , pp. 304-308
    • Attwood, T.K.1
  • 140
    • 2942606066 scopus 로고    scopus 로고
    • Structure and evolution of transcriptional regulatory networks
    • Babu MM et al (2004) Structure and evolution of transcriptional regulatory networks. Curr Opin Struct Biol 14:283-291
    • (2004) Curr Opin Struct Biol , vol.14 , pp. 283-291
    • Babu, M.M.1
  • 142
    • 78649903919 scopus 로고    scopus 로고
    • Petri nets for modelling metabolic pathways: A survey
    • Baldan P et al (2010) Petri nets for modelling metabolic pathways: a survey. Natural Computing 9:955-989
    • (2010) Natural Computing , vol.9 , pp. 955-989
    • Baldan, P.1
  • 143
    • 0028011075 scopus 로고
    • Hidden Markov models of biological primary sequence information
    • Baldi P et al (1994) Hidden Markov models of biological primary sequence information. Proc Natl Acad Sci 91:1059-1063
    • (1994) Proc Natl Acad Sci , vol.91 , pp. 1059-1063
    • Baldi, P.1
  • 144
    • 33750709703 scopus 로고    scopus 로고
    • Subgraph ensembles and motif discovery using a new heuristic for graph isomorphism
    • Baskerville K, Paczuski M (2006) Subgraph ensembles and motif discovery using a new heuristic for graph isomorphism. Phys Rev E 74:13
    • (2006) Phys Rev E , vol.74 , pp. 13
    • Baskerville, K.1    Paczuski, M.2
  • 146
    • 84898946656 scopus 로고    scopus 로고
    • Using manifold structure for partially labeled classification
    • Belkin M, Niyogi P (2003) Using manifold structure for partially labeled classification. Neural Inform Process Syst 15(2002):929
    • (2003) Neural Inform Process Syst , vol.15 , Issue.2002 , pp. 929
    • Belkin, M.1    Niyogi, P.2
  • 147
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • Belkin M, Niyogi P, Sindhwani V (2006) Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J Mach Learn Res 7:2399-2434
    • (2006) J Mach Learn Res , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 148
    • 84898958346 scopus 로고    scopus 로고
    • Semi-supervised support vector machines
    • Kearns MJ, Solla SA, Cohn DA eds, MIT Press, Denver
    • Bennett KP, Demiriz A (1998) Semi-supervised support vector machines. In: Kearns MJ, Solla SA, Cohn DA (eds) Advances in neural information processing systems 11. MIT Press, Denver, pp 368-374
    • (1998) Advances in Neural Information Processing Systems 11 , pp. 368-374
    • Bennett, K.P.1    Demiriz, A.2
  • 152
    • 13444292042 scopus 로고    scopus 로고
    • Motif-based protein sequence classification using neural networks
    • Blekas K, Fotiadis DI, Likas A (2005) Motif-based protein sequence classification using neural networks. J Comput Biol 12:64-82
    • (2005) J Comput Biol , vol.12 , pp. 64-82
    • Blekas, K.1    Fotiadis, D.I.2    Likas, A.3
  • 158
    • 0032292330 scopus 로고    scopus 로고
    • Markov random fields with efficient approximations. Computer vision and pattern recognition, 1998
    • Boykov Y, Veksler O et al (1998) Markov random fields with efficient approximations. Computer vision and pattern recognition, 1998. Proceedings. 1998 IEEE Computer Society Conference on
    • (1998) Proceedings. 1998 IEEE Computer Society Conference on
    • Boykov, Y.1    Veksler, O.2
  • 159
    • 0001662441 scopus 로고    scopus 로고
    • The relative value of labeled and unlabeled samples in pattern recognition with an unknown mixing parameter
    • Castelli V, Cover TM (1996) The relative value of labeled and unlabeled samples in pattern recognition with an unknown mixing parameter. IEEE Trans Inform Theory 42:2102-2117
    • (1996) IEEE Trans Inform Theory , vol.42 , pp. 2102-2117
    • Castelli, V.1    Cover, T.M.2
  • 160
    • 34548302044 scopus 로고    scopus 로고
    • Petri net modelling of biological networks
    • Chaouiya C (2007) Petri net modelling of biological networks. Brief Bioinform 8:210-219
    • (2007) Brief Bioinform , vol.8 , pp. 210-219
    • Chaouiya, C.1
  • 161
    • 47249146036 scopus 로고    scopus 로고
    • Committee on Applications of Toxicogenomic Technologies to Predictive Toxicology and Risk Assessment, The National Academies Press, Washington, DC
    • Committee on Applications of Toxicogenomic Technologies to Predictive Toxicology and Risk Assessment, NRC (2007) Applications of toxicogenomic technologies to predictive toxicology and risk assessment. The National Academies Press, Washington, DC
    • (2007) Applications of Toxicogenomic Technologies to Predictive Toxicology and Risk Assessment
    • NRC1
  • 163
    • 0037743679 scopus 로고    scopus 로고
    • Convergent evolution of gene circuits
    • Conant GC, Wagner A (2003) Convergent evolution of gene circuits. Nat Genet 34:264-266
    • (2003) Nat Genet , vol.34 , pp. 264-266
    • Conant, G.C.1    Wagner, A.2
  • 165
    • 0034172483 scopus 로고    scopus 로고
    • Learning to construct knowledge bases from the World Wide Web
    • Craven M, Di Pasquo D et al (2000) Learning to construct knowledge bases from the World Wide Web. Artif. Intell. 118(1-2):69-113
    • (2000) Artif. Intell , vol.118 , Issue.1-2 , pp. 69-113
    • Craven, M.1    Di Pasquo, D.2
  • 166
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko G (1989) Approximation by superpositions of a sigmoidal function. Math Cont Sig Syst (MCSS) 2:303-314
    • (1989) Math Cont Sig Syst (MCSS) , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 168
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J Roy Stat Soc Ser B 39:1-38
    • (1977) J Roy Stat Soc Ser B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 169
    • 84930017724 scopus 로고    scopus 로고
    • International conferenceon machine learning, Alberta
    • Ding C (2004) Tutorial on spectral clustering. International conferenceon machine learning, Alberta
    • (2004) Tutorial on Spectral Clustering
    • Ding, C.1
  • 170
    • 84930024044 scopus 로고    scopus 로고
    • from, Accessed 7/17/2011
    • Doi A (2011) Glycolytic pathway and lac operon of E. coli, from http://www.csml.org/models/csml-models/glycolytic-pathway-and-lac-operon-of-e-coli/. Accessed 7/17/2011
    • (2011) Glycolytic Pathway and Lac Operon of E. Coli
    • Doi, A.1
  • 171
    • 10044242838 scopus 로고    scopus 로고
    • Constructing biological pathway models with hybrid functional Petri nets
    • Doi A et al (2004) Constructing biological pathway models with hybrid functional Petri nets. In Silico Biol 4:271-291
    • (2004) Silico Biol , vol.4 , pp. 271-291
    • Doi, A.1
  • 172
    • 32144458563 scopus 로고    scopus 로고
    • Application of latent semantic analysis to protein remote homology detection
    • Dong Q-W, Wang X-L, Lin L (2006) Application of latent semantic analysis to protein remote homology detection. Bioinformatics 22:285-290
    • (2006) Bioinformatics , vol.22 , pp. 285-290
    • Dong, Q.-W.1    Wang, X.-L.2    Lin, L.3
  • 174
    • 0029174347 scopus 로고
    • Multiple alignment using hidden Markov models
    • AAAI Press, Menlo Park
    • Eddy SR (1995) Multiple alignment using hidden Markov models. In: Intelligent systems in molecular biology. AAAI Press, Menlo Park, pp 114-120
    • (1995) Intelligent Systems in Molecular Biology , pp. 114-120
    • Eddy, S.R.1
  • 175
    • 33947643248 scopus 로고    scopus 로고
    • Machine learning in the life sciences
    • Enderle JE (2007) Machine learning in the life sciences. IEEE Eng Med Biol 26:86-93
    • (2007) IEEE Eng Med Biol , vol.26 , pp. 86-93
    • Enderle, J.E.1
  • 176
    • 34548025132 scopus 로고    scopus 로고
    • A survey of kernel and spectral methods for clustering
    • Filippone M et al (2008) A survey of kernel and spectral methods for clustering. Pattern Recogn 41:176-190
    • (2008) Pattern Recogn , vol.41 , pp. 176-190
    • Filippone, M.1
  • 178
    • 0031633368 scopus 로고    scopus 로고
    • Toward information extraction: Identifying protein names from biological papers
    • Fukuda K et al (1998) Toward information extraction: identifying protein names from biological papers. Pac Symp Biocomput 98:707-718
    • (1998) Pac Symp Biocomput , vol.98 , pp. 707-718
    • Fukuda, K.1
  • 179
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mappings by neural networks
    • Funahashi K (1989) On the approximate realization of continuous mappings by neural networks. Neural Netw 2:183-192
    • (1989) Neural Netw , vol.2 , pp. 183-192
    • Funahashi, K.1
  • 180
    • 28744458859 scopus 로고    scopus 로고
    • Bioconductor: Open software development for computational biology and bioinformatics
    • Gentleman RC et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80
    • (2004) Genome Biol , vol.5 , pp. R80
    • Gentleman, R.C.1
  • 181
    • 0000111836 scopus 로고
    • Exact maximum a posteriori estimation for binary images
    • Greig DM, Porteous BT et al (1989) Exact maximum a posteriori estimation for binary images. J Roy Stat Soc Ser B Methodological 51(2):271-279
    • (1989) J Roy Stat Soc Ser B Methodological , vol.51 , Issue.2 , pp. 271-279
    • Greig, D.M.1    Porteous, B.T.2
  • 182
    • 0001969211 scopus 로고    scopus 로고
    • The use of receiver operating characteristic (ROC) analysis to evaluate sequence matching
    • Gribskov M, Robinson NL (1996) The use of receiver operating characteristic (ROC) analysis to evaluate sequence matching. Comput Chem 20:25-33
    • (1996) Comput Chem , vol.20 , pp. 25-33
    • Gribskov, M.1    Robinson, N.L.2
  • 183
    • 0023375315 scopus 로고
    • Profile analysis: Detection of distantly related proteins
    • Gribskov M, McLachlan AD, Eisenberg D (1987) Profile analysis: detection of distantly related proteins. Proc Natl Acad Sci 84:4355-4358
    • (1987) Proc Natl Acad Sci , vol.84 , pp. 4355-4358
    • Gribskov, M.1    McLachlan, A.D.2    Eisenberg, D.3
  • 185
  • 186
    • 0036366771 scopus 로고    scopus 로고
    • Creating knowledge repositories from biomedical reports: The MEDSYNDIKATE text mining system
    • Hahn U, Romacker M et al (2002) Creating knowledge repositories from biomedical reports: the MEDSYNDIKATE text mining system. Pac Symp Biocomput: 338-349
    • (2002) Pac Symp Biocomput , pp. 338-349
    • Hahn, U.1    Romacker, M.2
  • 187
    • 0001683814 scopus 로고
    • Layered neural networks with Gaussian hidden units as universal approximations
    • Hartman E, Keeler JD, Kowalski JM (1990) Layered neural networks with Gaussian hidden units as universal approximations. Neural Comput 2:210-215
    • (1990) Neural Comput , vol.2 , pp. 210-215
    • Hartman, E.1    Keeler, J.D.2    Kowalski, J.M.3
  • 188
    • 84930033525 scopus 로고    scopus 로고
    • A discriminative framework for detecting remote protein homologies
    • Haussler D, Diekhans M, Jaakkola T (1998) A discriminative framework for detecting remote protein homologies. J Comput Biol 5:211-221
    • (1998) J Comput Biol , vol.5 , pp. 211-221
    • Haussler, D.1    Diekhans, M.2    Jaakkola, T.3
  • 189
    • 34147181741 scopus 로고    scopus 로고
    • Why can't a computer be more like a brain?
    • Hawkins J (2007) Why can't a computer be more like a brain? IEEE Spectr 44:21-26
    • (2007) IEEE Spectr , vol.44 , pp. 21-26
    • Hawkins, J.1
  • 191
    • 0036706214 scopus 로고    scopus 로고
    • Rutabaga by any other name: Extracting biological names
    • Hirschman L, Morgan AA et al (2002) Rutabaga by any other name: extracting biological names. J Biomed Informat 35(4):247-259
    • (2002) J Biomed Informat , vol.35 , Issue.4 , pp. 247-259
    • Hirschman, L.1    Morgan, A.A.2
  • 193
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2:359-366
    • (1989) Neural Netw , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 194
    • 33751327438 scopus 로고    scopus 로고
    • Comparative gene expression analysis by a differential clustering approach: Application to the Candida albicans transcription program
    • Ihmels J et al (2005) Comparative gene expression analysis by a differential clustering approach: application to the Candida albicans transcription program. PLoS Genet 1:e39
    • (2005) PLoS Genet , vol.1 , pp. e39
    • Ihmels, J.1
  • 196
    • 13844276694 scopus 로고    scopus 로고
    • Cluster analysis for gene expression data: A survey
    • Jiang D, Tang C, Zhang A (2004) Cluster analysis for gene expression data: a survey. IEEE Trans Knowl Data Eng 16:1370-1386
    • (2004) IEEE Trans Knowl Data Eng , vol.16 , pp. 1370-1386
    • Jiang, D.1    Tang, C.2    Zhang, A.3
  • 197
    • 55849139401 scopus 로고    scopus 로고
    • Parallelization of spectral clustering algorithm on multi-core processors and GPGPU
    • ACSAC 2008. 13th Asia-Pacific, Busan
    • Jing Z et al (2008) Parallelization of spectral clustering algorithm on multi-core processors and GPGPU. In: Computer systems architecture conference, 2008. ACSAC 2008. 13th Asia-Pacific, Busan, pp 1-8
    • (2008) Computer Systems Architecture Conference, 2008 , pp. 1-8
    • Jing, Z.1
  • 199
    • 70449631149 scopus 로고    scopus 로고
    • Kavosh: A new algorithm for finding network motifs
    • Kashani Z et al (2009) Kavosh: a new algorithm for finding network motifs. BMC Bioinforma 10:318
    • (2009) BMC Bioinforma , vol.10 , pp. 318
    • Kashani, Z.1
  • 200
    • 42749103268 scopus 로고    scopus 로고
    • Topological generalizations of network motifs
    • Kashtan N et al (2004) Topological generalizations of network motifs. Phys Rev E 70:031909
    • (2004) Phys Rev E , vol.70 , pp. 031909
    • Kashtan, N.1
  • 201
    • 21344442672 scopus 로고    scopus 로고
    • Gene expression analysis of ischemic and nonischemic cardiomyopathy: Shared and distinct genes in the development of heart failure
    • Kittleson MM et al (2005) Gene expression analysis of ischemic and nonischemic cardiomyopathy: shared and distinct genes in the development of heart failure. Physiol Genomics 21:299-307
    • (2005) Physiol Genomics , vol.21 , pp. 299-307
    • Kittleson, M.M.1
  • 202
    • 1842545358 scopus 로고    scopus 로고
    • Approximation algorithms for classification problems with pairwise relationships: Metric labeling and Markov random fields
    • Kleinberg J, Tardos E (2002) Approximation algorithms for classification problems with pairwise relationships: metric labeling and Markov random fields. J ACM 49(5):616-639
    • (2002) J ACM , vol.49 , Issue.5 , pp. 616-639
    • Kleinberg, J.1    Tardos, E.2
  • 203
    • 84879747604 scopus 로고    scopus 로고
    • Performance trees: A query specification formalism for quantitative performance analysis
    • Saxe-Coburg Publications, Kippen
    • Knottenbelt WJ, Dingle NJ, Suto T (2009) Performance trees: a query specification formalism for quantitative performance analysis. In: Parallel, distributed and grid computing for engineering. Saxe-Coburg Publications, Kippen, pp 165-198
    • (2009) Parallel, Distributed and Grid Computing for Engineering , pp. 165-198
    • Knottenbelt, W.J.1    Dingle, N.J.2    Suto, T.3
  • 204
    • 84930019321 scopus 로고    scopus 로고
    • Qualitative modelling and analysis of biochemical pathways with Petri Nets (Tutorial Notes)
    • Heidelberg, Germany
    • Koch I, Heiner M (2004) Qualitative modelling and analysis of biochemical pathways with Petri Nets (Tutorial Notes). In:5th international conference on systems biology - ICSB 2004, Heidelberg, Germany
    • (2004) 5th International Conference on Systems Biology - ICSB 2004
    • Koch, I.1    Heiner, M.2
  • 206
    • 3242775432 scopus 로고    scopus 로고
    • Multi-relational learning, text mining, and semi-supervised learning for functional genomics
    • Krogel MA, Scheffer T (2004) Multi-relational learning, text mining, and semi-supervised learning for functional genomics. Mach Learn 57:61-81
    • (2004) Mach Learn , vol.57 , pp. 61-81
    • Krogel, M.A.1    Scheffer, T.2
  • 207
    • 84937420049 scopus 로고    scopus 로고
    • Transformation-based learning using multirelational aggregation
    • Rouveirol C, Sebag M eds, Springer, Berlin/Heidelberg
    • Krogel M-A, Wrobel S (2001) Transformation-based learning using multirelational aggregation. In: Rouveirol C, Sebag M (eds) Inductive logic programming. Springer, Berlin/Heidelberg, pp 142-155
    • (2001) Inductive Logic Programming , pp. 142-155
    • Krogel, M.-A.1    Wrobel, S.2
  • 211
    • 0036358995 scopus 로고    scopus 로고
    • The spectrum kernel: A string kernel for SVM protein classification
    • CSH Press
    • Leslie CS, Eskin E, Noble WS (2002) The spectrum kernel: a string kernel for SVM protein classification. In: Pacific symposium on biocomputing, CSH Press, pp 566-575
    • (2002) Pacific Symposium on Biocomputing , pp. 566-575
    • Leslie, C.S.1    Eskin, E.2    Noble, W.S.3
  • 212
    • 1542714925 scopus 로고    scopus 로고
    • Mismatch string kernels for discriminative protein classification
    • Leslie CS et al (2004) Mismatch string kernels for discriminative protein classification. Bioinformatics 20:467-476
    • (2004) Bioinformatics , vol.20 , pp. 467-476
    • Leslie, C.S.1
  • 213
    • 33750975917 scopus 로고    scopus 로고
    • Support vector machine learning from heterogeneous data: An empirical analysis using protein sequence and structure
    • Lewis DP, Jebara T, Noble WS (2006) Support vector machine learning from heterogeneous data: an empirical analysis using protein sequence and structure. Bioinformatics 22:2753-2760
    • (2006) Bioinformatics , vol.22 , pp. 2753-2760
    • Lewis, D.P.1    Jebara, T.2    Noble, W.S.3
  • 214
    • 0036376041 scopus 로고    scopus 로고
    • Combining pairwise sequence similarity and support vector machines for remote protein homology detection
    • ACM, Washington, DC
    • Liao L, Noble WS (2002) Combining pairwise sequence similarity and support vector machines for remote protein homology detection. In: Proceedings of the sixth annual international conference on computational biology. ACM, Washington, DC, pp 225-232
    • (2002) Proceedings of the Sixth Annual International Conference on Computational Biology , pp. 225-232
    • Liao, L.1    Noble, W.S.2
  • 215
    • 77955154768 scopus 로고    scopus 로고
    • An effective approach for solving subgraph isomorphism problem
    • Ling Z (1996) An effective approach for solving subgraph isomorphism problem. IASTED International Conference
    • (1996) IASTED International Conference
    • Ling, Z.1
  • 216
    • 0034315099 scopus 로고    scopus 로고
    • Evolutionary ensembles with negative correlation learning
    • Liu Y, Yao X et al (2000) Evolutionary ensembles with negative correlation learning. IEEE Transactions on Evolutionary Computation 4:380-387
    • (2000) IEEE Transactions on Evolutionary Computation , vol.4 , pp. 380-387
    • Liu, Y.1    Yao, X.2
  • 217
    • 33744794380 scopus 로고    scopus 로고
    • Regulatory dynamics of synthetic gene networks with positive feedback
    • Maeda YT, Sano M (2006) Regulatory dynamics of synthetic gene networks with positive feedback. J Mol Biol 359:1107-1124
    • (2006) J Mol Biol , vol.359 , pp. 1107-1124
    • Maeda, Y.T.1    Sano, M.2
  • 218
    • 0142027814 scopus 로고    scopus 로고
    • Structure and function of the feed-forward loop network motif
    • Mangan S, Alon U (2003) Structure and function of the feed-forward loop network motif. Proc Natl Acad Sci 100:11980-11985
    • (2003) Proc Natl Acad Sci , vol.100 , pp. 11980-11985
    • Mangan, S.1    Alon, U.2
  • 220
    • 0027657238 scopus 로고
    • Deterministic interactive particle models for image processing and computer graphics
    • Marroquin JL (1993) Deterministic interactive particle models for image processing and computer graphics. Graphical Models and Image Processing 55(5):408-417
    • (1993) Graphical Models and Image Processing , vol.55 , Issue.5 , pp. 408-417
    • Marroquin, J.L.1
  • 222
    • 33646197307 scopus 로고    scopus 로고
    • A random walks view of spectral segmentation
    • Meila M, Shi J (2001) A random walks view of spectral segmentation. AISTATS 2001:8-11
    • (2001) AISTATS , vol.2001 , pp. 8-11
    • Meila, M.1    Shi, J.2
  • 223
    • 14744273317 scopus 로고    scopus 로고
    • Inferring network mechanisms: The Drosophila melanogaster protein interaction network
    • Middendorf M, Ziv E, Wiggins CH (2005) Inferring network mechanisms: the Drosophila melanogaster protein interaction network. Proc Natl Acad Sci USA 102:3192-3197
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 3192-3197
    • Middendorf, M.1    Ziv, E.2    Wiggins, C.H.3
  • 224
    • 0037174670 scopus 로고    scopus 로고
    • Network motifs: Simple building blocks of complex networks
    • Milo R et al (2002) Network motifs: simple building blocks of complex networks. Science 298:824-827
    • (2002) Science , vol.298 , pp. 824-827
    • Milo, R.1
  • 225
    • 1542287343 scopus 로고    scopus 로고
    • Superfamilies of evolved and designed networks
    • Milo R et al (2004) Superfamilies of evolved and designed networks. Science 303:1538-1542
    • (2004) Science , vol.303 , pp. 1538-1542
    • Milo, R.1
  • 229
    • 0034235325 scopus 로고    scopus 로고
    • Knowledge discovery and knowledge validation in intensive care
    • Morik K et al (2000) Knowledge discovery and knowledge validation in intensive care. Artif Intell Med 19:225-249
    • (2000) Artif Intell Med , vol.19 , pp. 225-249
    • Morik, K.1
  • 230
    • 0024645936 scopus 로고
    • Petri nets: Properties, analysis and applications
    • Murata T (1989) Petri nets: properties, analysis and applications. Proc IEEE 77:541-580
    • (1989) Proc IEEE , vol.77 , pp. 541-580
    • Murata, T.1
  • 231
    • 77950430912 scopus 로고    scopus 로고
    • SCPS: A fast implementation of a spectral method for detecting protein families on a genome-wide scale
    • Nepusz T, Sasidharan R, Paccanaro A (2010) SCPS: a fast implementation of a spectral method for detecting protein families on a genome-wide scale. BMC Bioinforma 11:120
    • (2010) BMC Bioinforma , vol.11 , pp. 120
    • Nepusz, T.1    Sasidharan, R.2    Paccanaro, A.3
  • 232
  • 233
    • 33644857556 scopus 로고    scopus 로고
    • An incremental EM-based learning approach for on-line prediction of hospital resource utilization
    • Ng S-K, McLachlan GJ, Lee AH (2006) An incremental EM-based learning approach for on-line prediction of hospital resource utilization. Artif Intell Med 36:257-267
    • (2006) Artif Intell Med , vol.36 , pp. 257-267
    • Ng, S.-K.1    McLachlan, G.J.2    Lee, A.H.3
  • 236
    • 76749118079 scopus 로고    scopus 로고
    • MODA: An efficient algorithm for network motif discovery in biological networks
    • Omidi S, Schreiber F, Masoudi-Nejad A (2009) MODA: an efficient algorithm for network motif discovery in biological networks. Genes Genet Syst 84:385-395
    • (2009) Genes Genet Syst , vol.84 , pp. 385-395
    • Omidi, S.1    Schreiber, F.2    Masoudi-Nejad, A.3
  • 240
    • 0004068620 scopus 로고
    • Kommunikation mit Automaten
    • Institut für Instrumentelle Mathematik, Bonn
    • Petri CA (1962) Kommunikation mit Automaten. In: Institut für Instrumentelle Mathematik. Institut für Instrumentelle Mathematik, Bonn
    • (1962) Institut für Instrumentelle Mathematik
    • Petri, C.A.1
  • 241
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • Rabiner LR (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE 77:257-286
    • (1989) Proc IEEE , vol.77 , pp. 257-286
    • Rabiner, L.R.1
  • 243
    • 33646361583 scopus 로고    scopus 로고
    • GenePattern 2.0
    • Reich M et al (2006) GenePattern 2.0. Nat Genet 38:500-501
    • (2006) Nat Genet , vol.38 , pp. 500-501
    • Reich, M.1
  • 248
    • 0036428761 scopus 로고    scopus 로고
    • Negative autoregulation speeds the response times of transcription networks
    • Rosenfeld N, Elowitz MB, Alon U (2002) Negative autoregulation speeds the response times of transcription networks. J Mol Biol 323:785-793
    • (2002) J Mol Biol , vol.323 , pp. 785-793
    • Rosenfeld, N.1    Elowitz, M.B.2    Alon, U.3
  • 249
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323-2326
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 250
    • 0032309503 scopus 로고    scopus 로고
    • A maximum-flow formulation of the N-camera stereo correspondence problem
    • Roy S, Cox IJ (1998) A maximum-flow formulation of the N-camera stereo correspondence problem. ICCV: 492-502
    • (1998) ICCV , pp. 492-502
    • Roy, S.1    Cox, I.J.2
  • 254
    • 28444473707 scopus 로고    scopus 로고
    • Comparison of SVM-based methods for remote homology detection
    • Saigo H et al (2002) Comparison of SVM-based methods for remote homology detection. Genome Inform 13:396-397
    • (2002) Genome Inform , vol.13 , pp. 396-397
    • Saigo, H.1
  • 255
    • 34247579156 scopus 로고    scopus 로고
    • A survey of motif discovery methods in an integrated framework
    • Sandve G, Drablos F (2006) A survey of motif discovery methods in an integrated framework. Biol Direct 1:11
    • (2006) Biol Direct , vol.1 , pp. 11
    • Sandve, G.1    Drablos, F.2
  • 256
    • 0027234320 scopus 로고
    • Analysis of cleavage-site patterns in protein precursor sequences with a perceptron-type neural network
    • Schneider G, Rohlk S, Wrede P (1993) Analysis of cleavage-site patterns in protein precursor sequences with a perceptron-type neural network. Biochem Biophys Res Commun 194:951-959
    • (1993) Biochem Biophys Res Commun , vol.194 , pp. 951-959
    • Schneider, G.1    Rohlk, S.2    Wrede, P.3
  • 261
    • 73649086608 scopus 로고    scopus 로고
    • Getting started in gene expression microarray analysis
    • Slonim DK, Yanai I (2009) Getting started in gene expression microarray analysis. PLoS Comput Biol 5:e1000543
    • (2009) PLoS Comput Biol , vol.5 , pp. e1000543
    • Slonim, D.K.1    Yanai, I.2
  • 263
    • 0020480251 scopus 로고
    • Use of the 'Perceptron' algorithm to distinguish translational initiation sites in E. coli
    • Stormo GD et al (1982) Use of the 'Perceptron' algorithm to distinguish translational initiation sites in E. coli. Nucleic Acids Res 10:2997-3011
    • (1982) Nucleic Acids Res , vol.10 , pp. 2997-3011
    • Stormo, G.D.1
  • 269
    • 0345096675 scopus 로고    scopus 로고
    • Steady state analysis of metabolic pathways using Petri nets
    • Voss K, Heiner M, Koch I (2003) Steady state analysis of metabolic pathways using Petri nets. In Silico Biol 3(31):367-387
    • (2003) Silico Biol , vol.3 , Issue.31 , pp. 367-387
    • Voss, K.1    Heiner, M.2    Koch, I.3
  • 270
    • 0035342122 scopus 로고    scopus 로고
    • Drug target discovery by gene expression analysis cell cycle genes
    • Walker MG (2001) Drug target discovery by gene expression analysis cell cycle genes. Curr Cancer Drug Targ 1:73-83
    • (2001) Curr Cancer Drug Targ , vol.1 , pp. 73-83
    • Walker, M.G.1
  • 273
    • 33947319163 scopus 로고    scopus 로고
    • Protein ranking by semi-supervised network propagation
    • Weston J, Kuang R et al (2006) Protein ranking by semi-supervised network propagation. BMC Bioinformatics 7(Suppl 1):S10
    • (2006) BMC Bioinformatics , vol.7 , pp. S10
    • Weston, J.1    Kuang, R.2
  • 277
    • 0032726692 scopus 로고    scopus 로고
    • ProtoMap: Automatic classification of protein sequences, a hierarchy of protein families, and local maps of the protein space
    • Yona G, Linial N, Linial M (1999) ProtoMap: automatic classification of protein sequences, a hierarchy of protein families, and local maps of the protein space. Protein Struct Funct Bioinform 37:360-378
    • (1999) Protein Struct Funct Bioinform , vol.37 , pp. 360-378
    • Yona, G.1    Linial, N.2    Linial, M.3
  • 278
    • 33744786001 scopus 로고    scopus 로고
    • A comparative analysis of protein homology detection methods
    • Zaki NM, Deris S, Illias RM (2003) A comparative analysis of protein homology detection methods. J Theor 5:7
    • (2003) J Theor , vol.5 , pp. 7
    • Zaki, N.M.1    Deris, S.2    Illias, R.M.3
  • 279
    • 0005004572 scopus 로고    scopus 로고
    • The value of unlabeled data for classification problems
    • Morgan Kaufmann, San Francisco
    • Zhang T, Oles FJ (2000) The value of unlabeled data for classification problems. In: Seventeenth international conference on machine learning. Morgan Kaufmann, San Francisco, pp 1191-1198
    • (2000) Seventeenth International Conference on Machine Learning , pp. 1191-1198
    • Zhang, T.1    Oles, F.J.2
  • 282
    • 27244438560 scopus 로고    scopus 로고
    • Gene-expression analysis and network discovery using Genevestigator
    • Zimmermann P, Hennig L, Gruissem W (2005) Gene-expression analysis and network discovery using Genevestigator. Trends Plant Sci 10:407-409
    • (2005) Trends Plant Sci , vol.10 , pp. 407-409
    • Zimmermann, P.1    Hennig, L.2    Gruissem, W.3
  • 283
    • 39849083922 scopus 로고    scopus 로고
    • Bayesian hierarchical spatially correlated functional data analysis with application to colon carcinogenesis
    • Baladandayuthapani V et al (2008) Bayesian hierarchical spatially correlated functional data analysis with application to colon carcinogenesis. Biometrics 64:64-73
    • (2008) Biometrics , vol.64 , pp. 64-73
    • Baladandayuthapani, V.1
  • 286
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L (1996) Bagging predictors. Mach Learn 24:123-140
    • (1996) Mach Learn , vol.24 , pp. 123-140
    • Breiman, L.1
  • 287
    • 84943175777 scopus 로고
    • AutoClass: A Bayesian classification system
    • Morgan Kauffman, Ann Arbor
    • Cheeseman P (1988) AutoClass: a Bayesian classification system. In: Fifth international conference on machine learning. Morgan Kauffman, Ann Arbor, pp 54-64
    • (1988) Fifth International Conference on Machine Learning , pp. 54-64
    • Cheeseman, P.1
  • 289
    • 0002607026 scopus 로고    scopus 로고
    • Bayesian classification (AutoClass): Theory and results
    • American Association for Artificial Intelligence, Menlo Park
    • Cheeseman P, Stutz J (1996) Bayesian classification (AutoClass): theory and results. In: Advances in knowledge discovery and data mining. American Association for Artificial Intelligence, Menlo Park, pp 153-180
    • (1996) Advances in Knowledge Discovery and Data Mining , pp. 153-180
    • Cheeseman, P.1    Stutz, J.2
  • 290
    • 0037691834 scopus 로고    scopus 로고
    • Introductory statistics with R
    • Springer, New York
    • Dalgaard P (2002) Introductory statistics with R. In: Statistics and computing. Springer, New York
    • (2002) Statistics and Computing
    • Dalgaard, P.1
  • 292
    • 0031536511 scopus 로고    scopus 로고
    • Improvements on cross-validation: The.632+ Bootstrap method
    • Efron B, Tibshirani R (1997) Improvements on cross-validation: the.632+ Bootstrap method. J Am Stat Assoc 92:548-560
    • (1997) J Am Stat Assoc , vol.92 , pp. 548-560
    • Efron, B.1    Tibshirani, R.2
  • 293
    • 34249075147 scopus 로고    scopus 로고
    • MET amplification leads to Gefitinib resistance in lung cancer by activating ERBB3 signaling
    • Engelman JA et al (2007) MET amplification leads to Gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316:1039-1043
    • (2007) Science , vol.316 , pp. 1039-1043
    • Engelman, J.A.1
  • 294
    • 0343442766 scopus 로고
    • Knowledge acquisition via incremental conceptual clustering
    • Fisher DH (1987) Knowledge acquisition via incremental conceptual clustering. Mach Learn 2:139-172
    • (1987) Mach Learn , vol.2 , pp. 139-172
    • Fisher, D.H.1
  • 295
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? Which clustering method? Answers via modelbased cluster analysis
    • Fraley C, Raftery AE (1998) How many clusters? which clustering method? Answers via modelbased cluster analysis. Comput J 41:578-588
    • (1998) Comput J , vol.41 , pp. 578-588
    • Fraley, C.1    Raftery, A.E.2
  • 299
    • 63549121194 scopus 로고    scopus 로고
    • Review of three latent class cluster analysis packages: Latent Gold, poLCA, and MCLUST
    • Haughton D, Legrand P, Woolford S (2009) Review of three latent class cluster analysis packages: Latent Gold, poLCA, and MCLUST. Am Stat 63:81-91
    • (2009) Am Stat , vol.63 , pp. 81-91
    • Haughton, D.1    Legrand, P.2    Woolford, S.3
  • 300
    • 3342974457 scopus 로고    scopus 로고
    • Prostate-specific antigen testing accuracy in community practice
    • Hoffman R et al (2002) Prostate-specific antigen testing accuracy in community practice. BMC Fam Pract 3:19
    • (2002) BMC Fam Pract , vol.3 , pp. 19
    • Hoffman, R.1
  • 301
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used datasets
    • Holte RC (1993) Very simple classification rules perform well on most commonly used datasets. Mach Learn 11:63-91
    • (1993) Mach Learn , vol.11 , pp. 63-91
    • Holte, R.C.1
  • 302
    • 44449155486 scopus 로고    scopus 로고
    • Tumor blood flow interruption after radiotherapy strongly inhibits tumor regrowth
    • Hori K, Furumoto S, Kubota K (2008) Tumor blood flow interruption after radiotherapy strongly inhibits tumor regrowth. Cancer Sci 99:1485-1491
    • (2008) Cancer Sci , vol.99 , pp. 1485-1491
    • Hori, K.1    Furumoto, S.2    Kubota, K.3
  • 303
    • 0023909330 scopus 로고
    • Determinants of tumor blood flow: A review
    • Jain RK (1988) Determinants of tumor blood flow: a review. Cancer Res 48:2641-2658
    • (1988) Cancer Res , vol.48 , pp. 2641-2658
    • Jain, R.K.1
  • 304
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • Morgan Kaufmann, San Francisco
    • Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In: International joint conference on artificial intelligence 1995. Morgan Kaufmann, San Francisco, pp 1137-1143
    • (1995) International Joint Conference on Artificial Intelligence 1995 , pp. 1137-1143
    • Kohavi, R.1
  • 305
  • 306
    • 0000234257 scopus 로고
    • The evidence framework applied to classification networks
    • MacKay DJC (1992) The evidence framework applied to classification networks. Neural Comput 4:720-736
    • (1992) Neural Comput , vol.4 , pp. 720-736
    • MacKay, D.J.C.1
  • 307
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • Cam LML, Neyman J eds, University of California Press, Berkeley
    • MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Cam LML, Neyman J (eds) Fifth Berkeley symposium on mathematical statistics and probability. University of California Press, Berkeley, pp 281-297
    • (1967) Fifth Berkeley Symposium on Mathematical Statistics and Probability , pp. 281-297
    • MacQueen, J.1
  • 308
    • 0036739286 scopus 로고    scopus 로고
    • Bayesian infinite mixture model based clustering of gene expression profiles
    • Medvedovic M, Sivaganesan S (2002) Bayesian infinite mixture model based clustering of gene expression profiles. Bioinformatics 18:1194-1206
    • (2002) Bioinformatics , vol.18 , pp. 1194-1206
    • Medvedovic, M.1    Sivaganesan, S.2
  • 309
    • 3042686005 scopus 로고    scopus 로고
    • Bayesian mixture model based clustering of replicated microarray data
    • Medvedovic M, Yeung KY, Bumgarner RE (2004) Bayesian mixture model based clustering of replicated microarray data. Bioinformatics 20:1222-1232
    • (2004) Bioinformatics , vol.20 , pp. 1222-1232
    • Medvedovic, M.1    Yeung, K.Y.2    Bumgarner, R.E.3
  • 310
    • 33747890494 scopus 로고    scopus 로고
    • A Mixture model with random-effects components for clustering correlated gene-expression profiles
    • Ng SK et al (2006) A Mixture model with random-effects components for clustering correlated gene-expression profiles. Bioinformatics 22:1745-1752
    • (2006) Bioinformatics , vol.22 , pp. 1745-1752
    • Ng, S.K.1
  • 311
    • 29944440191 scopus 로고    scopus 로고
    • Baseline chest radiograph for lung cancer detection in the randomized prostate, lung, colorectal and ovarian cancer screening trial
    • Oken MM et al (2005) Baseline chest radiograph for lung cancer detection in the randomized prostate, lung, colorectal and ovarian cancer screening trial. J Natl Cancer Inst 97:1832-1839
    • (2005) J Natl Cancer Inst , vol.97 , pp. 1832-1839
    • Oken, M.M.1
  • 312
    • 84950445313 scopus 로고
    • Cross-validation of regression models
    • Picard RR, Cook RD (1984) Cross-validation of regression models. J Am Stat Assoc 79:575-583
    • (1984) J Am Stat Assoc , vol.79 , pp. 575-583
    • Picard, R.R.1    Cook, R.D.2
  • 313
    • 0035428060 scopus 로고    scopus 로고
    • Beyond body mass index
    • Prentice AM, Jebb SA (2001) Beyond body mass index. Obes Rev 2:141-147
    • (2001) Obes Rev , vol.2 , pp. 141-147
    • Prentice, A.M.1    Jebb, S.A.2
  • 314
    • 33747830882 scopus 로고    scopus 로고
    • Clustering microarray gene expression data using weighted Chinese restaurant process
    • Qin ZS (2006) Clustering microarray gene expression data using weighted Chinese restaurant process. Bioinformatics 22:1988-1997
    • (2006) Bioinformatics , vol.22 , pp. 1988-1997
    • Qin, Z.S.1
  • 315
    • 27544491192 scopus 로고    scopus 로고
    • ROCR: Visualizing classifier performance in R
    • Sing T et al (2005) ROCR: visualizing classifier performance in R. Bioinformatics 21:3940-3941
    • (2005) Bioinformatics , vol.21 , pp. 3940-3941
    • Sing, T.1
  • 316
    • 20444465712 scopus 로고    scopus 로고
    • Bayesian variable selection in clustering high-dimensional data
    • Tadesse MG, Sha N, Vannucci M (2005) Bayesian variable selection in clustering high-dimensional data. J Am Stat Assoc 100:602-617
    • (2005) J Am Stat Assoc , vol.100 , pp. 602-617
    • Tadesse, M.G.1    Sha, N.2    Vannucci, M.3
  • 320
    • 34547915217 scopus 로고    scopus 로고
    • CRCView: A web server for analyzing and visualizing microarray gene expression data using model-based clustering
    • Xiang Z, Qin ZS, He Y (2007) CRCView: a web server for analyzing and visualizing microarray gene expression data using model-based clustering. Bioinformatics 23:1843-1845
    • (2007) Bioinformatics , vol.23 , pp. 1843-1845
    • Xiang, Z.1    Qin, Z.S.2    He, Y.3
  • 321
    • 0034782618 scopus 로고    scopus 로고
    • Model-based clustering and data transformations for gene expression data
    • Yeung KY et al (2001) Model-based clustering and data transformations for gene expression data. Bioinformatics 17:977-987
    • (2001) Bioinformatics , vol.17 , pp. 977-987
    • Yeung, K.Y.1
  • 322
    • 59049087537 scopus 로고    scopus 로고
    • ∗ nicotinic acetylcholine receptor
    • ∗ nicotinic acetylcholine receptor. J Enzyme Inhib Med Chem 24:157-168
    • (2009) J Enzyme Inhib Med Chem , vol.24 , pp. 157-168
    • Zheng, F.1
  • 325
    • 21044449708 scopus 로고    scopus 로고
    • Machine learning methods applied to DNA microarray data can improve the diagnosis of cancer
    • Bair E, Tibshirani R (2003) Machine learning methods applied to DNA microarray data can improve the diagnosis of cancer. ACM SIGKDD Explor Newsl 5:48-55
    • (2003) ACM SIGKDD Explor Newsl , vol.5 , pp. 48-55
    • Bair, E.1    Tibshirani, R.2
  • 328
    • 84984932472 scopus 로고    scopus 로고
    • Exploring the new world of the genome with DNA microarrays
    • Brown PO, Botstein D (1999) Exploring the new world of the genome with DNA microarrays. Nat Genet 21:33-37
    • (1999) Nat Genet , vol.21 , pp. 33-37
    • Brown, P.O.1    Botstein, D.2
  • 329
    • 43249119833 scopus 로고    scopus 로고
    • PhyloFinder: An intelligent search engine for phylogenetic tree databases
    • Chen D et al (2008) PhyloFinder: an intelligent search engine for phylogenetic tree databases. BMC Evol Biol 8:90
    • (2008) BMC Evol Biol , vol.8 , pp. 90
    • Chen, D.1
  • 331
    • 0023084055 scopus 로고
    • Progressive sequence alignment as a prerequisite to correct phylogenetic trees
    • Feng D-F, Doolittle RF (1987) Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J Mol Evol 25:351-360
    • (1987) J Mol Evol , vol.25 , pp. 351-360
    • Feng, D.-F.1    Doolittle, R.F.2
  • 335
    • 0020484488 scopus 로고
    • An improved algorithm for matching biological sequences
    • Gotoh O (1982) An improved algorithm for matching biological sequences. J Mol Biol 162:705-708
    • (1982) J Mol Biol , vol.162 , pp. 705-708
    • Gotoh, O.1
  • 337
    • 0028361540 scopus 로고
    • Many of the immunoglobulin superfamily domains in cell adhesion molecules and surface receptors belong to a new structural set which is close to that containing variable domains
    • Harpaz Y, Chothia C (1994) Many of the immunoglobulin superfamily domains in cell adhesion molecules and surface receptors belong to a new structural set which is close to that containing variable domains. J Mol Biol 238:528-539
    • (1994) J Mol Biol , vol.238 , pp. 528-539
    • Harpaz, Y.1    Chothia, C.2
  • 338
    • 0029887381 scopus 로고    scopus 로고
    • Hidden Markov models for sequence analysis: Extension and analysis of the basic method
    • Hughey R, Krogh A (1996) Hidden Markov models for sequence analysis: extension and analysis of the basic method. Comput Appl Biosci 12:95-107
    • (1996) Comput Appl Biosci , vol.12 , pp. 95-107
    • Hughey, R.1    Krogh, A.2
  • 339
    • 0345928717 scopus 로고    scopus 로고
    • Improved procedures to mine data obtained from spotted cDNA arrays
    • Iacobas AD et al (2002) Improved procedures to mine data obtained from spotted cDNA arrays. J Biomol Tech 13:5-19
    • (2002) J Biomol Tech , vol.13 , pp. 5-19
    • Iacobas, A.D.1
  • 343
    • 30344444303 scopus 로고    scopus 로고
    • Classification using functional data analysis for temporal gene expression data
    • Leng X, Muller H-G (2006) Classification using functional data analysis for temporal gene expression data. Bioinformatics 22:68-76
    • (2006) Bioinformatics , vol.22 , pp. 68-76
    • Leng, X.1    Muller, H.-G.2
  • 344
    • 0034659898 scopus 로고    scopus 로고
    • Genomics, gene expression and DNA arrays
    • Lockhart D, Winzeler E (2000) Genomics, gene expression and DNA arrays. Nature 405:827-836
    • (2000) Nature , vol.405 , pp. 827-836
    • Lockhart, D.1    Winzeler, E.2
  • 347
    • 70349259083 scopus 로고    scopus 로고
    • A novel approach to determine normal variation in gene expression data
    • Nadimpally V, Jaki MJ (2003) A novel approach to determine normal variation in gene expression data. ACM SIGKDD Explor Newsl 5:6-15
    • (2003) ACM SIGKDD Explor Newsl , vol.5 , pp. 6-15
    • Nadimpally, V.1    Jaki, M.J.2
  • 348
    • 0014757386 scopus 로고
    • A general method applicable to the search for similarities in the amino acid sequence of two proteins
    • Needleman S, Wunsch C (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48:443-453
    • (1970) J Mol Biol , vol.48 , pp. 443-453
    • Needleman, S.1    Wunsch, C.2
  • 349
    • 77957219493 scopus 로고
    • Restriction and modification enzymes and their recognition sequences
    • Roberts RJ (1980) Restriction and modification enzymes and their recognition sequences. Nucleic Acids Res 8:r63-r80
    • (1980) Nucleic Acids Res , vol.8 , pp. r63-r80
    • Roberts, R.J.1
  • 355
    • 18244409933 scopus 로고    scopus 로고
    • Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning
    • Shipp MA et al (2002) Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med 8:68-74
    • (2002) Nat Med , vol.8 , pp. 68-74
    • Shipp, M.A.1
  • 356
    • 5344247436 scopus 로고    scopus 로고
    • Supervised analysis when the number of candidate features (p) greatly exceeds the number of cases (n)
    • Simon R (2003) Supervised analysis when the number of candidate features (p) greatly exceeds the number of cases (n). ACM SIGKDD Explor Newsl 5:31-37
    • (2003) ACM SIGKDD Explor Newsl , vol.5 , pp. 31-37
    • Simon, R.1
  • 357
    • 34547781750 scopus 로고    scopus 로고
    • MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0
    • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596-1599
    • (2007) Mol Biol Evol , vol.24 , pp. 1596-1599
    • Tamura, K.1    Dudley, J.2    Nei, M.3    Kumar, S.4
  • 358
    • 0027968068 scopus 로고
    • CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice
    • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673-4680
    • (1994) Nucleic Acids Res , vol.22 , pp. 4673-4680
    • Thompson, J.D.1    Higgins, D.G.2    Gibson, T.J.3
  • 362
    • 0037195138 scopus 로고    scopus 로고
    • Quantitative noise analysis for gene expression microarray experiments
    • Tu Y, Stolovitzky G, Klein U (2002) Quantitative noise analysis for gene expression microarray experiments. Proc Natl Acad Sci USA 99:14031-14036
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 14031-14036
    • Tu, Y.1    Stolovitzky, G.2    Klein, U.3
  • 363
    • 0038715737 scopus 로고    scopus 로고
    • Use of microarray technologies in toxicology research
    • Vrana KE, Freeman WM, Aschner M (2002) Use of microarray technologies in toxicology research. Neurotoxicity 24:321-332
    • (2002) Neurotoxicity , vol.24 , pp. 321-332
    • Vrana, K.E.1    Freeman, W.M.2    Aschner, M.3
  • 365
    • 0000220975 scopus 로고
    • Line geometries for sequence comparisons
    • Waterman MS, Perlwitz MD (1984) Line geometries for sequence comparisons. Bull Math Biol 46:567-577
    • (1984) Bull Math Biol , vol.46 , pp. 567-577
    • Waterman, M.S.1    Perlwitz, M.D.2
  • 366
    • 58149203228 scopus 로고    scopus 로고
    • SUPERFAMILY - Sophisticated comparative genomics, data mining, visualization and phylogeny
    • Wilson D et al (2009) SUPERFAMILY - sophisticated comparative genomics, data mining, visualization and phylogeny. Nucleic Acids Res 37:D380-D386
    • (2009) Nucleic Acids Res , vol.37 , pp. D380-D386
    • Wilson, D.1
  • 367
    • 24344486868 scopus 로고    scopus 로고
    • Efficiently mining frequent trees in a forest: Algorithms and applications
    • Zaki MJ (2005) Efficiently mining frequent trees in a forest: algorithms and applications. IEEE Trans Knowl Data Eng 17:1021-1035
    • (2005) IEEE Trans Knowl Data Eng , vol.17 , pp. 1021-1035
    • Zaki, M.J.1
  • 368
    • 33745457798 scopus 로고    scopus 로고
    • Mining frequent agreement subtrees in phylogenetic databases
    • Ghosh J et al eds, SIAM, Bethesda
    • Zhang S, Wang JTL (2006) Mining frequent agreement subtrees in phylogenetic databases. In: Ghosh J et al (eds) Sixth SIAM international conference on data mining. SIAM, Bethesda, pp 222-233
    • (2006) Sixth SIAM International Conference on Data Mining , pp. 222-233
    • Zhang, S.1    Wang, J.T.L.2
  • 369
    • 51049121625 scopus 로고    scopus 로고
    • Text mining for biology - The way forward: Opinions from leading scientists
    • Altman R et al (2008) Text mining for biology - the way forward: opinions from leading scientists. Genome Biol 9:S7
    • (2008) Genome Biol , vol.9 , pp. S7
    • Altman, R.1
  • 370
    • 33751111173 scopus 로고    scopus 로고
    • Text mining and its potential applications in systems biology
    • Ananiadou S, Kell DB, Tsujii J-I (2006) Text mining and its potential applications in systems biology. Trends Biotechnol 24:571-579
    • (2006) Trends Biotechnol , vol.24 , pp. 571-579
    • Ananiadou, S.1    Kell, D.B.2    Tsujii, J.-I.3
  • 371
    • 33847292727 scopus 로고    scopus 로고
    • GOALIE, a common lisp application to discover "Kripke Models": Redescribing biological processes from time-course data
    • Stanford University, Stanford, 19-22 June 2005
    • Antoniotti M, Ramakrishnan N, Mishra B (2005) GOALIE, a common lisp application to discover "Kripke Models": redescribing biological processes from time-course data. In: Proceedings of the international Lisp conference, Stanford University, Stanford, 19-22 June 2005
    • (2005) Proceedings of the International Lisp Conference
    • Antoniotti, M.1    Ramakrishnan, N.2    Mishra, B.3
  • 374
    • 0038589165 scopus 로고    scopus 로고
    • The anatomy of a large-scale hypertextual Web search engine
    • Brin S, Page L (1998) The anatomy of a large-scale hypertextual Web search engine. Comput Networks ISDN Syst 30:107-117
    • (1998) Comput Networks ISDN Syst , vol.30 , pp. 107-117
    • Brin, S.1    Page, L.2
  • 375
    • 1042269470 scopus 로고    scopus 로고
    • GAPSCORE: Finding gene and protein names one word at a time
    • Chang JT, Schütze H, Altman RB (2004) GAPSCORE: finding gene and protein names one word at a time. Bioinformatics 20:216-225
    • (2004) Bioinformatics , vol.20 , pp. 216-225
    • Chang, J.T.1    Schütze, H.2    Altman, R.B.3
  • 376
    • 34548302044 scopus 로고    scopus 로고
    • Petri net modelling of biological networks
    • Chaouiya C (2007) Petri net modelling of biological networks. Brief Bioinform 8:210-219
    • (2007) Brief Bioinform , vol.8 , pp. 210-219
    • Chaouiya, C.1
  • 377
    • 33746075170 scopus 로고    scopus 로고
    • The application of systems biology to drug discovery
    • Cho CR et al (2006) The application of systems biology to drug discovery. Curr Opin Chem Biol 10:294-302
    • (2006) Curr Opin Chem Biol , vol.10 , pp. 294-302
    • Cho, C.R.1
  • 378
    • 38449101120 scopus 로고    scopus 로고
    • Integration of biological networks and gene expression data using Cytoscape
    • Cline MS et al (2007) Integration of biological networks and gene expression data using Cytoscape. Nat Protoc 2:2366-2382
    • (2007) Nat Protoc , vol.2 , pp. 2366-2382
    • Cline, M.S.1
  • 382
    • 84855710474 scopus 로고    scopus 로고
    • Combining literature text mining with microarray data: Advances for system biology modeling
    • Faro A, Giordano D, Spampinato C (2011) Combining literature text mining with microarray data: advances for system biology modeling. Brief Bioinform
    • (2011) Brief Bioinform
    • Faro, A.1    Giordano, D.2    Spampinato, C.3
  • 383
    • 0037021409 scopus 로고    scopus 로고
    • Protein names and how to find them
    • Franzen K et al (2002) Protein names and how to find them. Int J Med Inform 67:49-61
    • (2002) Int J Med Inform , vol.67 , pp. 49-61
    • Franzen, K.1
  • 384
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • Friedman N et al (2000) Using Bayesian networks to analyze expression data. J Comput Biol 7:601-620
    • (2000) J Comput Biol , vol.7 , pp. 601-620
    • Friedman, N.1
  • 385
    • 0031633368 scopus 로고    scopus 로고
    • Toward information extraction: Identifying protein names from biological papers
    • Hawaii
    • Fukuda K et al (1998) Toward information extraction: identifying protein names from biological papers. In: Pacific symposium on Biocomputing'98, Hawaii, pp 707-718
    • (1998) Pacific Symposium on Biocomputing'98 , pp. 707-718
    • Fukuda, K.1
  • 386
    • 9444266171 scopus 로고    scopus 로고
    • Cell designer: A process diagram editor for gene-regulatory and biochemical networks
    • Funahashi A et al (2003) Cell designer: a process diagram editor for gene-regulatory and biochemical networks. Biosilico 1:159-162
    • (2003) Biosilico , vol.1 , pp. 159-162
    • Funahashi, A.1
  • 388
    • 28744458859 scopus 로고    scopus 로고
    • Bioconductor: Open software development for computational biology and bioinformatics
    • Gentleman RC et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80
    • (2004) Genome Biol , vol.5 , pp. R80
    • Gentleman, R.C.1
  • 389
    • 76249112102 scopus 로고    scopus 로고
    • Data mining by navigation - An experience with systems biology
    • Chaudhury S et al eds, Springer, Berlin/Heidelberg
    • Gupta A et al (2009) Data mining by navigation - an experience with systems biology. In: Chaudhury S et al (eds) Pattern recognition and machine intelligence. Springer, Berlin/Heidelberg, pp 158-164
    • (2009) Pattern Recognition and Machine Intelligence , pp. 158-164
    • Gupta, A.1
  • 391
    • 0035319006 scopus 로고    scopus 로고
    • Computational studies of gene regulatory networks: In numero molecular biology
    • Hasty J et al (2001) Computational studies of gene regulatory networks: in numero molecular biology. Nat Rev Genet 2:268-279
    • (2001) Nat Rev Genet , vol.2 , pp. 268-279
    • Hasty, J.1
  • 392
    • 33947304181 scopus 로고    scopus 로고
    • Overview of BioCreAtIvE: Critical assessment of information extraction for biology
    • Hirschman L et al (2005) Overview of BioCreAtIvE: critical assessment of information extraction for biology. BMC Bioinformatics 6(Suppl 1):S1
    • (2005) BMC Bioinformatics , vol.6 , pp. S1
    • Hirschman, L.1
  • 393
    • 0032809387 scopus 로고    scopus 로고
    • Gene expression profiling, genetic networks, and cellular states: An integrating concept for tumorigenesis and drug discovery
    • Huang S (1999) Gene expression profiling, genetic networks, and cellular states: an integrating concept for tumorigenesis and drug discovery. J Mol Med 77:469-480
    • (1999) J Mol Med , vol.77 , pp. 469-480
    • Huang, S.1
  • 394
    • 0037342537 scopus 로고    scopus 로고
    • The systems biology markup language (SBML): A medium for representation and exchange of biochemical network models
    • Hucka M et al (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19:524-531
    • (2003) Bioinformatics , vol.19 , pp. 524-531
    • Hucka, M.1
  • 395
    • 4344662111 scopus 로고    scopus 로고
    • AliasServer: A web server to handle multiple aliases used to refer to proteins
    • Iragne F et al (2004) AliasServer: a web server to handle multiple aliases used to refer to proteins. Bioinformatics 20:2331-2332
    • (2004) Bioinformatics , vol.20 , pp. 2331-2332
    • Iragne, F.1
  • 396
    • 0014489272 scopus 로고
    • Metabolic stability and epigenesis in randomly constructed genetic nets
    • Kauffman SA (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22:437-467
    • (1969) J Theor Biol , vol.22 , pp. 437-467
    • Kauffman, S.A.1
  • 397
    • 33644959172 scopus 로고    scopus 로고
    • Metabolomics, modelling and machine learning in systems biology - Towards an understanding of the languages of cells
    • Kell DB (2006) Metabolomics, modelling and machine learning in systems biology - towards an understanding of the languages of cells. FEBS J 273:873-894
    • (2006) FEBS J , vol.273 , pp. 873-894
    • Kell, D.B.1
  • 398
    • 35649027901 scopus 로고    scopus 로고
    • The virtual human: Towards a global systems biology of multiscale, distributed biochemical network models
    • Kell DB (2007) The virtual human: towards a global systems biology of multiscale, distributed biochemical network models. IUBMB Life 59:689-695
    • (2007) IUBMB Life , vol.59 , pp. 689-695
    • Kell, D.B.1
  • 400
    • 22244459539 scopus 로고    scopus 로고
    • Text-mining and information-retrieval services for molecular biology
    • Krallinger M, Valencia A (2005) Text-mining and information-retrieval services for molecular biology. Genome Biol 6:224
    • (2005) Genome Biol , vol.6 , pp. 224
    • Krallinger, M.1    Valencia, A.2
  • 401
    • 51049110331 scopus 로고    scopus 로고
    • Linking genes to literature: Text mining, information extraction, and retrieval applications for biology
    • Krallinger M, Valencia A, Hirschman L (2008) Linking genes to literature: text mining, information extraction, and retrieval applications for biology. Genome Biol 9:S8
    • (2008) Genome Biol , vol.9 , pp. S8
    • Krallinger, M.1    Valencia, A.2    Hirschman, L.3
  • 402
    • 33745783973 scopus 로고    scopus 로고
    • Symbolic systems biology: Hybrid modeling and analysis of biological networks
    • Bemporad A, Bicchi A, Buttazzo G eds, Springer, Berlin/Heidelberg/New York
    • Lincoln P, Tiwari A (2004) Symbolic systems biology: hybrid modeling and analysis of biological networks. In: Bemporad A, Bicchi A, Buttazzo G (eds) Hybrid systems: computation and control HSCC, volume 2993 of LNCS. Springer, Berlin/Heidelberg/New York, pp 660-672
    • (2004) Hybrid Systems: Computation and Control HSCC, Volume 2993 of LNCS , pp. 660-672
    • Lincoln, P.1    Tiwari, A.2
  • 403
    • 26444535298 scopus 로고    scopus 로고
    • Segmentation Conditional Random Fields (SCRFs): A new approach for protein fold recognition
    • S. Miyano, J. Mesirov, S. Kasif et al, Springer Berlin/Heidelberg
    • Liu, Y, Carbonell J et al (2005) Segmentation Conditional Random Fields (SCRFs): A New Approach for Protein Fold Recognition. Research in Computational Molecular Biology. S. Miyano, J. Mesirov, S. Kasif et al, Springer Berlin/Heidelberg. 3500:408-422.
    • (2005) Research in Computational Molecular Biology , vol.3500 , pp. 408-422
    • Liu, Y.1    Carbonell, J.2
  • 404
    • 17644385076 scopus 로고    scopus 로고
    • Computational representation of developmental genetic regulatory networks
    • Longabaugh WJR, Davidson EH, Bolouri H (2005) Computational representation of developmental genetic regulatory networks. Dev Biol 283:1-16
    • (2005) Dev Biol , vol.283 , pp. 1-16
    • Longabaugh, W.J.R.1    Davidson, E.H.2    Bolouri, H.3
  • 406
    • 0141850380 scopus 로고    scopus 로고
    • PathMiner: Predicting metabolic pathways by heuristic search
    • McShan DC, Rao S, Shah I (2003) PathMiner: predicting metabolic pathways by heuristic search. Bioinformatics 19:1692-1698
    • (2003) Bioinformatics , vol.19 , pp. 1692-1698
    • McShan, D.C.1    Rao, S.2    Shah, I.3
  • 407
    • 0028844979 scopus 로고
    • A mathematical framework for describing and analysing gene regulatory networks
    • Mestl T, Plahte E, Omholt SW (1995) A mathematical framework for describing and analysing gene regulatory networks. J Theor Biol 176:291-300
    • (1995) J Theor Biol , vol.176 , pp. 291-300
    • Mestl, T.1    Plahte, E.2    Omholt, S.W.3
  • 408
    • 3242881967 scopus 로고    scopus 로고
    • NLProt: Extracting protein names and sequences from papers
    • Mika S, Rost B (2004) NLProt: extracting protein names and sequences from papers. Nucleic Acids Res 32:W634-W637
    • (2004) Nucleic Acids Res , vol.32 , pp. W634-W637
    • Mika, S.1    Rost, B.2
  • 410
    • 33947324308 scopus 로고    scopus 로고
    • Towards a better solution to the shortest common supersequence problem: The deposition and reduction algorithm
    • Ning K, Leong H (2006) Towards a better solution to the shortest common supersequence problem: the deposition and reduction algorithm. BMC Bioinformatics 7:S12
    • (2006) BMC Bioinformatics , vol.7 , pp. S12
    • Ning, K.1    Leong, H.2
  • 411
    • 34948886726 scopus 로고    scopus 로고
    • Integrative data mining in systems biology: From text to network mining
    • Peng Y, Zhang X (2007) Integrative data mining in systems biology: from text to network mining. Artif Intell Med 41:83-86
    • (2007) Artif Intell Med , vol.41 , pp. 83-86
    • Peng, Y.1    Zhang, X.2
  • 412
    • 77949644952 scopus 로고    scopus 로고
    • Towards a rigorous assessment of systems biology models: The DREAM3 challenges
    • Prill RJ et al (2010) Towards a rigorous assessment of systems biology models: the DREAM3 challenges. PLoS One 5:e9202
    • (2010) PLoS One , vol.5 , pp. e9202
    • Prill, R.J.1
  • 413
    • 77955453151 scopus 로고    scopus 로고
    • Reverse engineering dynamic temporal models of biological processes and their relationships
    • Ramakrishnan N et al (2010) Reverse engineering dynamic temporal models of biological processes and their relationships. Proc Natl Acad Sci 107:12511-12516
    • (2010) Proc Natl Acad Sci , vol.107 , pp. 12511-12516
    • Ramakrishnan, N.1
  • 415
    • 0347511691 scopus 로고    scopus 로고
    • Next generation simulation tools: The Systems Biology Workbench and BioSPICE integration
    • Sauro HM et al (2003) Next generation simulation tools: the Systems Biology Workbench and BioSPICE integration. OMICS J Integrat Biol 7:355-372
    • (2003) OMICS J Integrat Biol , vol.7 , pp. 355-372
    • Sauro, H.M.1
  • 416
    • 34249891460 scopus 로고    scopus 로고
    • SBMLmerge, a system for combining biochemical network models
    • Schulz M et al (2006) SBMLmerge, a system for combining biochemical network models. Genome Inform 17:62-71
    • (2006) Genome Inform , vol.17 , pp. 62-71
    • Schulz, M.1
  • 418
    • 0036184629 scopus 로고    scopus 로고
    • Probabilistic Boolean networks: A rule-based uncertainty model for gene regulatory networks
    • Shmulevich I et al (2002) Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 18:261-274
    • (2002) Bioinformatics , vol.18 , pp. 261-274
    • Shmulevich, I.1
  • 419
    • 34547825448 scopus 로고    scopus 로고
    • Simulation study in Probabilistic Boolean Network models for genetic regulatory networks
    • Shu et al (2007) Simulation study in Probabilistic Boolean Network models for genetic regulatory networks. Int J Data Min Bioinform 1:217-240
    • (2007) Int J Data Min Bioinform , vol.1 , pp. 217-240
    • Shu1
  • 420
    • 0033725197 scopus 로고    scopus 로고
    • Mathematical modeling of gene networks
    • Smolen P, Baxter DA, Byrne JH (2000) Mathematical modeling of gene networks. Neuron 26:567-580
    • (2000) Neuron , vol.26 , pp. 567-580
    • Smolen, P.1    Baxter, D.A.2    Byrne, J.H.3
  • 421
    • 79551587720 scopus 로고    scopus 로고
    • Cytoscape 2.8: New features for data integration and network visualization
    • Smoot ME et al (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431-432
    • (2011) Bioinformatics , vol.27 , pp. 431-432
    • Smoot, M.E.1
  • 422
    • 78651268618 scopus 로고    scopus 로고
    • A systems biology model of the regulatory network in Populus leaves reveals interacting regulators and conserved regulation
    • Street N, Jansson S, Hvidsten T (2011) A systems biology model of the regulatory network in Populus leaves reveals interacting regulators and conserved regulation. BMC Plant Biol 11:13
    • (2011) BMC Plant Biol , vol.11 , pp. 13
    • Street, N.1    Jansson, S.2    Hvidsten, T.3
  • 423
    • 0036678776 scopus 로고    scopus 로고
    • Tagging gene and protein names in biomedical text
    • Tanabe L, Wilbur WJ (2002) Tagging gene and protein names in biomedical text. Bioinformatics 18:1124-1132
    • (2002) Bioinformatics , vol.18 , pp. 1124-1132
    • Tanabe, L.1    Wilbur, W.J.2
  • 424
    • 67651232760 scopus 로고    scopus 로고
    • A systems biology network model for genetic association studies of nicotine addiction and treatment
    • 510.1097/FPC.1090b1013e32832e32832ced
    • Thomas PD et al (2009) A systems biology network model for genetic association studies of nicotine addiction and treatment. Pharmacogenet Genomics 19:538-551, 510.1097/FPC.1090b1013e32832e32832ced
    • (2009) Pharmacogenet Genomics , vol.19 , pp. 538-551
    • Thomas, P.D.1
  • 429
    • 0032549745 scopus 로고    scopus 로고
    • Genomic cis-regulatory logic: Experimental and computational analysis of a sea urchin gene
    • Yuh C-H, Bolouri H, Davidson EH (1998) Genomic cis-regulatory logic: experimental and computational analysis of a sea urchin gene. Science 279:1896-1902
    • (1998) Science , vol.279 , pp. 1896-1902
    • Yuh, C.-H.1    Bolouri, H.2    Davidson, E.H.3
  • 438
    • 58049209792 scopus 로고    scopus 로고
    • Conditional random pattern algorithm for LOH inference and segmentation
    • Wu L-Y et al (2009) Conditional random pattern algorithm for LOH inference and segmentation. Bioinformatics 25:61-67
    • (2009) Bioinformatics , vol.25 , pp. 61-67
    • Wu, L.-Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.