메뉴 건너뛰기




Volumn 2, Issue 1, 2007, Pages 49-61

Hidden Markov Models in bioinformatics

Author keywords

Dynamical programming; Hidden Markov Model; HMM; Labeling; Sequence profiling; Structure prediction

Indexed keywords

BIOINFORMATICS; DYNAMIC PROGRAMMING; PATTERN RECOGNITION;

EID: 34248188820     PISSN: 15748936     EISSN: None     Source Type: Journal    
DOI: 10.2174/157489307779314348     Document Type: Review
Times cited : (37)

References (70)
  • 1
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • Rabiner LR. A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE 1989; 77: 257-86.
    • (1989) Proceedings of the IEEE , vol.77 , pp. 257-286
    • Rabiner, L.R.1
  • 2
    • 5044223128 scopus 로고    scopus 로고
    • What is a hidden Markov model?
    • Eddy SR. What is a hidden Markov model? Nat Biotechnol 2004; 22:1315-6.
    • (2004) Nat Biotechnol , vol.22 , pp. 1315-1316
    • Eddy, S.R.1
  • 5
    • 0031343557 scopus 로고    scopus 로고
    • Statistical techniques for natural language parsing
    • Charniak E. Statistical techniques for natural language parsing. AI Mag 1997; 18: 33-43.
    • (1997) AI Mag , vol.18 , pp. 33-43
    • Charniak, E.1
  • 8
    • 0000803318 scopus 로고
    • Construction of multilocus genetic linkage maps in humans
    • Lander ES, Green P. Construction of multilocus genetic linkage maps in humans. Proc Natl Acad Sci USA 1987; 84:2363-7.
    • (1987) Proc Natl Acad Sci USA , vol.84 , pp. 2363-2367
    • Lander, E.S.1    Green, P.2
  • 9
    • 0024557590 scopus 로고
    • Stochastic models for heterogeneous DNA sequences
    • Churchill GA. Stochastic models for heterogeneous DNA sequences. Bull Math Biol 1989; 51: 79-94.
    • (1989) Bull Math Biol , vol.51 , pp. 79-94
    • Churchill, G.A.1
  • 11
    • 19844377248 scopus 로고    scopus 로고
    • Recent applications of Hidden Markov Models in computational biology
    • Choo KH, Tong JC, Zhang L. Recent applications of Hidden Markov Models in computational biology. Genomics Proteomics Bioinformatics 2004; 2: 84-96.
    • (2004) Genomics Proteomics Bioinformatics , vol.2 , pp. 84-96
    • Choo, K.H.1    Tong, J.C.2    Zhang, L.3
  • 13
    • 0032438987 scopus 로고    scopus 로고
    • Hidden Markov models for detecting remote protein homologies
    • Karplus K, Barrett C, Hughey R. Hidden Markov models for detecting remote protein homologies. Bioinformatics 1998; 14: 846-56.
    • (1998) Bioinformatics , vol.14 , pp. 846-856
    • Karplus, K.1    Barrett, C.2    Hughey, R.3
  • 14
    • 0036850213 scopus 로고    scopus 로고
    • The SUPERFAMILY database in structural genomics
    • Gough J. The SUPERFAMILY database in structural genomics. Acta Crystallogr D Biol Crystallogr 2002; 58: 1897-900.
    • (2002) Acta Crystallogr D Biol Crystallogr , vol.58 , pp. 1897-1900
    • Gough, J.1
  • 15
    • 0012035566 scopus 로고    scopus 로고
    • Identification and characterization of subfamily-specific signatures in a large protein superfamily by a hidden Markov model approach
    • Truong K, Ikura M. Identification and characterization of subfamily-specific signatures in a large protein superfamily by a hidden Markov model approach. BMC Bioinformatics 2002; 3: 1.
    • (2002) BMC Bioinformatics , vol.3 , pp. 1
    • Truong, K.1    Ikura, M.2
  • 17
    • 0028181441 scopus 로고
    • Hidden Markov models in computational biology. Applications to protein modeling
    • Krogh A, Brown M, Mian IS, Sjolander K, Haussler D. Hidden Markov models in computational biology. Applications to protein modeling. J Mol Biol 1994b; 235: 1501-31.
    • (1994) J Mol Biol , vol.235 , pp. 1501-1531
    • Krogh, A.1    Brown, M.2    Mian, I.S.3    Sjolander, K.4    Haussler, D.5
  • 18
    • 16344373015 scopus 로고    scopus 로고
    • Protein homology detection by HMM-HMM comparison
    • Soding J. Protein homology detection by HMM-HMM comparison. Bioinformatics 2005; 21: 951-60.
    • (2005) Bioinformatics , vol.21 , pp. 951-960
    • Soding, J.1
  • 19
    • 0031743421 scopus 로고    scopus 로고
    • Profile hidden Markov models
    • Eddy SR. Profile hidden Markov models. Bioinformatics 1998; 14: 755-63.
    • (1998) Bioinformatics , vol.14 , pp. 755-763
    • Eddy, S.R.1
  • 20
  • 21
    • 0027944605 scopus 로고
    • A hidden Markov model that finds genes in E. coli DNA
    • Krogh A, Mian IS, Haussler D. A hidden Markov model that finds genes in E. coli DNA. Nucleic Acids Res 1994; 22: 4768-78.
    • (1994) Nucleic Acids Res , vol.22 , pp. 4768-4778
    • Krogh, A.1    Mian, I.S.2    Haussler, D.3
  • 22
    • 0030810993 scopus 로고    scopus 로고
    • Finding genes in DNA with a Hidden Markov Model
    • Henderson J, Salzberg S, Fasman KH. Finding genes in DNA with a Hidden Markov Model. J Comput Biol 1997; 4: 127-41.
    • (1997) J Comput Biol , vol.4 , pp. 127-141
    • Henderson, J.1    Salzberg, S.2    Fasman, K.H.3
  • 25
    • 0036772510 scopus 로고    scopus 로고
    • Comparative ab initio prediction of gene structures using pair HMMs
    • Meyer IM, Durbin R. Comparative ab initio prediction of gene structures using pair HMMs. Bioinformatics 2002; 18: 1309-18.
    • (2002) Bioinformatics , vol.18 , pp. 1309-1318
    • Meyer, I.M.1    Durbin, R.2
  • 26
    • 0034819854 scopus 로고    scopus 로고
    • Applications of generalized pair hidden Markov models to alignment and gene finding problems
    • Lengauer T, Sankoff D, Istrail S, Pevzner P, Waterman M Eds, ACM Press, New York
    • Pachter L, Alexandersson M, Cawley S. Applications of generalized pair hidden Markov models to alignment and gene finding problems, In: Lengauer T, Sankoff D, Istrail S, Pevzner P, Waterman M Eds, Proceedings of the Fifth International Conference on Computational Biology (RECOMB). Vol. 1, ACM Press, New York, 2001: 241-8.
    • (2001) Proceedings of the Fifth International Conference on Computational Biology (RECOMB) , vol.1 , pp. 241-248
    • Pachter, L.1    Alexandersson, M.2    Cawley, S.3
  • 27
    • 18744364746 scopus 로고    scopus 로고
    • Efficient implementation of a generalized pair hidden Markov model for comparative gene finding
    • Majoros WH, Pertea M, Salzberg SL. Efficient implementation of a generalized pair hidden Markov model for comparative gene finding. Bioinformatics 2005; 21: 1782-8.
    • (2005) Bioinformatics , vol.21 , pp. 1782-1788
    • Majoros, W.H.1    Pertea, M.2    Salzberg, S.L.3
  • 28
    • 0032519353 scopus 로고    scopus 로고
    • GeneMark.hmm: New solutions for gene finding
    • Lukashin AV, Borodovsky M. GeneMark.hmm: new solutions for gene finding. Nucleic Acids Res 1998; 26: 1107-15.
    • (1998) Nucleic Acids Res , vol.26 , pp. 1107-1115
    • Lukashin, A.V.1    Borodovsky, M.2
  • 29
    • 0037311782 scopus 로고    scopus 로고
    • Gene finding with a hidden Markov model of genome structure and evolution
    • Pedersen JS, Hein J. Gene finding with a hidden Markov model of genome structure and evolution. Bioinformatics 2003; 19: 219-27.
    • (2003) Bioinformatics , vol.19 , pp. 219-227
    • Pedersen, J.S.1    Hein, J.2
  • 30
    • 0027174134 scopus 로고
    • Prediction of protein secondary structure by the hidden Markov model
    • Asai K, Hayamizu S, Handa, K. Prediction of protein secondary structure by the hidden Markov model. Comput Appl Biosci 1993; 9: 141-46.
    • (1993) Comput Appl Biosci , vol.9 , pp. 141-146
    • Asai, K.1    Hayamizu, S.2    Handa, K.3
  • 31
    • 0030601801 scopus 로고    scopus 로고
    • Using evolutionary trees in protein secondary structure prediction and other comparative sequence analyses
    • Goldman N, Thorne JL, Jones DT. Using evolutionary trees in protein secondary structure prediction and other comparative sequence analyses. J Mol Biol 1996; 263: 196-208.
    • (1996) J Mol Biol , vol.263 , pp. 196-208
    • Goldman, N.1    Thorne, J.L.2    Jones, D.T.3
  • 33
    • 2942624227 scopus 로고    scopus 로고
    • Advances in the prediction of protein targeting signals
    • Schneider G, Fechner U. Advances in the prediction of protein targeting signals. Proteomics 2004; 4: 1571-80.
    • (2004) Proteomics , vol.4 , pp. 1571-1580
    • Schneider, G.1    Fechner, U.2
  • 34
    • 0037316242 scopus 로고    scopus 로고
    • A profile hidden Markov model for signal peptides generated by HMMER
    • Zhang Z, Wood WI. A profile hidden Markov model for signal peptides generated by HMMER. Bioinformatics 2003; 19: 307-8.
    • (2003) Bioinformatics , vol.19 , pp. 307-308
    • Zhang, Z.1    Wood, W.I.2
  • 35
  • 36
    • 0032561132 scopus 로고    scopus 로고
    • Principles governing amino acid composition of integral membrane proteins: Application to topology prediction
    • Tusnady GE, Simon I. Principles governing amino acid composition of integral membrane proteins: application to topology prediction. J Mol Biol 1998; 283: 489-506.
    • (1998) J Mol Biol , vol.283 , pp. 489-506
    • Tusnady, G.E.1    Simon, I.2
  • 37
    • 0035910270 scopus 로고    scopus 로고
    • Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes
    • Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001; 305: 567-80.
    • (2001) J Mol Biol , vol.305 , pp. 567-580
    • Krogh, A.1    Larsson, B.2    von Heijne, G.3    Sonnhammer, E.L.4
  • 38
    • 18744403991 scopus 로고    scopus 로고
    • An improved hidden Markov model for transmembrane protein detection and topology prediction and its applications to complete genomes
    • Kahsay RY, Gao G, Liao L. An improved hidden Markov model for transmembrane protein detection and topology prediction and its applications to complete genomes. Bioinformatics 2005; 21: 1853-8.
    • (2005) Bioinformatics , vol.21 , pp. 1853-1858
    • Kahsay, R.Y.1    Gao, G.2    Liao, L.3
  • 39
    • 4243671284 scopus 로고    scopus 로고
    • A sequence-profile-based HMM for predicting and discriminating beta barrel membrane proteins
    • Martelli PL, Fariselli P, Krogh A, Casadio R. A sequence-profile-based HMM for predicting and discriminating beta barrel membrane proteins. Bioinformatics 2002; 18: S46-53.
    • (2002) Bioinformatics , vol.18
    • Martelli, P.L.1    Fariselli, P.2    Krogh, A.3    Casadio, R.4
  • 40
    • 85195242254 scopus 로고    scopus 로고
    • Liu Q, Zhu YS, Wang BH, Li YX. A HMM-based method to predict the transmembrane regions of beta-barrel membrane proteins. Comput Biol Chem 2003; 27: 69-76.
    • Liu Q, Zhu YS, Wang BH, Li YX. A HMM-based method to predict the transmembrane regions of beta-barrel membrane proteins. Comput Biol Chem 2003; 27: 69-76.
  • 41
    • 2942522711 scopus 로고    scopus 로고
    • A Hidden Markov Model method, capable of predicting and discriminating beta-barrel outer membrane proteins
    • Bagos PG, Liakopoulos TD, Spyropoulos IC, Hamodrakas SJ. A Hidden Markov Model method, capable of predicting and discriminating beta-barrel outer membrane proteins. BMC Bioinformatics 2004; 5: 29.
    • (2004) BMC Bioinformatics , vol.5 , pp. 29
    • Bagos, P.G.1    Liakopoulos, T.D.2    Spyropoulos, I.C.3    Hamodrakas, S.J.4
  • 42
    • 0030623944 scopus 로고    scopus 로고
    • Two methods for improving performance of an HMM and their application for gene finding
    • Krogh A. Two methods for improving performance of an HMM and their application for gene finding. Proc Int Conf Intell Syst Mol Biol 1997; 5: 179-86.
    • (1997) Proc Int Conf Intell Syst Mol Biol , vol.5 , pp. 179-186
    • Krogh, A.1
  • 43
    • 0032387825 scopus 로고    scopus 로고
    • Predicting peptides that bind to MHC molecules using supervised learning of hidden Markov models
    • Mamitsuka H. Predicting peptides that bind to MHC molecules using supervised learning of hidden Markov models. Proteins 1998; 33: 460-74.
    • (1998) Proteins , vol.33 , pp. 460-474
    • Mamitsuka, H.1
  • 44
    • 0036399733 scopus 로고    scopus 로고
    • Hidden Markov model-based prediction of antigenic peptides that interact with MHC class II molecules
    • Noguchi H, Kato R, Hanai T, Matsubara Y, Honda H, Brusic V, Kobayashi T. Hidden Markov model-based prediction of antigenic peptides that interact with MHC class II molecules. J Biosci Bioeng 2002; 94: 264-70.
    • (2002) J Biosci Bioeng , vol.94 , pp. 264-270
    • Noguchi, H.1    Kato, R.2    Hanai, T.3    Matsubara, Y.4    Honda, H.5    Brusic, V.6    Kobayashi, T.7
  • 45
    • 0042932377 scopus 로고    scopus 로고
    • Hidden Markov model-based approach as the first screening of binding peptides that interact with MHC class II molecules
    • Kato R, Noguchi H, Honda H, Kobayashi T. Hidden Markov model-based approach as the first screening of binding peptides that interact with MHC class II molecules. Enzyme Microb Technol 2003; 33: 472-81.
    • (2003) Enzyme Microb Technol , vol.33 , pp. 472-481
    • Kato, R.1    Noguchi, H.2    Honda, H.3    Kobayashi, T.4
  • 46
    • 0036042580 scopus 로고    scopus 로고
    • Methods for prediction of peptide binding to MHC molecules: A comparative study
    • Yu K, Petrovsky N, Schonbach C, Koh JY, Brusic V. Methods for prediction of peptide binding to MHC molecules: a comparative study. Mol Med 2002; 8: 137-48.
    • (2002) Mol Med , vol.8 , pp. 137-148
    • Yu, K.1    Petrovsky, N.2    Schonbach, C.3    Koh, J.Y.4    Brusic, V.5
  • 47
    • 0036040808 scopus 로고    scopus 로고
    • Prediction of MHC Class I Binding Peptides by a Query Learning Algorithm Based on Hidden Markov Models
    • Udaka K, Mamitsuka H, Nakaseko, Abe N. Prediction of MHC Class I Binding Peptides by a Query Learning Algorithm Based on Hidden Markov Models. J Biol Phys 2002; 28: 183-94.
    • (2002) J Biol Phys , vol.28 , pp. 183-194
    • Udaka, K.1    Mamitsuka, H.2    Nakaseko3    Abe, N.4
  • 49
    • 0030034795 scopus 로고    scopus 로고
    • A Hidden Markov Model approach to variation among sites in rate of evolution
    • Felsenstein J, Churchill GA. A Hidden Markov Model approach to variation among sites in rate of evolution. Mol Biol Evol 1996; 13: 93-104.
    • (1996) Mol Biol Evol , vol.13 , pp. 93-104
    • Felsenstein, J.1    Churchill, G.A.2
  • 50
    • 0029985399 scopus 로고    scopus 로고
    • Combining protein evolution and secondary structure
    • Thorne JL, Goldman N, Jones DT. Combining protein evolution and secondary structure. Mol Biol Evol 1996; 13: 666-73.
    • (1996) Mol Biol Evol , vol.13 , pp. 666-673
    • Thorne, J.L.1    Goldman, N.2    Jones, D.T.3
  • 52
    • 27544493059 scopus 로고    scopus 로고
    • Discriminating between rate heterogeneity and interspecific recombination in DNA sequence alignments with phylogenetic factorial hidden Markov models
    • Husmeier D. Discriminating between rate heterogeneity and interspecific recombination in DNA sequence alignments with phylogenetic factorial hidden Markov models. Bioinformatics 2005; 21: II166-72.
    • (2005) Bioinformatics , vol.21
    • Husmeier, D.1
  • 53
    • 0033012594 scopus 로고    scopus 로고
    • A probabilistic treatment of phylogeny and sequence alignment
    • Mitchison GJ. A probabilistic treatment of phylogeny and sequence alignment. J Mol Evol 1999; 49: 11-22.
    • (1999) J Mol Evol , vol.49 , pp. 11-22
    • Mitchison, G.J.1
  • 54
    • 5044247759 scopus 로고    scopus 로고
    • Performance of an iterated T-HMM for homology detection
    • Qian B, Goldstein RA. Performance of an iterated T-HMM for homology detection. Bioinformatics 2004; 20: 2175-80.
    • (2004) Bioinformatics , vol.20 , pp. 2175-2180
    • Qian, B.1    Goldstein, R.A.2
  • 56
    • 0028272315 scopus 로고
    • RNA sequence analysis using covariance models
    • Eddy SR, Durbin R. RNA sequence analysis using covariance models. Nucleic Acids Res 1994; 22: 2079-88.
    • (1994) Nucleic Acids Res , vol.22 , pp. 2079-2088
    • Eddy, S.R.1    Durbin, R.2
  • 57
    • 2942607685 scopus 로고    scopus 로고
    • A memory-efficient dynamic programming algorithm for optimal alignment of a sequence to an RNA secondary structure
    • Eddy SR. A memory-efficient dynamic programming algorithm for optimal alignment of a sequence to an RNA secondary structure. BMC Bioinformatics 2002; 2; 3-18.
    • (2002) BMC Bioinformatics , vol.2 , pp. 3-18
    • Eddy, S.R.1
  • 58
    • 0032796501 scopus 로고    scopus 로고
    • RNA secondary structure prediction using stochastic context-free grammars and evolutionary history
    • Knudsen B, Hein J. RNA secondary structure prediction using stochastic context-free grammars and evolutionary history. Bioinformatics 1999; 15: 446-54.
    • (1999) Bioinformatics , vol.15 , pp. 446-454
    • Knudsen, B.1    Hein, J.2
  • 63
    • 4444353672 scopus 로고    scopus 로고
    • Data Mining Tools for Biological Sequences
    • Liu H, Wong L. Data Mining Tools for Biological Sequences. J Bioinform Comput Biol 2003;1: 139-68.
    • (2003) J Bioinform Comput Biol , vol.1 , pp. 139-168
    • Liu, H.1    Wong, L.2
  • 64
    • 1642338802 scopus 로고    scopus 로고
    • Marginalized kernels for biological sequences
    • Tsuda K, Kin T, Asai K. Marginalized kernels for biological sequences. Bioinformatics 2002; 18: 268-75.
    • (2002) Bioinformatics , vol.18 , pp. 268-275
    • Tsuda, K.1    Kin, T.2    Asai, K.3
  • 67
    • 0033556867 scopus 로고    scopus 로고
    • Hidden neural networks
    • Krogh A, Riis SK. Hidden neural networks. Neural Comput 1999; 11: 541-63.
    • (1999) Neural Comput , vol.11 , pp. 541-563
    • Krogh, A.1    Riis, S.K.2
  • 68
    • 0030266582 scopus 로고    scopus 로고
    • Hybrid modeling, HMM/NN architectures, and protein applications
    • Baldi P, Chauvin Y. Hybrid modeling, HMM/NN architectures, and protein applications. Neural Comput 1996; 8: 1541-65.
    • (1996) Neural Comput , vol.8 , pp. 1541-1565
    • Baldi, P.1    Chauvin, Y.2
  • 70
    • 13444266488 scopus 로고    scopus 로고
    • A simple and fast secondary structure prediction method using hidden neural networks
    • Lin K, Simossis VA, Taylor WR, Meringa J. A simple and fast secondary structure prediction method using hidden neural networks. Bioinformatics 2005; 21: 152-9.
    • (2005) Bioinformatics , vol.21 , pp. 152-159
    • Lin, K.1    Simossis, V.A.2    Taylor, W.R.3    Meringa, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.