메뉴 건너뛰기




Volumn 12, Issue 3, 2003, Pages 475-511

Logic Regression

Author keywords

Adaptive model selection; Binary variables; Boolean logic; Interactions; Simulated annealing; Snp data

Indexed keywords


EID: 0141872478     PISSN: 10618600     EISSN: None     Source Type: Journal    
DOI: 10.1198/1061860032238     Document Type: Review
Times cited : (268)

References (66)
  • 1
    • 0001492549 scopus 로고    scopus 로고
    • Shape Quantization and Recognition with Randomized Trees
    • Amit Y., and Geman, D. (1997), "Shape Quantization and Recognition with Randomized Trees," Neural Computation, 9, 1545-1588.
    • (1997) Neural Computation , vol.9 , pp. 1545-1588
    • Amit, Y.1    Geman, D.2
  • 4
    • 0031274825 scopus 로고    scopus 로고
    • Data Mining with Decision Trees and Decision Rules
    • Apte, C., and Weiss, S. M. (1997), "Data Mining with Decision Trees and Decision Rules," Future Generation Computer Systems, 13, 197-210.
    • (1997) Future Generation Computer Systems , vol.13 , pp. 197-210
    • Apte, C.1    Weiss, S.M.2
  • 7
    • 0030211964 scopus 로고    scopus 로고
    • Bagging Predictors
    • Breiman, L. (1996), "Bagging Predictors," Machine Learning, 24, 123-140.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 8
    • 0006001358 scopus 로고    scopus 로고
    • Random Forests - Random Features
    • Department of Statistics, University of California Berkeley
    • _ (1999), "Random Forests - Random Features," Technical report. Department of Statistics, University of California Berkeley.
    • (1999) Technical Report
  • 11
    • 0002980086 scopus 로고
    • Learning Classification Trees
    • Buntine, W. (1992), "Learning Classification Trees," Statistics and Computing, 2, 63-73.
    • (1992) Statistics and Computing , vol.2 , pp. 63-73
    • Buntine, W.1
  • 13
    • 0036643083 scopus 로고    scopus 로고
    • Bayesian Treed Models
    • _ (2002), "Bayesian Treed Models," Machine Learning, 48, 299-320.
    • (2002) Machine Learning , vol.48 , pp. 299-320
  • 14
    • 34249966007 scopus 로고
    • The CN2 Induction Algorithm
    • Clark, P., and Niblett, T. (1989), "The CN2 Induction Algorithm," Machine Learning, 3, 261-283.
    • (1989) Machine Learning , vol.3 , pp. 261-283
    • Clark, P.1    Niblett, T.2
  • 20
    • 0034250160 scopus 로고    scopus 로고
    • An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization
    • Dietterich, T.G. (1999), "An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization," Machine Learning, 40, 139-158.
    • (1999) Machine Learning , vol.40 , pp. 139-158
    • Dietterich, T.G.1
  • 27
    • 0002432565 scopus 로고
    • Multivariate Adaptive Regression Splines
    • Friedman, J. H. (1991), "Multivariate Adaptive Regression Splines" (with discussion). The Annals of Statistics, 19, 1-141.
    • (1991) The Annals of Statistics , vol.19 , pp. 1-141
    • Friedman, J.H.1
  • 28
  • 30
    • 0026837585 scopus 로고
    • A Training Algorithm for Binary Feedforward Neural Networks
    • Gray, D. L., and Michel, A. N. (1992), "A Training Algorithm for Binary Feedforward Neural Networks," IEEE Transactions on Neural Networks, 3, 176-194.
    • (1992) IEEE Transactions on Neural Networks , vol.3 , pp. 176-194
    • Gray, D.L.1    Michel, A.N.2
  • 31
    • 0031219871 scopus 로고    scopus 로고
    • R-MINI: An Iterative Approach for Generating Minimal Rules from Examples
    • Hong, S. (1997), "R-MINI: An Iterative Approach for Generating Minimal Rules from Examples," IEEE Transactions on Knowledge and Data Engineering, 9, 709-717.
    • (1997) IEEE Transactions on Knowledge and Data Engineering , vol.9 , pp. 709-717
    • Hong, S.1
  • 33
    • 0000262562 scopus 로고
    • Hierarchical Mixtures of Experts and the EM Algorithm
    • Jordan, M. I., and Jacobs, R. A. (1994), "Hierarchical Mixtures of Experts and the EM Algorithm," Neural Computation, 6, 181-214.
    • (1994) Neural Computation , vol.6 , pp. 181-214
    • Jordan, M.I.1    Jacobs, R.A.2
  • 36
    • 0031469839 scopus 로고    scopus 로고
    • Neural Network Analysis of Complex Traits
    • Lucek, P. R., and Ott, J. (1997), "Neural Network Analysis of Complex Traits," Genetic Epidemiology, 14, 1101-1106.
    • (1997) Genetic Epidemiology , vol.14 , pp. 1101-1106
    • Lucek, P.R.1    Ott, J.2
  • 37
    • 0006457837 scopus 로고
    • Simulated Annealing in the Construction of Near-Optimal Decision Trees
    • New York: Springer
    • Lutsko, J. F., and Kuijpers, B. (1994), "Simulated Annealing in the Construction of Near-Optimal Decision Trees," in Selecting Models from Data: AI&Statistics IV, New York: Springer, pp. 453-462.
    • (1994) Selecting Models from Data: AI&Statistics , vol.4 , pp. 453-462
    • Lutsko, J.F.1    Kuijpers, B.2
  • 42
    • 85005299854 scopus 로고
    • The Multi-Purpose Incremental Learning System AQ15 and its Testing Application to Three Medical Domains
    • Michalski, R., Mozetic, I., Hong, J., and Lavrac, N. (1986), The Multi-Purpose Incremental Learning System AQ15 and its Testing Application to Three Medical Domains," Proceedings of the AAAI, pp. 1041-1045.
    • (1986) Proceedings of the AAAI , pp. 1041-1045
    • Michalski, R.1    Mozetic, I.2    Hong, J.3    Lavrac, N.4
  • 43
    • 84875742146 scopus 로고
    • Decision Tree Induction: How Effective is the Greedy Heuristic?
    • Murthy, S. K., and Salzberg, S. (1995), "Decision Tree Induction: How Effective is the Greedy Heuristic?," Knowledge Discovery and Data Mining, 222-227.
    • (1995) Knowledge Discovery and Data Mining , pp. 222-227
    • Murthy, S.K.1    Salzberg, S.2
  • 45
    • 33744584654 scopus 로고
    • Induction of Decision Trees
    • Quinlan, J. R. (1986), "Induction of Decision Trees," Machine Learning, 1, 81-106.
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 50
    • 0003653162 scopus 로고
    • Improving Classification Trees with Simulated Annealing
    • ed. E. Kazimadas, Fairfax, VA: Interface Foundation of North America
    • Sutton, C. (1991), "Improving Classification Trees with Simulated Annealing," in Proceedings of the 23rd Symposium on the Interface, ed. E. Kazimadas, Fairfax, VA: Interface Foundation of North America.
    • (1991) Proceedings of the 23rd Symposium on the Interface
    • Sutton, C.1
  • 51
    • 0023194048 scopus 로고
    • The Modified Mini-Mental State (3MS) Examination
    • Teng, E. L., and Chui, H. C. (1987), The Modified Mini-Mental State (3MS) Examination," Journal of Clinical Psychiatry, 48, 314-318.
    • (1987) Journal of Clinical Psychiatry , vol.48 , pp. 314-318
    • Teng, E.L.1    Chui, H.C.2
  • 60
    • 0040452732 scopus 로고
    • Optimized Rule Induction
    • December
    • Weiss, S. M., and Indurkhya, N. (1993a), "Optimized Rule Induction," IEEE Expert, December, 61-69.
    • (1993) IEEE Expert , pp. 61-69
    • Weiss, S.M.1    Indurkhya, N.2
  • 62
    • 0000846313 scopus 로고
    • Rule-Based Machine Learning Methods for Functional Prediction
    • _ (1995), "Rule-Based Machine Learning Methods for Functional Prediction," Journal of Artificial Intelligence Research, 3, 383-403.
    • (1995) Journal of Artificial Intelligence Research , vol.3 , pp. 383-403
  • 64
    • 0034796714 scopus 로고    scopus 로고
    • Introduction: Analysis of Sequence Data and Population Structure
    • Witte, J. S., and Fijal, B. A. (2001), "Introduction: Analysis of Sequence Data and Population Structure," Genetic Epidemiology, 21, Supplement 1, pp. 600-601.
    • (2001) Genetic Epidemiology , vol.21 , Issue.SUPPL. 1 , pp. 600-601
    • Witte, J.S.1    Fijal, B.A.2
  • 65
    • 0141952589 scopus 로고
    • Comparing Symbolic and Subsymbolic Learning: Three Studies
    • eds. R. Michalski and G. Tecuci, 4, San Francisco: Morgan-Kaufmann
    • Wnek, J., and Michalski, R. (1994), "Comparing Symbolic and Subsymbolic Learning: Three Studies," Machine Learning: A Multistrategy Approach, eds. R. Michalski and G. Tecuci, 4, San Francisco: Morgan-Kaufmann.
    • (1994) Machine Learning: A Multistrategy Approach
    • Wnek, J.1    Michalski, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.