메뉴 건너뛰기




Volumn , Issue , 2004, Pages 59-68

A probabilistic framework for semi-supervised clustering

Author keywords

Distance Metric Learning; Hidden Markov Random Fields; Semi supervised Clustering

Indexed keywords

ALGORITHMS; DATA ACQUISITION; DATA MINING; MARKOV PROCESSES; MATHEMATICAL MODELS; OPTIMIZATION; VECTORS;

EID: 12244300524     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1014052.1014062     Document Type: Conference Paper
Times cited : (706)

References (40)
  • 18
    • 0034824884 scopus 로고    scopus 로고
    • Concept decompositions for large sparse text data using clustering
    • I. S. Dhillon and D. S. Modha. Concept decompositions for large sparse text data using clustering. Machine Learning, 42:143-175, 2001.
    • (2001) Machine Learning , vol.42 , pp. 143-175
    • Dhillon, I.S.1    Modha, D.S.2
  • 19
    • 0038791853 scopus 로고    scopus 로고
    • An information-theoretic external cluster-validity measure
    • IBM
    • B. E. Dom. An information-theoretic external cluster-validity measure. Research Report RJ 10219, IBM, 2001.
    • (2001) Research Report RJ 10219
    • Dom, B.E.1
  • 23
    • 0022064511 scopus 로고
    • A best possible heuristic for the k-center problem
    • D. Hochbaum and D. Shmoys. A best possible heuristic for the k-center problem. Mathematics of Operations Research, 10(2):180-184, 1985.
    • (1985) Mathematics of Operations Research , vol.10 , Issue.2 , pp. 180-184
    • Hochbaum, D.1    Shmoys, D.2
  • 32
    • 0002788893 scopus 로고    scopus 로고
    • A view of the EM algorithm that justifies incremental, sparse, and other variants
    • M. I. Jordan, editor, MIT Press
    • R. M. Neal and G. E. Hinton. A view of the EM algorithm that justifies incremental, sparse, and other variants. In M. I. Jordan, editor, Learning in Graphical Models, pages 355-368. MIT Press, 1998.
    • (1998) Learning in Graphical Models , pp. 355-368
    • Neal, R.M.1    Hinton, G.E.2
  • 33
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using EM
    • K. Nigam, A. K. McCallum, S. Thrun, and T. Mitchell. Text classification from labeled and unlabeled documents using EM. Machine Learning, 39:103-134, 2000.
    • (2000) Machine Learning , vol.39 , pp. 103-134
    • Nigam, K.1    McCallum, A.K.2    Thrun, S.3    Mitchell, T.4
  • 36
    • 0842309161 scopus 로고    scopus 로고
    • Discovering molecular pathways from protein interaction and gene expression data
    • July
    • E. Segal, H. Wang, and D. Koller. Discovering molecular pathways from protein interaction and gene expression data. Bioinformatics, 19:i264-i272, July 2003.
    • (2003) Bioinformatics , vol.19
    • Segal, E.1    Wang, H.2    Koller, D.3
  • 39
    • 84879571292 scopus 로고    scopus 로고
    • Distance metric learning, with application to clustering with side-information
    • Cambridge, MA, MIT Press
    • E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Distance metric learning, with application to clustering with side-information. In Advances in Neural Information Processing Systems 15, pages 505-512, Cambridge, MA, 2003. MIT Press.
    • (2003) Advances in Neural Information Processing Systems , vol.15 , pp. 505-512
    • Xing, E.P.1    Ng, A.Y.2    Jordan, M.I.3    Russell, S.4
  • 40
    • 0034745001 scopus 로고    scopus 로고
    • Hidden markov random field model and segmentation of brain MR images
    • Y. Zhang, M. Brady, and S. Smith. Hidden Markov random field model and segmentation of brain MR images. IEEE Transactions on Medical Imaging, 20(1):45-57, 2001.
    • (2001) IEEE Transactions on Medical Imaging , vol.20 , Issue.1 , pp. 45-57
    • Zhang, Y.1    Brady, M.2    Smith, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.