메뉴 건너뛰기




Volumn 41, Issue 8, 1998, Pages 586-588

How many clusters? Which clustering method? Answers via model-based cluster analysis

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; CONSTRAINT THEORY; DATA REDUCTION; MATHEMATICAL MODELS; MAXIMUM LIKELIHOOD ESTIMATION; PROBLEM SOLVING; STATISTICAL METHODS;

EID: 0032269108     PISSN: 00104620     EISSN: None     Source Type: Journal    
DOI: 10.1093/comjnl/41.8.578     Document Type: Article
Times cited : (1874)

References (66)
  • 1
    • 0021644144 scopus 로고
    • Fitting straight lines to point patterns
    • Murtagh, F. and Raftery, A. E. (1984) Fitting straight lines to point patterns. Pattern Recognition, 17, 479-483.
    • (1984) Pattern Recognition , vol.17 , pp. 479-483
    • Murtagh, F.1    Raftery, A.E.2
  • 2
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • Banfield, J. D. and Raftery, A. E. (1993) Model-based Gaussian and non-Gaussian clustering. Biometrics, 49, 803-821.
    • (1993) Biometrics , vol.49 , pp. 803-821
    • Banfield, J.D.1    Raftery, A.E.2
  • 3
    • 0032337237 scopus 로고    scopus 로고
    • Detecting features in spatial point processes with clutter via model-based clustering
    • Dasgupta, A. and Raftery, A. E. (1998) Detecting features in spatial point processes with clutter via model-based clustering. J. Amer. Stat. Assoc., 93, 294-302.
    • (1998) J. Amer. Stat. Assoc. , vol.93 , pp. 294-302
    • Dasgupta, A.1    Raftery, A.E.2
  • 4
    • 0031395002 scopus 로고    scopus 로고
    • Linear flaw detection in woven textiles using model-based clustering
    • Campbell, J. G., Fraley, C., Murtagh, F. and Raftery, A. E. (1997) Linear flaw detection in woven textiles using model-based clustering. Pattern Recognition Lett., 18, 1539-1548.
    • (1997) Pattern Recognition Lett. , vol.18 , pp. 1539-1548
    • Campbell, J.G.1    Fraley, C.2    Murtagh, F.3    Raftery, A.E.4
  • 5
    • 0029305528 scopus 로고
    • Gaussian parsimonious clustering models
    • Celeux, G. and Govaert, G. (1995) Gaussian parsimonious clustering models. Pattern Recognition, 28, 781-793.
    • (1995) Pattern Recognition , vol.28 , pp. 781-793
    • Celeux, G.1    Govaert, G.2
  • 7
    • 0002629270 scopus 로고
    • Maximum likelihood for incomplete data via the EM algorithm
    • Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977) Maximum likelihood for incomplete data via the EM algorithm. J. R. Stat. Soc., B, 39, 1-38.
    • (1977) J. R. Stat. Soc., B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 8
    • 0018758830 scopus 로고
    • An attempt to define the nature of chemical diabetes using a multidimensional analysis
    • Reaven, G. M. and Miller, R. G. (1979) An attempt to define the nature of chemical diabetes using a multidimensional analysis. Diabetologia, 16, 17-24.
    • (1979) Diabetologia , vol.16 , pp. 17-24
    • Reaven, G.M.1    Miller, R.G.2
  • 11
    • 0142067924 scopus 로고
    • Multidimensional clustering algorithms
    • Physica Verlag, Mostbach
    • Murtagh, F. (1985) Multidimensional clustering algorithms. CompStat Lectures, 4. Physica Verlag, Mostbach.
    • (1985) CompStat Lectures , vol.4
    • Murtagh, F.1
  • 14
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • Cam, L. M. L. and Neyman, J. (eds), University of California Press
    • MacQueen, J. (1967) Some methods for classification and analysis of multivariate observations. In Cam, L. M. L. and Neyman, J. (eds), Proc. 5th Berkeley Symp. on Mathematical Statistics and Probability, vol. 1, pp. 281-297. University of California Press.
    • (1967) Proc. 5th Berkeley Symp. on Mathematical Statistics and Probability , vol.1 , pp. 281-297
    • MacQueen, J.1
  • 15
    • 0001138328 scopus 로고
    • Algorithm AS 136: A K-means clustering algorithm
    • Hartigan, J. A. and Wong, M. A. (1978) Algorithm AS 136: a K-means clustering algorithm. Appl. Stat., 28, 100-108.
    • (1978) Appl. Stat. , vol.28 , pp. 100-108
    • Hartigan, J.A.1    Wong, M.A.2
  • 16
    • 0001516463 scopus 로고
    • Percentage points of a test for clusters
    • Engelman, L. and Hartigan, J. A. (1969) Percentage points of a test for clusters. J. Amer. Stat. Assoc., 64, 1647.
    • (1969) J. Amer. Stat. Assoc. , vol.64 , pp. 1647
    • Engelman, L.1    Hartigan, J.A.2
  • 18
    • 0002356276 scopus 로고
    • Choosing the number of component clusters in the mixture model using a new informational complexity criterion of the inverse Fisher information matrix
    • Opitz, O., Lausen, B. and Klar, R. (eds), Springer-Verlag, Berlin
    • Bozdogan, H. (1993) Choosing the number of component clusters in the mixture model using a new informational complexity criterion of the inverse Fisher information matrix. In Opitz, O., Lausen, B. and Klar, R. (eds), Information and Classification, pp. 40-54. Springer-Verlag, Berlin.
    • (1993) Information and Classification , pp. 40-54
    • Bozdogan, H.1
  • 19
    • 0002757023 scopus 로고    scopus 로고
    • Probability models and hypothesis testing in partitioning cluster analysis
    • Arabie, P., Hubert, L. and DeSorte, G. (eds), World Science Publishers, Singapore
    • Bock, H. H. (1996) Probability models and hypothesis testing in partitioning cluster analysis. In Arabie, P., Hubert, L. and DeSorte, G. (eds), Clustering and Classification, pp. 377-453. World Science Publishers, Singapore.
    • (1996) Clustering and Classification , pp. 377-453
    • Bock, H.H.1
  • 20
    • 84944178665 scopus 로고
    • Hierarchical groupings to optimize an objective function
    • Ward, J. H. (1963) Hierarchical groupings to optimize an objective function. J. Amer. Stat. Assoc., 58, 234-244.
    • (1963) J. Amer. Stat. Assoc. , vol.58 , pp. 234-244
    • Ward, J.H.1
  • 21
    • 34247969087 scopus 로고
    • On some invariant criteria for grouping data
    • Friedman, H. P. and Rubin, J. (1967) On some invariant criteria for grouping data. J. Amer. Stat. Assoc., 62, 1159-1178.
    • (1967) J. Amer. Stat. Assoc. , vol.62 , pp. 1159-1178
    • Friedman, H.P.1    Rubin, J.2
  • 22
    • 0001340183 scopus 로고
    • Clustering methods based on likelihood ratio criteria
    • Scott, A. J. and Symons, M. J. (1971) Clustering methods based on likelihood ratio criteria. Biometrics, 27, 387-397.
    • (1971) Biometrics , vol.27 , pp. 387-397
    • Scott, A.J.1    Symons, M.J.2
  • 23
    • 0032131702 scopus 로고    scopus 로고
    • Algorithms for model-based Gaussian hierarchical clustering
    • Fraley, C. (1999) Algorithms for model-based Gaussian hierarchical clustering. SIAM J. Sci. Comput., 20, 270-281.
    • (1999) SIAM J. Sci. Comput. , vol.20 , pp. 270-281
    • Fraley, C.1
  • 25
    • 0002558783 scopus 로고
    • On the convergence of the EM algorithm
    • Boyles, R. A. (1983) On the convergence of the EM algorithm. J. R. Stat. Soc., B, 45, 47-50.
    • (1983) J. R. Stat. Soc., B , vol.45 , pp. 47-50
    • Boyles, R.A.1
  • 26
    • 0002210265 scopus 로고
    • On convergence properties of the EM algorithm
    • Wu, C. F. J. (1983) On convergence properties of the EM algorithm. Annals. Stat., 11, 95-103.
    • (1983) Annals. Stat. , vol.11 , pp. 95-103
    • Wu, C.F.J.1
  • 28
    • 0003764175 scopus 로고
    • Reconnaissance de mélanges de densités par un algorithme d'apprentissage probabiliste
    • Diday, E., Jambu, M., Lebart, L., Pagès, J.-P. and Tomassone, R. (eds), Elsevier Science
    • Broniatowski, M., Celeux, G. and Diebolt, J. (1984) Reconnaissance de mélanges de densités par un algorithme d'apprentissage probabiliste. In Diday, E., Jambu, M., Lebart, L., Pagès, J.-P. and Tomassone, R. (eds), Data Analysis and Informatics, III, Elsevier Science, pp. 359-373.
    • (1984) Data Analysis and Informatics , vol.3 , pp. 359-373
    • Broniatowski, M.1    Celeux, G.2    Diebolt, J.3
  • 29
    • 0002241694 scopus 로고
    • The SEM algorithm: A probabilistic teacher algorithm derived from the EM algorithm for the mixture problem
    • Celeux, G. and Diebolt, J. (1985) The SEM algorithm: A probabilistic teacher algorithm derived from the EM algorithm for the mixture problem. Comput. Stat. Quart., 2, 73-82.
    • (1985) Comput. Stat. Quart. , vol.2 , pp. 73-82
    • Celeux, G.1    Diebolt, J.2
  • 30
    • 0001626339 scopus 로고
    • A classification EM algorithm for clustering and two stochastic versions
    • Celeux, G. and Govaert, G. (1992) A classification EM algorithm for clustering and two stochastic versions. Comput. Stat. Data Anal., 14, 315-332.
    • (1992) Comput. Stat. Data Anal. , vol.14 , pp. 315-332
    • Celeux, G.1    Govaert, G.2
  • 32
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978) Estimating the dimension of a model. Ann. Stat., 6, 461-464.
    • (1978) Ann. Stat. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 33
    • 85042555546 scopus 로고
    • Bayesian cluster analysis
    • Binder, D. A. (1978) Bayesian cluster analysis. Biometrika, 65, 31-38.
    • (1978) Biometrika , vol.65 , pp. 31-38
    • Binder, D.A.1
  • 34
    • 21144475085 scopus 로고
    • Consistent estimation of a mixing distribution
    • Leroux, M. (1992) Consistent estimation of a mixing distribution. Annals. Stat., 20, 1350-1360.
    • (1992) Annals. Stat. , vol.20 , pp. 1350-1360
    • Leroux, M.1
  • 35
    • 21744460005 scopus 로고    scopus 로고
    • Practical Bayesian density estimation using mixtures of normals
    • Roeder, K. and Wasserman, L. (1997) Practical Bayesian density estimation using mixtures of normals. J. Amer. Stat. Assoc., 92, 894-902.
    • (1997) J. Amer. Stat. Assoc. , vol.92 , pp. 894-902
    • Roeder, K.1    Wasserman, L.2
  • 37
    • 0032375671 scopus 로고    scopus 로고
    • Nearest neighbor clutter removal for estimating features in spatial point processes
    • Byers, S. D. and Raftery, A. E. (1998) Nearest neighbor clutter removal for estimating features in spatial point processes. J. Amer. Stat. Assoc., 93, 577-584.
    • (1998) J. Amer. Stat. Assoc. , vol.93 , pp. 577-584
    • Byers, S.D.1    Raftery, A.E.2
  • 38
    • 0031321071 scopus 로고    scopus 로고
    • Nonparametric maximum likelihood estimation of features in spatial point processes using Voronoï tessellation
    • Allard, D. and Fraley, C. (1997) Nonparametric maximum likelihood estimation of features in spatial point processes using Voronoï tessellation. J. Amer. Stat. Assoc., 92, 1485-1493.
    • (1997) J. Amer. Stat. Assoc. , vol.92 , pp. 1485-1493
    • Allard, D.1    Fraley, C.2
  • 39
    • 0000696616 scopus 로고
    • Neural networks and related methods for classification
    • Ripley, B. D. (1994) Neural networks and related methods for classification. J. R. Stat. Soc., B, 56, 409-456.
    • (1994) J. R. Stat. Soc., B , vol.56 , pp. 409-456
    • Ripley, B.D.1
  • 42
    • 0030326891 scopus 로고    scopus 로고
    • Regularized Gaussian discriminant analysis through eigenvalue decomposition
    • Bensmail, H. and Celeux, G. (1996) Regularized Gaussian discriminant analysis through eigenvalue decomposition. J. Amer. Stat. Assoc., 91, 1743-1748.
    • (1996) J. Amer. Stat. Assoc. , vol.91 , pp. 1743-1748
    • Bensmail, H.1    Celeux, G.2
  • 47
    • 0002725153 scopus 로고
    • Ice floe identification in satellite images using mathematical morphology and clustering about principal curves
    • Banfield, J. D. and Raftery, A. E. (1992) Ice floe identification in satellite images using mathematical morphology and clustering about principal curves. J. Amer. Stat. Assoc., 87, 7-16.
    • (1992) J. Amer. Stat. Assoc. , vol.87 , pp. 7-16
    • Banfield, J.D.1    Raftery, A.E.2
  • 48
    • 26944450823 scopus 로고
    • Identifying ice floes in satellite images
    • Banfield, J. D. and Raftery, A. E. (1992) Identifying ice floes in satellite images. Naval Research Rev., 43, 2-18.
    • (1992) Naval Research Rev. , vol.43 , pp. 2-18
    • Banfield, J.D.1    Raftery, A.E.2
  • 49
    • 0026253702 scopus 로고
    • Automated tracking of ice floes: A statistical approach
    • Banfield, J. D. (1991) Automated tracking of ice floes: A statistical approach. IEEE Trans. Geoscience Remote Sensing, 29, 905-911.
    • (1991) IEEE Trans. Geoscience Remote Sensing , vol.29 , pp. 905-911
    • Banfield, J.D.1
  • 51
    • 0029275855 scopus 로고
    • Mathematical morphology: A modern approach in image processing based on algebra and geometry
    • Heijmans, H. J. A. M. (1995) Mathematical morphology: A modern approach in image processing based on algebra and geometry. SIAM Rev., 37, 1-36.
    • (1995) SIAM Rev. , vol.37 , pp. 1-36
    • Heijmans, H.J.A.M.1
  • 53
    • 0001294055 scopus 로고
    • The classification and mixture maximum likelihood approaches to cluster analysis
    • Krishnaiah, P. R. and Kanal, L. N. (eds), North-Holland, Amsterdam
    • McLachlan, G. (1982) The classification and mixture maximum likelihood approaches to cluster analysis. In Krishnaiah, P. R. and Kanal, L. N. (eds), Handbook of Statistics, Vol. 2, pp. 199-208. North-Holland, Amsterdam.
    • (1982) Handbook of Statistics , vol.2 , pp. 199-208
    • McLachlan, G.1
  • 54
    • 0346664978 scopus 로고
    • Maximum likelihood and classification: A comparison of three approaches
    • Gaul, W. and Schader, R. (eds), Elsevier Science, Amsterdam
    • Bryant, P. and Williamson, A. J. (1986) Maximum likelihood and classification: a comparison of three approaches. In Gaul, W. and Schader, R. (eds), Classification as a Tool of Research, pp. 33-45. Elsevier Science, Amsterdam.
    • (1986) Classification As a Tool of Research , pp. 33-45
    • Bryant, P.1    Williamson, A.J.2
  • 55
    • 0030289011 scopus 로고    scopus 로고
    • Probability models in partitional cluster analysis
    • Bock, H. H. (1996) Probability models in partitional cluster analysis. Comput. Stat. Data Anal., 23, 5-28.
    • (1996) Comput. Stat. Data Anal. , vol.23 , pp. 5-28
    • Bock, H.H.1
  • 56
    • 0043174097 scopus 로고    scopus 로고
    • Probability models in partitional cluster analysis
    • Ferligoj, A. and Kramberger, A. (eds), FDV, Metodoloski zvezki 12, Ljubljana, Slovenia
    • Bock, H. H. (1996) Probability models in partitional cluster analysis. In Ferligoj, A. and Kramberger, A. (eds), Developments in Data Analysis, pp. 3-25. FDV, Metodoloski zvezki 12, Ljubljana, Slovenia.
    • (1996) Developments in Data Analysis , pp. 3-25
    • Bock, H.H.1
  • 57
    • 0002643871 scopus 로고
    • Clustering criteria and multivariate normal mixtures
    • Symons, M. J. (1981) Clustering criteria and multivariate normal mixtures. Biometrics, 37, 35-43.
    • (1981) Biometrics , vol.37 , pp. 35-43
    • Symons, M.J.1
  • 58
    • 0041671200 scopus 로고
    • Normal mixtures and the number of clusters problem
    • Anderson, J. J. (1985) Normal mixtures and the number of clusters problem. Comput. Stat. Quart., 2, 3-14.
    • (1985) Comput. Stat. Quart. , vol.2 , pp. 3-14
    • Anderson, J.J.1
  • 61
    • 0002607026 scopus 로고
    • Bayesian classification (AutoClass): Theory and results
    • Fayyad, U. et al. (eds), AAAI Press
    • Cheeseman, P. and Stutz, J. (1995) Bayesian classification (AutoClass): Theory and results. In Fayyad, U. et al. (eds), Advances in Knowledge Discovery and Data Mining, pp. 153-180. AAAI Press.
    • (1995) Advances in Knowledge Discovery and Data Mining , pp. 153-180
    • Cheeseman, P.1    Stutz, J.2
  • 62
    • 0004883118 scopus 로고
    • AutoClass - A Bayesian approach to classification
    • Skilling, J. and Sibisi, S. (eds), Kluwer, Dordrecht
    • Stutz, J. and Cheeseman, P. (1995) AutoClass - a Bayesian approach to classification. In Skilling, J. and Sibisi, S. (eds), Maximum Entropy and Bayesian Methods, Cambridge 1994. Kluwer, Dordrecht.
    • (1995) Maximum Entropy and Bayesian Methods, Cambridge 1994
    • Stutz, J.1    Cheeseman, P.2
  • 63
    • 0003022525 scopus 로고    scopus 로고
    • MIXFIT: An algorithm for automatic fitting and testing of normal mixtures
    • IEEE Computer Society
    • McLachlan, G. J. and Peel, D. (1998) MIXFIT: An algorithm for automatic fitting and testing of normal mixtures. In Proc. 14th Int. Conf. on Pattern Recognition, vol. 1, pp. 553-557. IEEE Computer Society.
    • (1998) Proc. 14th Int. Conf. on Pattern Recognition , vol.1 , pp. 553-557
    • McLachlan, G.J.1    Peel, D.2
  • 65
    • 0031272327 scopus 로고    scopus 로고
    • Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables
    • Chickering, D. M. and Heckerman, D. (1997) Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables. Machine Learning, 29, 181-244.
    • (1997) Machine Learning , vol.29 , pp. 181-244
    • Chickering, D.M.1    Heckerman, D.2
  • 66
    • 84947788012 scopus 로고    scopus 로고
    • Robust cluster analysis via mixtures of multivariate t-distributions
    • Amin, A. et al. (eds), Springer, Berlin
    • McLachlan, G. J. and Peel, D. (1998) Robust cluster analysis via mixtures of multivariate t-distributions. In Amin, A. et al. (eds), Lecture Notes in Computer Science, vol. 1451, pp. 658-666. Springer, Berlin.
    • (1998) Lecture Notes in Computer Science , vol.1451 , pp. 658-666
    • McLachlan, G.J.1    Peel, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.