-
3
-
-
0004190197
-
Data Structures and Algorithms
-
Addison-Wesley, Reading, MA, Menclo Park, CA, London, Amsterdam
-
A.V. Aho, J.E. Hopcroft, and J.D. Ullman. Data Structures and Algorithms. Addison-Wesley, Reading, MA, Menclo Park, CA, London, Amsterdam, 1983.
-
(1983)
-
-
Aho, A.V.1
Hopcroft, J.E.2
Ullman, D.J.3
-
7
-
-
0004309536
-
-
John Wiley and Sons, New York, 3rd Extended Edition.
-
J.A. Anderson. Learning and Memory. John Wiley and Sons, New York, 1995. 3rd Extended Edition.
-
(1985)
Learning and Memory
-
-
Anderson, J.A.1
-
9
-
-
0000106131
-
Inductive inference of formal languages from positive data
-
D. Angluin. Inductive inference of formal languages from positive data. Information and Control, 45:117-135, 1980.
-
(1980)
Information and Control
, vol.45
, pp. 117-135
-
-
Angluin, D.1
-
10
-
-
0023453626
-
Learning regular sets from queries and counterexamples
-
D. Angluin. Learning regular sets from queries and counterexamples. Inform. Comput, 75(2): 87-106, 1987.
-
(1987)
Inform. Comput
, vol.75
, Issue.2
, pp. 87-106
-
-
Angluin, D.1
-
11
-
-
0000710299
-
Queries and concept learning
-
D. Angluin. Queries and concept learning. Machine Learning, 2:319-342, 1988.
-
(1988)
Machine Learning
, vol.2
, pp. 319-342
-
-
Angluin, D.1
-
12
-
-
0025449393
-
Negative results for equivalence queries
-
D. Angluin. Negative results for equivalence queries. Machine Learning, 5:121-150, 1990.
-
(1990)
Machine Learning
, vol.5
, pp. 121-150
-
-
Angluin, D.1
-
13
-
-
0000492326
-
Learning from noisy examples
-
D. Angluin and P. Laird. Learning from noisy examples. Machine Learning, 2:343-370, 1988.
-
(1988)
Machine Learning
, vol.2
, pp. 343-370
-
-
Angluin, D.1
Laird, P.2
-
17
-
-
84882579922
-
Specification and simulation of statistical query algorithms for efficiency and noise tolerance
-
J. A. Aslam and S. E. Decatur. Specification and simulation of statistical query algorithms for efficiency and noise tolerance. Journal of Computer and System Sciences, 1997.
-
(1997)
Journal of Computer and System Sciences
-
-
Aslam, J.A.1
Decatur, S.E.2
-
19
-
-
0020970738
-
Neuronlike adaptive elements that can solve difficult learning control problems
-
SMC-13
-
A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike adaptive elements that can solve difficult learning control problems. IEEE Trans, on Systems, Man, and Cybernetics, SMC-13 (5):834-846, 1983.
-
(1983)
IEEE Trans, on Systems, Man, and Cybernetics
, Issue.5
, pp. 834-846
-
-
Barto, A.G.1
Sutton, R.S.2
Anderson, C.W.3
-
22
-
-
34548104873
-
Towards symbolic mining of images with association rules: Preliminary results on textures
-
(in press).
-
M. Bevk and I. Kononenko. Towards symbolic mining of images with association rules: Preliminary results on textures. Intelligent Data Analysis, 2006. (in press).
-
(2006)
Intelligent Data Analysis
-
-
Bevk, M.1
Kononenko, I.2
-
23
-
-
0025840732
-
Separating distribution-free and mistake-bound learning models over the Boolean domain
-
Los Alamitos, CA, 1990. IEEE Computer Society Press.
-
A. Blum. Separating distribution-free and mistake-bound learning models over the Boolean domain. In Proc. of the 31st Symposium on the Foundations of Comp. ScL, pages 211-218, Los Alamitos, CA, 1990. IEEE Computer Society Press.
-
Proc. of the 31st Symposium on the Foundations of Comp. ScL
, pp. 211-218
-
-
Blum, A.1
-
24
-
-
0013411856
-
Learning with unreliable boundary queries
-
New York, NY, ACM Press.
-
A. Blum, P. Chalasani, S. A. Goldman, and D. K. Slonim. Learning with unreliable boundary queries. In Proc. 8th Annu. Conf. on Comput. Learning Theory, pages 98-107, New York, NY, 1995. ACM Press.
-
(1995)
Proc. 8th Annu. Conf. on Comput. Learning Theory
, pp. 98-107
-
-
Blum, A.1
Chalasani, P.2
Goldman, S.A.3
Slonim, D.K.4
-
25
-
-
0016521417
-
Towards a mathematical theory of inductive inference
-
L. Blum and M. Blum. Towards a mathematical theory of inductive inference. Information and Control, 28:125-155, 1975.
-
(1975)
Information and Control
, vol.28
, pp. 125-155
-
-
Blum, L.1
Blum, M.2
-
26
-
-
0023646365
-
Occam's razor
-
A. Blumer, A. Ehrenfeucht, D. Haussier, and M. K. Warmuth. Occam's razor. Inform. Proc. Lett., 24:377-380, 1987.
-
(1987)
Inform. Proc. Lett
, vol.24
, pp. 377-380
-
-
Blumer, A.1
Ehrenfeucht, A.2
Haussier, D.3
Warmuth, M.K.4
-
27
-
-
0024750852
-
Learnability and the Vapnik- Chervonenkis dimension
-
A. Blumer, A. Ehrenfeucht, D. Haussier, and M. K. Warmuth. Learnability and the Vapnik- Chervonenkis dimension. Journal of ACM, 36(4):929-965, 1989.
-
(1989)
Journal of ACM
, vol.36
, Issue.4
, pp. 929-965
-
-
Blumer, A.1
Ehrenfeucht, A.2
Haussier, D.3
Warmuth, M.K.4
-
29
-
-
39349103305
-
Estimation of prediction reliability in regression based on a transductive approach
-
In B Prasad, editor, Pune, India December 20-22
-
Z. Bosnie and I. Kononenko. Estimation of prediction reliability in regression based on a transductive approach. In B. Prasad, editor, Proc. 2nd Indian International Conference On Artificial Intelligence IICAI-05, pages 3502-3516, Pune, India December 20-22, 2005.
-
(2005)
Proc. 2nd Indian International Conference On Artificial Intelligence IICAI-05
, pp. 3502-3516
-
-
Bosnie, Z.1
Kononenko, I.2
-
30
-
-
62249148128
-
Evaluation of prediction reliability in regression using the transduction principle
-
In B. Zajc and M Tkalcic, editors
-
Z. Bosnie, I. Kononenko, M. Robnik Sikonja, and M. Kukar. Evaluation of prediction reliability in regression using the transduction principle. In B. Zajc and M. Tkalcic, editors, Proceedings of The IEEE Region 8 EUROCON 2003, volume 2, pages 99-103, 2003.
-
(2003)
Proceedings of The IEEE Region 8 EUROCON 2003
, vol.2
, pp. 99-103
-
-
Bosnie, Z.1
Kononenko, I.2
Robnik Sikonja, M.3
Kukar, M.4
-
31
-
-
33644955890
-
Evaluating the replicability of significance tests for comparing learning algorithms The University of Waikato
-
New Zealand
-
R. R. Bouckaert and E. Frank. Evaluating the replicability of significance tests for comparing learning algorithms. The University of Waikato, New Zealand, 2004.
-
(2004)
-
-
Bouckaert, R.R.1
Frank, E.2
-
33
-
-
80053221447
-
The download estimation task on KDD Cup 2003
-
J. Brank and J. Leskovec. The download estimation task on KDD Cup 2003. SIGKDD Explorations, 5(2): 160-162, 2003.
-
(2003)
SIGKDD Explorations
, vol.5
, Issue.2
, pp. 160-162
-
-
Brank, J.1
Leskovec, J.2
-
35
-
-
0035478854
-
Random forestss
-
L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
36
-
-
0030211964
-
Bagging predictors
-
L. Breiman. Bagging predictors. Machine Learning, 24(2): 123-140, 1996.
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
38
-
-
0000621802
-
Multivariable functional interpolation and adaptive networks
-
D. S. Broomhead and D. Lowe. Multivariable functional interpolation and adaptive networks. Complex Systems, 2:321-355, 1988.
-
(1988)
Complex Systems
, vol.2
, pp. 321-355
-
-
Broomhead, D.S.1
Lowe, D.2
-
39
-
-
0029487221
-
Simple learning algorithms for decision trees and multivariate polynomials
-
Los Alamitos, CA, 1995. IEEE Computer Society Press.
-
N. H. Bshouty and Y. Mansour. Simple learning algorithms for decision trees and multivariate polynomials. In Proc. 36th Annual Symposium on Foundations of Computer Science, pages 304-311, Los Alamitos, CA, 1995. IEEE Computer Society Press.
-
Proc. 36th Annual Symposium on Foundations of Computer Science
, pp. 304-311
-
-
Bshouty, N.H.1
Mansour, Y.2
-
40
-
-
0030126113
-
Asking questions to minimize errors
-
N. H. Bshouty, S. A. Goldman, T. Hancock, and S. Matar. Asking questions to minimize errors. Journal of Computer and System Sciences 52, pages 268-286, 1996.
-
(1996)
Journal of Computer and System Sciences 52
, pp. 268-286
-
-
Bshouty, N.H.1
Goldman, S.A.2
Hancock, T.3
Matar, S.4
-
41
-
-
84873424228
-
PAC learning with nasty noise
-
Springer, 10th International Conference, ALT '99, Tokyo, Japan, December 1999, Proceedings
-
N. H. Bshouty, N. Eiron, and E. Kushilevitz. PAC learning with nasty noise. In Algorithmic Learning Theory, 10th International Conference, ALT '99, Tokyo, Japan, December 1999, Proceedings, volume 1720, pages 206-218. Springer, 1999.
-
(1999)
Algorithmic Learning Theory
, vol.1720
, pp. 206-218
-
-
Bshouty, N.H.1
Eiron, N.2
Kushilevitz, E.3
-
45
-
-
0021776661
-
A massively parallel architecture for a self-organizing neural pattern recognition machine
-
G. A. Carpenter and S. Grossberg. A massively parallel architecture for a self-organizing neural pattern recognition machine. Computer Vision, Graphics, and Image Processing, 37:54-115, 1987a.
-
(1987)
Computer Vision, Graphics, and Image Processing
, vol.37
, pp. 54-115
-
-
Carpenter, G.A.1
Grossberg, S.2
-
46
-
-
84973857317
-
ART 2: Self-organization of stable category recognition codes for analog input patterns.
-
G. A. Carpenter and S. Grossberg. ART 2: Self-organization of stable category recognition codes for analog input patterns. Applied Optics, 26:4919-4930, 1987b.
-
(1987)
Applied Optics
, vol.26
, pp. 4919-4930
-
-
Carpenter, G.A.1
Grossberg, S.2
-
47
-
-
0025235219
-
ART 3: Hierarchical search using chemical transmitters in self-organizing pattern recognition architectures
-
G. A. Carpenter and S. Grossberg. ART 3: Hierarchical search using chemical transmitters in self-organizing pattern recognition architectures. Neural Networks, 3:129-152, 1990.
-
(1990)
Neural Networks
, vol.3
, pp. 129-152
-
-
Carpenter, G.A.1
Grossberg, S.2
-
48
-
-
0027274446
-
How to use expert advice
-
New York, NY, ACM Press
-
N. Cesa-Bianchi, Y. Freund, D. P. Helmbold, D. Haussier, R. E. Schapire, and M. K. Warmuth. How to use expert advice. In Proc. 25th Annu. ACM Sympos. Theory Comput., pages 382-391, New York, NY, 1993. ACM Press,.
-
(1993)
Proc. 25th Annu. ACM Sympos. Theory Comput
, pp. 382-391
-
-
Cesa-Bianchi, N.1
Freund, Y.2
Helmbold, D.P.3
Haussier, D.4
Schapire, R.E.5
Warmuth, M.K.6
-
49
-
-
0003006556
-
Estimating probabilities: A crucial task in machine learning
-
August
-
B. Cestnik. Estimating probabilities: A crucial task in machine learning. In European Conf. on Artificial Intelligence 90, pages 147-149, August 1990.
-
(1990)
European Conf. on Artificial Intelligence 90
, pp. 147-149
-
-
Cestnik, B.1
-
50
-
-
85031805771
-
On estimating probabilities in tree pruning
-
In Y Kodratoff, editor, Springer Verlag, March
-
B. Cestnik and I. Bratko. On estimating probabilities in tree pruning. In Y. Kodratoff, editor, European Working Session on Learning, pages 138-150. Springer Verlag, March 1991.
-
(1991)
European Working Session on Learning
, pp. 138-150
-
-
Cestnik, B.1
Bratko, I.2
-
51
-
-
0001929348
-
Assistant 86: A knowledge elicitation tool for sophisticated users
-
In I.Bratko and N. Lavrac, editors, Progress in Machine Learning . Sigma Press, Wilmslow, England
-
B. Cestnik, I. Kononenko, and I. Bratko. Assistant 86: A knowledge elicitation tool for sophisticated users. In I.Bratko and N. Lavrac, editors, Progress in Machine Learning. Sigma Press, Wilmslow, England, 1987.
-
(1987)
-
-
Cestnik, B.1
Kononenko, I.2
Bratko, I.3
-
54
-
-
85015191605
-
Rule induction with CN2: recent improvements
-
In Y. Kodratoff, editor, Proc. European Working Session on Learning, Porto, March 1991, 1991. Springer Verlag.
-
P. Clark and R. Boswell. Rule induction with CN2: recent improvements. In Y. Kodratoff, editor, Proc. European Working Session on Learning, pages 151-163, Porto, March 1991, 1991. Springer Verlag.
-
-
-
Clark, P.1
Boswell, R.2
-
55
-
-
0023468181
-
Learning if-then rules in noisy domains
-
In B. Phelps, editor, Interactions in Artificial Intelligence and Statistical Methods. Technical Press, Hampshire, England
-
P. Clark and T. Niblett. Learning if-then rules in noisy domains. In B. Phelps, editor, Interactions in Artificial Intelligence and Statistical Methods. Technical Press, Hampshire, England, 1987a.
-
(1987)
-
-
Clark, P.1
Niblett, T.2
-
56
-
-
84882585902
-
-
Induction Noisy domains.In I. Bratko and N Lavrac, editors, Progress in Machine learning Sigma Press, Wilmslow, England
-
P. Clark and T. Niblett. Induction in noisy domains. In I. Bratko and N. Lavrac, editors, Progress in Machine learning. Sigma Press, Wilmslow, England, 1987b.
-
(1987)
-
-
Clark, P.1
Niblettin, T.2
-
57
-
-
0020970741
-
Absolute stability of global pattern formation and parallel memory storage by competitive neural networks
-
Man, and Cybernetics SMC-13
-
M. A. Cohen and S. Grossberg. Absolute stability of global pattern formation and parallel memory storage by competitive neural networks. IEEE Transactions on Systems, Man, and Cybernetics, SMC-13:815-826, 1983.
-
(1983)
IEEE Transactions on Systems
, pp. 815-826
-
-
Cohen, M.A.1
Grossberg, S.2
-
61
-
-
84949751696
-
Genetic programming: Evolutionary approaches to multistrategy learning
-
In R. Michalski and G. Tecuci, editors, Machine Learning: A Multistrategy approach, Morgan Kaufmann
-
H. de Garis. Genetic programming: Evolutionary approaches to multistrategy learning. In R. Michalski and G. Tecuci, editors, Machine Learning: A Multistrategy approach, volume IV. Morgan Kaufmann, 1994.
-
(1994)
, vol.4
-
-
de Garis, H.1
-
62
-
-
0033338339
-
Semi-supervised clustering using genetic algorithms
-
In Artificial Neural Networks in Engineering (ANNIE-99)
-
A. Demiriz, K. P. Bennett, and M. J. Embrechts. Semi-supervised clustering using genetic algorithms. In Artificial Neural Networks in Engineering (ANNIE-99), pages 809-814, 1999.
-
(1999)
, pp. 809-814
-
-
Demiriz, A.1
Bennett, K.P.2
Embrechts, M.J.3
-
63
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm
-
A. P. Dempster, N. M. Laird, and D.B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 39( 1 ): 1-38, 1977.
-
(1977)
Journal of the Royal Statistical Society
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
64
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
J. Demsar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7:1-30, 2006.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1-30
-
-
Demsar, J.1
-
65
-
-
84882671181
-
Transformation of attribute space by function decomposition
-
In G.Delia Riccia J H. Lenz, and R Kruse, editors, Data fusion and perception, New York, 2001. Springer.
-
J. Demsar, B. Zupan, and I. Bratko. Transformation of attribute space by function decomposition. In G. Delia Riccia, H. J. Lenz, and R. Kruse, editors, Data fusion and perception, pages 237-247, New York, 2001. Springer.
-
-
-
Demsar, J.1
Zupan, B.2
Bratko, I.3
-
66
-
-
0000484080
-
Computer-intensive methods in statistics
-
P. Diaconis and B. Efron. Computer-intensive methods in statistics. Scientific American, 248: 96-108, 1983.
-
(1983)
Scientific American
, vol.248
, pp. 96-108
-
-
Diaconis, P.1
Efron, B.2
-
67
-
-
84882675048
-
Dietterich.inductive inference
-
In P. Cohen and E.A Feigenbaum, editors, The Handbook of Artificial Intelligence Pitman Books Ltd
-
T. G. Dietterich. Learning and inductive inference. In P. Cohen and E.A. Feigenbaum, editors, The Handbook of Artificial Intelligence, volume 3. Pitman Books Ltd, 1982.
-
(1982)
, vol.3
-
-
Learning, T.G.1
-
68
-
-
0000259511
-
Approximate statistical tests for comparing supervised classification learning algorithms
-
T. G. Dietterich. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, 10(7): 1895-1924, 1998.
-
(1998)
Neural Computation
, vol.10
, Issue.7
, pp. 1895-1924
-
-
Dietterich, T.G.1
-
70
-
-
0002106691
-
Metacost: A general method for making classifiers cost-sensitive
-
In Proc. of KDD-99 New York: ACM Press
-
P. Domingos. Metacost: A general method for making classifiers cost-sensitive. In Proc. of KDD-99, pages 155-164. New York: ACM Press, 1999.
-
(1999)
, pp. 155-164
-
-
Domingos, P.1
-
71
-
-
85139983802
-
Supervised and unsupervised discretization of continuous features
-
Morgan Kaufmann
-
J. Dougherty, R. Kohavi, and M. Sahami. Supervised and unsupervised discretization of continuous features. In Proc. ICML'95, pages 194-202. Morgan Kaufmann, 1995.
-
(1995)
Proc. ICML'95
, pp. 194-202
-
-
Dougherty, J.1
Kohavi, R.2
Sahami, M.3
-
77
-
-
0024739191
-
A general lower bound on the number of examples needed for learning
-
A. Ehrenfeucht and D. Haussier. A general lower bound on the number of examples needed for learning. Inform. Comput., 82(3):247-251, 1989.
-
(1989)
Inform. Comput
, vol.82
, Issue.3
, pp. 247-251
-
-
Ehrenfeucht, A.1
Haussier, D.2
-
78
-
-
84882596675
-
Introduction to Evolutionary Computing 2003
-
Springer, Berlin, A.Einstein. Science and religion.
-
A. Eiben and J.E. Smith. Introduction to Evolutionary Computing. Springer, Berlin, 2003. A.Einstein. Science and religion. Nature, 146:605-607, 1940.
-
(1940)
Nature
, vol.146
, pp. 605-607
-
-
Eiben, A.1
Smith, E.J.2
-
80
-
-
0003586436
-
On the induction of decision trees for multiple concept learning
-
PhD thesis, The University of Michigan
-
U. M. Fayyad. On the induction of decision trees for multiple concept learning. PhD thesis, The University of Michigan, 1991.
-
(1991)
-
-
Fayyad, U.M.1
-
81
-
-
0002593344
-
Multi-interval discretization of continuous-valued attributes for classification learning
-
U. M. Fayyad. Multi-interval discretization of continuous-valued attributes for classification learning. In Proc. IJCAI1993, pages 1022-1027. Morgan Kaufmann, 1993.
-
(1993)
In Proc. IJCAI Morgan Kaufmann
, pp. 1022-1027
-
-
Fayyad, U.M.1
-
82
-
-
84882703676
-
Sky image cataloging and analysis tool
-
U. M. Fayyad. Sky image cataloging and analysis tool. In Proc. IJCAI-95, pages 2067-2068, 1995. Montreal.
-
(1995)
Proc. IJCAI-95 Montreal.
, pp. 2067-2068
-
-
Fayyad, U.M.1
-
83
-
-
0030289446
-
Data mining and knowledge discovery in databases (editorial)
-
U. M. Fayyad and R. Uthurusamy. Data mining and knowledge discovery in databases (editorial). Communications of the ACM, 39(11 ):24-26, 1996.
-
(1996)
Communications of the ACM
, vol.39
, Issue.11
, pp. 24-26
-
-
Fayyad, U.M.1
Uthurusamy, R.2
-
84
-
-
0343442766
-
Knowledge acquisition via incremental conceptual clustering
-
D. H. Fisher. Knowledge acquisition via incremental conceptual clustering. Machine Learning, 2:139-172, 1987.
-
(1987)
Machine Learning
, vol.2
, pp. 139-172
-
-
Fisher, D.H.1
-
85
-
-
0029678997
-
Iterative optimization and simplification of hierarchical clusterings
-
D. H. Fisher. Iterative optimization and simplification of hierarchical clusterings. Journal of Artificial Intelligence Research, 4:147-180, 1996.
-
(1996)
Journal of Artificial Intelligence Research
, vol.4
, pp. 147-180
-
-
Fisher, D.H.1
-
86
-
-
0003929250
-
Evolutionary Computation: Toward a New Philosophy of Machine Intelligence
-
Piscataway, NJ, IEEE Press
-
D. B. Fogel. Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. Piscataway, NJ, IEEE Press, 1995.
-
(1995)
-
-
Fogel, B.D.1
-
90
-
-
0023981865
-
A neural network for visual pattern recognition
-
K. Fukushima. A neural network for visual pattern recognition. IEEE Computer, pages 65-75, 3 1988.
-
(1988)
IEEE Computer
, vol.3
, pp. 65-75
-
-
Fukushima, K.1
-
93
-
-
84994037050
-
Dynamic classifier selection based on multiple classifier behaviour
-
G. Giacinto and F. Roli. Dynamic classifier selection based on multiple classifier behaviour. Pattern Recognition, 34:1879-1881, 2001.
-
(2001)
Pattern Recognition
, vol.34
, pp. 1879-1881
-
-
Giacinto, G.1
Roli, F.2
-
94
-
-
49949150022
-
Language identification in the limit
-
E. M. Gold. Language identification in the limit. Information and Control, 10(5):447-474, 1967.
-
(1967)
Information and Control
, vol.10
, Issue.5
, pp. 447-474
-
-
Gold, E.M.1
-
96
-
-
84882583718
-
Computational learning theory
-
M. J Atallah, editor, Algorithms and Theory of Computation Handbook chapter 30. CRC Press
-
S. A. Goldman. Computational learning theory. In M. J. Atallah, editor, Algorithms and Theory of Computation Handbook, chapter 30. CRC Press, 1998.
-
(1998)
-
-
Goldman, S.A.1
-
97
-
-
0013411860
-
Sloan Can PAC learning algorithms tolerate random attribute noise?
-
S. A. Goldman and R. Sloan. Can PAC learning algorithms tolerate random attribute noise? Algorithmica, 14(l):70-84, 1995.
-
(1995)
Algorithmica
, vol.14
, Issue.L
, pp. 70-84
-
-
Goldman, S.A.R.1
-
102
-
-
0004241258
-
-
Chapman & Hall/CRC, 2nd edition
-
A. D. Gordon. Classification. Chapman & Hall/CRC, 2nd edition, 1999.
-
(1999)
Classification
-
-
Gordon, D.A.1
-
103
-
-
0001330098
-
A general coefficient of similarity and some of its properties
-
J. C. Gower. A general coefficient of similarity and some of its properties. Biometrics, 27: 857-72, 1971.
-
(1971)
Biometrics
, vol.27
, pp. 857-872
-
-
Gower, J.C.1
-
104
-
-
0000241046
-
Measures of similarity, dissimilarity
-
In distance. S.Kotz N.L Johnson, and Reed C.B., John Wiley & Sons, New York
-
J. C. Gower. Measures of similarity, dissimilarity and distance. In S. Kotz, N. L. Johnson, and C.B. Reed, editors, Encyclopaedia of statistical sciences, volume 5. John Wiley & Sons, New York, 1985.
-
(1985)
Encyclopaedia of statistical sciences
, vol.5
-
-
Gower, J.C.1
-
105
-
-
0037942868
-
Data mining standards initiatives
-
R. Grossman, M. Hornick, and G. Meyer. Data mining standards initiatives. Communications of the ACM, 45-8:59-61, 2002.
-
(2002)
Communications of the ACM
, vol.45
, Issue.8
, pp. 59-61
-
-
Grossman, R.1
Hornick, M.2
Meyer, G.3
-
106
-
-
0023847221
-
On the stability, storage capacity and design of nonlinear continuous neural networks
-
A. Guez, V. Protopopsecu, and J. Barhen. On the stability, storage capacity and design of nonlinear continuous neural networks. IEEE Trans, on Systems, Man, and Cybernetics, 18 (l):80-87, 1988.
-
(1988)
IEEE Trans, on Systems, Man, and Cybernetics
, vol.18
, Issue.L
, pp. 80-87
-
-
Guez, A.1
Protopopsecu, V.2
Barhen, J.3
-
107
-
-
0019042755
-
Multiple mutual informations and multiple interactions in frequency data
-
T. S. Han. Multiple mutual informations and multiple interactions in frequency data. Information and Control, 46(l):26-45, 1980.
-
(1980)
Information and Control
, vol.46
, Issue.L
, pp. 26-45
-
-
Han, T.S.1
-
109
-
-
84972525897
-
Local regression: automatic kernel carpentry
-
T. Hastie and C. Loader. Local regression: automatic kernel carpentry. Statistical Science, 8: 120-143, 1993.
-
(1993)
Statistical Science
, vol.8
, pp. 120-143
-
-
Hastie, T.1
Loader, C.2
-
110
-
-
0002192516
-
Decision theoretic generalizations of the PAC model for neural net and other learning applications
-
D. Haussier. Decision theoretic generalizations of the PAC model for neural net and other learning applications. Inform. Comput., 100(1):78-150, 1992.
-
(1992)
Inform. Comput
, vol.100
, Issue.1
, pp. 78-150
-
-
Haussier, D.1
-
111
-
-
0026371910
-
Equivalence of models for polynomial learnability
-
D. Haussier, M. Kearns, N. Littlestone, and M. K. Warmuth. Equivalence of models for polynomial learnability. Inform. Comput., 95(2): 129-161, 1991.
-
(1991)
Inform. Comput
, vol.95
, Issue.2
, pp. 129-161
-
-
Haussier, D.1
Kearns, M.2
Littlestone, N.3
Warmuth, M.K.4
-
112
-
-
43949159818
-
Predicting {0,1} functions on randomly drawn points
-
D. Haussier, N. Littlestone, and M. K. Warmuth. Predicting {0,1} functions on randomly drawn points. Inform. Comput., 115(2):284-293, 1994.
-
(1994)
Inform. Comput
, vol.115
, Issue.2
, pp. 284-293
-
-
Haussier, D.1
Littlestone, N.2
Warmuth, K.M.3
-
115
-
-
33745834241
-
UCI repository of machine learning databases
-
S. Hettich, C.L. Blake, and C.J. Merz. UCI repository of machine learning databases, 1998. URL http://www.ics.uci.edu/~mlearn/MLRepository.html.
-
(1998)
-
-
Hettich, S.1
Blake, C.L.2
Merz, J.C.3
-
116
-
-
0019647151
-
A parallel computation that assigns canonical object based frames of reference
-
G. E. Hinton. A parallel computation that assigns canonical object based frames of reference. In Proc. 7th Int. Joint Conf. on AI IJCAI-81, 1981.
-
(1981)
Proc. 7th Int. Joint Conf. on AI IJCAI-81
-
-
Hinton, G.E.1
-
117
-
-
0000999440
-
Learning and relearning in Boltzmann machines
-
In Rumelhart and J.L McClelland, editors, Parallel Distributed Processing, Foundations Cambridge: MIT Press
-
G. E. Hinton and T. J. Sejnowski. Learning and relearning in Boltzmann machines. In D.E. Rumelhart and J.L. McClelland, editors, Parallel Distributed Processing, Foundations, volume 1. Cambridge: MIT Press, 1986.
-
(1986)
, vol.1
-
-
Hinton, G.E.1
Sejnowski, T.J.2
-
119
-
-
0000746883
-
Escaping brittleness: The possibilities of general-purpose learning algorithms applied to parallel rule-based systems
-
In R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors, Morgan Kaufman., Los Altos
-
J. H. Holland. Escaping brittleness: The possibilities of general-purpose learning algorithms applied to parallel rule-based systems. In R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors, Machine Learning: An Artificial Intelligence approach, volume 2, pages 593-623. Morgan Kaufman., Los Altos, 1986.
-
(1986)
Machine Learning: An Artificial Intelligence approach
, vol.2
, pp. 593-623
-
-
Holland, H.J.1
-
121
-
-
0020118274
-
Neural networks and physical systems with emergent collective computational abilities
-
J. J. Hopfield. Neural networks and physical systems with emergent collective computational abilities. National Academy of Sciences, 79:2554-2558, 1982.
-
(1982)
National Academy of Sciences
, vol.79
, pp. 2554-2558
-
-
Hopfield, J.J.1
-
122
-
-
0004469897
-
Neurons with graded response have collective computational properties like those of two-state neurons
-
J. J. Hopfield. Neurons with graded response have collective computational properties like those of two-state neurons. National Academy of Sciences, 81:4586-590, 1984.
-
(1984)
National Academy of Sciences
, vol.81
, pp. 4586-4590
-
-
Hopfield, J.J.1
-
123
-
-
0021835689
-
Neural computation of decisions in optimization problems
-
J. J. Hopfield and D. W. Tank. Neural computation of decisions in optimization problems. Biological Cybernetics, 52:141-152, 1985.
-
(1985)
Biological Cybernetics
, vol.52
, pp. 141-152
-
-
Hopfield, J.J.1
Tank, D.W.2
-
125
-
-
2942695509
-
A genetic algorithm for cluster analysis
-
E. R. Hruschka and N. F. F. Ebecken. A genetic algorithm for cluster analysis. Intell. Data Anal, 7(l):15-25, 2003.
-
(2003)
Intell. Data Anal
, vol.7
, Issue.L
, pp. 15-25
-
-
Hruschka, E.R.1
Ebecken, N.F.F.2
-
126
-
-
11144321326
-
Evolutionary search for optimal fuzzy c-means clustering
-
E. R. Hruschka, R. J. G. B. Campello, and L. N. de Castro. Evolutionary search for optimal fuzzy c-means clustering. In Proceedings of the IEEE International Conference on Fuzzy Systems, volume 2, pages 685-690, 2004a.
-
(2004)
Proceedings of the IEEE International Conference on Fuzzy Systems
, vol.2
, pp. 685-690
-
-
Hruschka, E.R.1
Campello, R.J.G.B.2
de Castro, L.N.3
-
127
-
-
19544375033
-
Evolutionary algorithms for clustering gene-expression data
-
E. R. Hruschka, L. N. de Castro, and R. J. G. B. Campello. Evolutionary algorithms for clustering gene-expression data. In Proc. ICDM'04, pages 403-06, 2004b.
-
(2004)
Proc. ICDM'04
, pp. 403-406
-
-
Hruschka, E.R.1
de Castro, L.N.2
Campello, R.J.G.B.3
-
128
-
-
33748296225
-
Evolving clusters in gene-expression data
-
E. R. Hruschka, R. J. G. B. Campello, and L. N. de Castro. Evolving clusters in gene-expression data. Information Sciences, 176(13): 1898-1927, 2006.
-
(2006)
Information Sciences
, vol.176
, Issue.13
, pp. 1898-1927
-
-
Hruschka, E.R.1
Campello, R.J.G.B.2
de Castro, L.N.3
-
130
-
-
0003905759
-
-
Series on Adaptive and Learning Systems for Signal Processing, Communications and Control. Wiley
-
A. Hyvarinen, J. Karhunen, and E. Oja. Independent Component Analysis. Series on Adaptive and Learning Systems for Signal Processing, Communications and Control. Wiley, 2001.
-
(2001)
Independent Component Analysis
-
-
Hyvarinen, A.1
Karhunen, J.2
Oja, E.3
-
131
-
-
0001750957
-
Approximations of the critical region of the Friedman statistic
-
R. L. Iman and J. M. Davenport. Approximations of the critical region of the Friedman statistic. Communications in Statistics, pages 571-595, 1980.
-
(1980)
Communications in Statistics
, pp. 571-595
-
-
Iman, R.L.1
Davenport, J.M.2
-
132
-
-
84882641109
-
Stochastic search methods
-
In M. Berthold and D.J Hand, editors, Springer, 2nd Edition.
-
C. Jacob. Stochastic search methods. In M. Berthold and D.J. Hand, editors, Intelligent data analysis: An Introduction. Springer, 2003. 2nd Edition.
-
(2003)
Intelligent data analysis: An Introduction
-
-
Jacob, C.1
-
133
-
-
84893405732
-
Data clustering: A review
-
A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review. ACM Computing Surveys,, 31(5):264-323, 1999.
-
(1999)
ACM Computing Surveys
, vol.31
, Issue.5
, pp. 264-323
-
-
Jain, A.K.1
Murty, M.N.2
Flynn, J.P.3
-
134
-
-
9444258137
-
Analyzing attribute dependencies
-
Berlin, Springer Verlag.
-
A. Jakulin and I. Bratko. Analyzing attribute dependencies. In Proc. PKDD 2003, pages 229- 240, Berlin, 2003. Springer Verlag.
-
(2003)
Proc. PKDD 2003
, pp. 229-240
-
-
Jakulin, A.1
Bratko, I.2
-
137
-
-
0043155109
-
Genetic-algorithms-based learning
-
In Y.Kodratoff, R. S Michalski, editors, Morgan Kaufmann
-
K. De Jong. Genetic-algorithms-based learning. In Y. Kodratoff and R. S. Michalski, editors, Machine Learning, An Artificial Intelligence Approach, volume 3. Morgan Kaufmann, 1990.
-
(1990)
Machine Learning, An Artificial Intelligence Approach
, vol.3
-
-
De Jong, K.1
-
138
-
-
0015711168
-
Inability of humans to discriminate between visual textures that agree in second-order-statistics
-
B. Julesz, E. N. Gilbert, L. A. Shepp, and H. L. Frisch. Inability of humans to discriminate between visual textures that agree in second-order-statistics. Perception, 2:391-05, 1973.
-
(1973)
Perception
, vol.2
, pp. 391-305
-
-
Julesz, B.1
Gilbert, E.N.2
Shepp, L.A.3
Frisch, H.L.4
-
139
-
-
0031625017
-
Dimensionality reduction by random mapping: fast similarity computation for clustering.
-
S. Kaski. Dimensionality reduction by random mapping: fast similarity computation for clustering. In Proc. IEEE International Joint Conference on Neural Networks, pages 413-18, 1998.
-
(1998)
Proc. IEEE International Joint Conference on Neural Networks
, pp. 413-418
-
-
Kaski, S.1
-
141
-
-
0027188175
-
Efficient noise-tolerant learning from statistical queries
-
New York, ACM Press.
-
M. Kearns. Efficient noise-tolerant learning from statistical queries. In Proc. 25th Annu. ACM Sympos. Theory Comput., pages 392-401, New York, 1993. ACM Press.
-
(1993)
Proc. 25th Annu. ACM Sympos. Theory Comput
, pp. 392-401
-
-
Kearns, M.1
-
142
-
-
0024863228
-
Cryptographic limitations on learning Boolean formulae and finite automata
-
New York, ACM Press.
-
M. Kearns and L. G. Valiant. Cryptographic limitations on learning Boolean formulae and finite automata. In Proc. of the 21st Symposium on Theory of Computing, pages 433-444, New York, 1989. ACM Press.
-
(1989)
Proc. of the 21st Symposium on Theory of Computing
, pp. 433-444
-
-
Kearns, M.1
Valiant, L.G.2
-
143
-
-
0025794545
-
Efficient distribution-free learning of probabilistic concepts
-
Los Alamitos, CA, IEEE Computer Society Press
-
M. J. Kearns and R. E. Schapire. Efficient distribution-free learning of probabilistic concepts. In Proc. of the 31st Symposium on the Foundations of Comp. Sci. (1990), pages 382-391, Los Alamitos, CA, 1990. IEEE Computer Society Press,.
-
(1990)
Proc. of the 31st Symposium on the Foundations of Comp. Sci. (1990)
, pp. 382-391
-
-
Kearns, M.J.1
Schapire, R.E.2
-
145
-
-
0026459988
-
Drug design by machine learning: The use of ILP to model the structure-activity relationship of trimethoprim analogues binding to dihydrofolate reductase
-
R. King, S. Muggleton, R. Lewis, and M. Sternberg. Drug design by machine learning: The use of ILP to model the structure-activity relationship of trimethoprim analogues binding to dihydrofolate reductase. National Academy of Sciences, 1992.
-
(1992)
National Academy of Sciences
-
-
King, R.1
Muggleton, S.2
Lewis, R.3
Sternberg, M.4
-
146
-
-
1642336155
-
Functional genomic hypothesis generation and experimentation by a robot scientist
-
R. King, K. Whelan, F. Jones, P. Reiser, C. Bryant, S. Muggleton, D. Kell, and S. Oliver. Functional genomic hypothesis generation and experimentation by a robot scientist. Nature, 427:247-252, 2004.
-
(2004)
Nature
, vol.427
, pp. 247-252
-
-
King, R.1
Whelan, K.2
Jones, F.3
Reiser, P.4
Bryant, C.5
Muggleton, S.6
Kell, D.7
Oliver, S.8
-
148
-
-
85146422424
-
practical approach to feature selection
-
In D. Sleeman and P Edwards, editors, Aberdeen, UK, Morgan Kaufmann.
-
K. Kira and L. Rendell. A practical approach to feature selection. In D. Sleeman and P. Edwards, editors, Proc. Intern. Conf. on Machine Learning, pages 249-256, Aberdeen, UK, 1992a. Morgan Kaufmann.
-
(1992)
Proc. Intern. Conf. on Machine Learning
, pp. 249-256
-
-
Kira, K.1
Rendell, A.L.2
-
149
-
-
0003036517
-
The feature selection problem: traditional methods and new algorithm
-
San Jose, CA.
-
K. Kira and L. Rendell. The feature selection problem: traditional methods and new algorithm. In AAAl-92, 1992b. San Jose, CA.
-
(1992)
In AAAl-92
-
-
Kira, K.1
Rendell, L.2
-
151
-
-
9444294778
-
From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering
-
D. Klein, S. D. Kamvar, and C. Manning. From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering. In Proc. of 19th Intl. Conf. on Machine Learning (ICML-2002), pages 307-314, 2002.
-
(2002)
Proc. of 19th Intl. Conf. on Machine Learning (ICML-2002)
, pp. 307-314
-
-
Klein, D.1
Kamvar, S.D.2
Manning, C.3
-
153
-
-
0002959696
-
The wrapper approach
-
In H. Liu and H Motoda, editors, Springer Verlag, Berlin
-
R. Kohavi and G. John. The wrapper approach. In H. Liu and H. Motoda, editors, Feature Extraction, Construction and Selection: A Data Mining Perspective, pages 33-50. Springer Verlag, Berlin, 1996.
-
(1996)
Feature Extraction, Construction and Selection: A Data Mining Perspective
, pp. 33-50
-
-
Kohavi, R.1
John, G.2
-
154
-
-
0003410791
-
-
Springer, Berlin, Heidelberg, New York, 3rd Extended Edition.
-
T. Kohonen. Self-Organizing Maps. Springer, Berlin, Heidelberg, New York, 2001. 3rd Extended Edition.
-
(2001)
Self-Organizing Maps
-
-
Kohonen, T.1
-
155
-
-
0004349645
-
Clustering, taxonomy, and topological maps of patterns
-
Munich, Germany
-
T. Kohonen. Clustering, taxonomy, and topological maps of patterns. In Proc. Sixth Int. Conf. on Pattern Recognition, pages 1148-1151, Munich, Germany, 1982.
-
(1982)
Proc. Sixth Int. Conf. on Pattern Recognition
, pp. 1148-1151
-
-
Kohonen, T.1
-
157
-
-
0024363909
-
Bayesian neural networks
-
I. Kononenko. Bayesian neural networks. Biological Cybernetics, 61:361-370, 1989a.
-
(1989)
Biological Cybernetics
, vol.61
, pp. 361-370
-
-
Kononenko, I.1
-
158
-
-
26644444473
-
ID3, sequential Bayes, naive Bayes and Bayesian neural networks
-
Montpellier, France
-
I. Kononenko. ID3, sequential Bayes, naive Bayes and Bayesian neural networks. In 4th European Working Session on Learning, pages 91-98, Montpellier, France, 1989b.
-
(1989)
4th European Working Session on Learning
, pp. 91-98
-
-
Kononenko, I.1
-
160
-
-
85031799549
-
Semi-naive Bayesian classifier
-
In Y Kodratoff, editor, Springer-Verlag, Porto, March 4-6.
-
I. Kononenko. Semi-naive Bayesian classifier. In Y. Kodratoff, editor, European Working Session on Learning'91, pages 206-219. Springer-Verlag, 1991b. Porto, March 4-6.
-
(1991)
European Working Session on Learning'91
, pp. 206-219
-
-
Kononenko, I.1
-
161
-
-
0027682531
-
Inductive and Bayesian learning in medical diagnosis
-
I. Kononenko. Inductive and Bayesian learning in medical diagnosis. Applied Artificial Intelligence, 7:317-337, 1993.
-
(1993)
Applied Artificial Intelligence
, vol.7
, pp. 317-337
-
-
Kononenko, I.1
-
162
-
-
84992726552
-
Estimating attributes: Analysis and extensions of RELIEF
-
In L. De Raedt and F. Bergadano, editors, Catania, Italy, Springer Verlag.
-
I. Kononenko. Estimating attributes: Analysis and extensions of RELIEF. In L. De Raedt and F. Bergadano, editors, European Conf. on Machine Learning, pages 171-182, Catania, Italy, 1994. Springer Verlag.
-
(1994)
European Conf. on Machine Learning
, pp. 171-182
-
-
Kononenko, I.1
-
163
-
-
85077432727
-
On biases in estimating multivalued attributes In
-
Montreal, August 20-25.
-
I. Kononenko. On biases in estimating multivalued attributes. In Int. Joint Conf. on Artificial Intelligence 1JCAI-95, pages 1034-1040, 1995. Montreal, August 20-25.
-
(1995)
Int. Joint Conf. on Artificial Intelligence 1JCAI-95
, pp. 1034-1040
-
-
Kononenko, I.1
-
164
-
-
84882568918
-
-
Science and spirituality Technical report, FRI
-
I. Kononenko. Science and spirituality. Technical report, FRI, 2002. URL lkm.fri.uni-lj.si/xaigor/eng/sas.htm.
-
(2002)
-
-
Kononenko, I.1
-
165
-
-
0025803268
-
Information based evaluation criterion for classifier's performance
-
I. Kononenko and I. Bratko. Information based evaluation criterion for classifier's performance. Machine Learning, 6:67-80, 1991.
-
(1991)
Machine Learning
, vol.6
, pp. 67-80
-
-
Kononenko, I.1
Bratko, I.2
-
171
-
-
50049103518
-
ReliefF for estimation, discretization of attributes in classification, regression, ILP problems
-
In A Ramsey, editor, IOS Press, Sozopol, Bulgaria.
-
I. Kononenko, M. Robnik-Sikonja, and U. Pompe. ReliefF for estimation and discretization of attributes in classification, regression, and ILP problems. In A. Ramsey, editor, AIMSA-96, pages 31-40. IOS Press, 1996. Sozopol, Bulgaria.
-
(1996)
AIMSA-96
, pp. 31-40
-
-
Kononenko, I.1
Robnik-Sikonja, M.2
Pompe, U.3
-
172
-
-
0030735972
-
Overcoming the myopia of inductive learning algorithms
-
I. Kononenko, E. Simec, and M. Robnik. Overcoming the myopia of inductive learning algorithms. Applied Intelligence, 7:39-55, 1997.
-
(1997)
Applied Intelligence
, vol.7
, pp. 39-55
-
-
Kononenko, I.1
Simec, E.2
Robnik, M.3
-
173
-
-
84882622738
-
Classification of different types of coronas using parametrization of images, machine learning
-
In K Korotkov, editor, Fair Lawn: Backbone, GDV bioelectrography series.
-
I. Kononenko, M. Bevk, A. Sadikov, and L. Sajn. Classification of different types of coronas using parametrization of images and machine learning. In K. Korotkov, editor, Measuring energy fields: state of the science, volume 1, pages 193-208. Fair Lawn: Backbone, 2004. GDV bioelectrography series.
-
(2004)
Measuring energy fields: state of the science
, vol.1
, pp. 193-208
-
-
Kononenko, I.1
Bevk, M.2
Sadikov, A.3
Sajn, L.4
-
174
-
-
0008819794
-
-
State Editing & Publishing Unit "Kultura", St.Petersburg, Russia.
-
K. Korotkov. Aura and Consciousness. State Editing & Publishing Unit "Kultura", 1998. St.Petersburg, Russia.
-
(1998)
Aura and Consciousness
-
-
Korotkov, K.1
-
175
-
-
0023416155
-
Constructing an associative memory
-
B. Kosko. Constructing an associative memory. Byte, pages 137-144, 1987.
-
(1987)
Byte
, pp. 137-144
-
-
Kosko, B.1
-
176
-
-
0023861743
-
Bidirectional associative memories
-
B. Kosko. Bidirectional associative memories. IEEE Trans, on Systems, Man, and Cybernetics, 18(l):49-50, 1988.
-
(1988)
IEEE Trans, on Systems, Man, and Cybernetics
, vol.18
, Issue.L
, pp. 49-50
-
-
Kosko, B.1
-
177
-
-
0025981567
-
Markovian neural networks
-
M. Kovacic. Markovian neural networks. Biological Cybernetics, 64:337-342, 1991.
-
(1991)
Biological Cybernetics
, vol.64
, pp. 337-342
-
-
Kovacic, M.1
-
179
-
-
0001972236
-
Addressing the curse of imbalanced training sets: One sided selection
-
Morgan Kaufmann
-
M. Kubat and S. Matwin. Addressing the curse of imbalanced training sets: One sided selection. In Proc. Fourteenth Intl. Conf. Machine Learning, pages 179-186. Morgan Kaufmann, 1997.
-
(1997)
Proc. Fourteenth Intl. Conf. Machine Learning
, pp. 179-186
-
-
Kubat, M.1
Matwin, S.2
-
180
-
-
0041834856
-
Transductive reliability estimation for medical diagnosis
-
M. Kukar. Transductive reliability estimation for medical diagnosis. Artif. intell. med., pages 81-106, 2003.
-
(2003)
Artif. intell. med
, pp. 81-106
-
-
Kukar, M.1
-
181
-
-
33645537482
-
Quality assessment of individual classifications in machine learning and data mining
-
M. Kukar. Quality assessment of individual classifications in machine learning and data mining. Knowledge and Information Systems, 9(3):364-384, 2006.
-
(2006)
Knowledge and Information Systems
, vol.9
, Issue.3
, pp. 364-384
-
-
Kukar, M.1
-
182
-
-
84945287811
-
Reliable classifications with machine learning
-
In T.Elomaa, H. Helsinki, Mannila, and H Toivonen, editors, Springer Finland, August 19-23.
-
M. Kukar and I. Kononenko. Reliable classifications with machine learning. In T. Elomaa, H. Mannila, and H. Toivonen, editors, Proc. 13th European Conference on Machine Learning, pages 219-231. Springer, 2002. Helsinki, Finland, August 19-23.
-
(2002)
Proc. 13th European Conference on Machine Learning
, pp. 219-231
-
-
Kukar, M.1
Kononenko, I.2
-
184
-
-
0004030914
-
-
editors, MIT Press, Cambridge, MA
-
W. Langdon, L. Spector, U. M. O'Reilly, and P. J. Angeline, editors. Advances in Genetic Programming 3. MIT Press, Cambridge, MA, 1998.
-
(1998)
Advances in Genetic Programming 3
-
-
Langdon, W.1
Spector, L.2
O'Reilly, U.M.3
Angeline, J.P.4
-
187
-
-
84882704240
-
Automatic construction of the knowledge base for a steel classification expert system
-
Avignon.
-
N. Lavrac, A. Varsek, M. Gams, I. Kononenko, and I. Bratko. Automatic construction of the knowledge base for a steel classification expert system. In The 6th Int. Workshop on Expert Systems and Their Applications, pages 727-740, 1986. Avignon.
-
(1986)
The 6th Int. Workshop on Expert Systems and Their Applications
, pp. 727-740
-
-
Lavrac, N.1
Varsek, A.2
Gams, M.3
Kononenko, I.4
Bratko, I.5
-
188
-
-
84882583468
-
Intelligent data analysis in medicine
-
In N Lavrac E. Keravnou, and B Zupan, editors, Nagoya, Japan
-
N. Lavrac, E. Keravnou, and B. Zupan. Intelligent data analysis in medicine. In N. Lavrac E. Keravnou, and B. Zupan, editors, Proc. Intelligent Data Analysis in Medicine and Pharmacology (IDAMAP-97), pages 33-39, Nagoya, Japan, 1997.
-
(1997)
Proc. Intelligent Data Analysis in Medicine and Pharmacology (IDAMAP-97)
, pp. 33-39
-
-
Lavrac, N.1
Keravnou, E.2
Zupan, B.3
-
190
-
-
0001689415
-
The role of heuristics in learning by discovery: Three case studies
-
In R. Michalski, J.G. Carbonell, and T.M. Mitchell, editors, Tioga
-
D. B. Lenat. The role of heuristics in learning by discovery: Three case studies. In R. Michalski, J.G. Carbonell, and T.M. Mitchell, editors, Machine Learning, An Artificial Intelligence Approach. Tioga, 1983.
-
(1983)
Machine Learning, An Artificial Intelligence Approach
-
-
Lenat, B.D.1
-
194
-
-
0036487280
-
The global k-means clustering algorithm
-
A. Likas, N. A. Vlassis, and J. J. Verbeek. The global k-means clustering algorithm. Pattern Recognition, 36(2):451-461, 2003.
-
(2003)
Pattern Recognition
, vol.36
, Issue.2
, pp. 451-461
-
-
Likas, A.1
Vlassis, N.A.2
Verbeek, J.J.3
-
195
-
-
0027609492
-
DENDRAL: A case study of the first expert system for scientific hypothesis formation
-
R. Lindsay, B. Buchanan, E. Feigenbaum, and J. Lederberg. DENDRAL: A case study of the first expert system for scientific hypothesis formation. Artificial Intelligence, 61(2):209-261, 1993.
-
(1993)
Artificial Intelligence
, vol.61
, Issue.2
, pp. 209-261
-
-
Lindsay, R.1
Buchanan, B.2
Feigenbaum, E.3
Lederberg, J.4
-
196
-
-
34250091945
-
Learning when irrelevant attributes abound: A new linear-threshold algorithm
-
N. Littlestone. Learning when irrelevant attributes abound: A new linear-threshold algorithm. Machine Learning, 2:285-318, 1988.
-
(1988)
Machine Learning
, vol.2
, pp. 285-318
-
-
Littlestone, N.1
-
198
-
-
0003602164
-
-
Springer Verlag, Berlin, Heidelberg, New York
-
H. Liu and H. Motoda. Feature Extraction, Construction and Selection: A Data Mining Perspective. Springer Verlag, Berlin, Heidelberg, New York, 1996.
-
(1996)
Feature Extraction, Construction and Selection: A Data Mining Perspective
-
-
Liu, H.1
Motoda, H.2
-
202
-
-
0000586256
-
Lower bound methods and separation results for on-line learning models
-
W. Maass and G Turân. Lower bound methods and separation results for on-line learning models. Machine Learning, 9:107-145, 1992.
-
(1992)
Machine Learning
, vol.9
, pp. 107-145
-
-
Maass, W.1
Turân, G.2
-
207
-
-
2342665025
-
ID3 revisited: A distance based criterion for attribute selection
-
Charlotte, North Carolina, U.S.A.
-
R. L. Mantaras. ID3 revisited: A distance based criterion for attribute selection. In Int. Symp. Methodologies for Intelligent Systems, Charlotte, North Carolina, U.S.A. 1989.
-
(1989)
Int. Symp. Methodologies for Intelligent Systems
-
-
Mantaras, L.R.1
-
210
-
-
0023383370
-
The capacity of the Hopfield associative memory
-
R. J. McEliece, E. C. Posner, E. R. Rodemich, and S. S. Venkatesh. The capacity of the Hopfield associative memory. IEEE Trans, on Information Theory, IT-33(4):461-482, 1987.
-
(1987)
IEEE Trans, on Information Theory
, vol.33 IT
, Issue.4
, pp. 461-482
-
-
McEliece, R.J.1
Posner, E.C.2
Rodemich, E.R.3
Venkatesh, S.S.4
-
212
-
-
0003418739
-
-
editors, Tioga
-
R. Michalski, J. G. Carbonell, and T. M. Mitchell, editors. Machine Learning, An Artificial Intelligence Approach. Tioga, 1983.
-
(1983)
Machine Learning, An Artificial Intelligence Approach
-
-
Michalski, R.1
Carbonell, J.G.2
Mitchell, M.T.3
-
213
-
-
0000746883
-
-
editors, Morgan Kauffman
-
R. Michalski, J. G. Carbonell, and T. M. Mitchell, editors. Machine Learning, An Artificial Intelligence Approach, volume 2. Morgan Kauffman, 1986.
-
(1986)
Machine Learning, An Artificial Intelligence Approach
, vol.2
-
-
Michalski, R.1
Carbonell, J.G.2
Mitchell, M.T.3
-
214
-
-
0001161341
-
Learning by being told and learning from examples: An experimental comparison of the two methods of knowledge acquisition in the context of developing an expert system for soybean disease diagnosis
-
R. S. Michalski and R. L. Chilausky. Learning by being told and learning from examples: An experimental comparison of the two methods of knowledge acquisition in the context of developing an expert system for soybean disease diagnosis. Int. Journal of Policy Analysis and Information Systems, 4:125-161, 1980.
-
(1980)
Int. Journal of Policy Analysis and Information Systems
, vol.4
, pp. 125-161
-
-
Michalski, R.S.1
Chilausky, L.R.2
-
215
-
-
0003437980
-
-
editors, John Wiley & Sons
-
R. S. Michalski, I. Bratko, and M. Kubat, editors. Machine Learning, Data Mining and Knowledge Discovery: Methods and Applications. John Wiley & Sons, 1998.
-
(1998)
Machine Learning, Data Mining and Knowledge Discovery: Methods and Applications
-
-
Michalski, R.S.1
Bratko, I.2
Kubat, M.3
-
216
-
-
8344253880
-
Personal models of rationality
-
Special Issue on Foundations and Philosophy of Probability and Statistics.
-
D. Michie. Personal models of rationality. Journal of Statistical Planning and Inference, 21, 1989. Special Issue on Foundations and Philosophy of Probability and Statistics.
-
(1989)
Journal of Statistical Planning and Inference
, vol.21
-
-
Michie, D.1
-
217
-
-
0000827179
-
BOXES: An experiment in adaptive control
-
In E. Dale and D. Michie, editors, Edinburgh: Oliver and Boyd
-
D. Michie and R. A. Chambers. BOXES: An experiment in adaptive control. In E. Dale andD. Michie, editors, Machine Intelligence 2. Edinburgh: Oliver and Boyd, 1968.
-
(1968)
Machine Intelligence 2
-
-
Michie, D.1
Chambers, A.R.2
-
219
-
-
34250115918
-
An examination of procedures for determining the number of clusters in a data set
-
G. W. Milligan and M. C. Cooper. An examination of procedures for determining the number of clusters in a data set. Psychometrika, pages 159-179, 1985.
-
(1985)
Psychometrika
, pp. 159-179
-
-
Milligan, G.W.1
Cooper, M.C.2
-
222
-
-
84882651145
-
Nomograms for visualization of naive Bayesian classifier
-
Springer Verlag, Pisa, Italy.
-
M. Mozina, J. Demsar, M. Kattan, and B. Zupan. Nomograms for visualization of naive Bayesian classifier. In ECML-04. Springer Verlag, 2004. Pisa, Italy.
-
(2004)
ECML-04
-
-
Mozina, M.1
Demsar, J.2
Kattan, M.3
Zupan, B.4
-
224
-
-
0042847140
-
Inference for the generalization error
-
C. Nadeau and Y. Bengio. Inference for the generalization error. Machine learning, 52:239-281, 2003.
-
(2003)
Machine learning
, vol.52
, pp. 239-281
-
-
Nadeau, C.1
Bengio, Y.2
-
227
-
-
0005801045
-
Learning decision rules in noisy domains
-
Brighton, UK.
-
T. Niblett and I. Bratko. Learning decision rules in noisy domains. In Expert Systems 86, 1986. Brighton, UK.
-
(1986)
Expert Systems 86
-
-
Niblett, T.1
Bratko, I.2
-
233
-
-
85041528332
-
Reducing misclassification costs: Knowledge-intensive approaches to learning from noisy data
-
Morgan Kaufmann
-
M. Pazzani, C. Merz, P. Murphy, K. Ali, T. Hume, and C. Brunk. Reducing misclassification costs: Knowledge-intensive approaches to learning from noisy data. In Proc. Eleventh Intl. Conf. Machine Learning, pages 217-225. Morgan Kaufmann, 1994.
-
(1994)
Proc. Eleventh Intl. Conf. Machine Learning
, pp. 217-225
-
-
Pazzani, M.1
Merz, C.2
Murphy, P.3
Ali, K.4
Hume, T.5
Brunk, C.6
-
237
-
-
0011877145
-
Medical estimation of automatically induced decision rules
-
City University, London, August 29-31.
-
V. Pirnat, I. Kononenko, T. Jane, and I. Bratko. Medical estimation of automatically induced decision rules. In 2nd Europ. Conf. on Artificial Intelligence in Medicine, pages 24-36, 1989. City University, London, August 29-31.
-
(1989)
2nd Europ. Conf. on Artificial Intelligence in Medicine
, pp. 24-36
-
-
Pirnat, V.1
Kononenko, I.2
Jane, T.3
Bratko, I.4
-
238
-
-
0024092215
-
Computational limitations on learning from examples
-
L. Pitt and L. Valiant. Computational limitations on learning from examples. Journal of ACM 35, pages 965-984, 1988.
-
(1988)
Journal of ACM 35
, pp. 965-984
-
-
Pitt, L.1
Valiant, L.2
-
241
-
-
0035283313
-
Robust classification for imprecise environments
-
F. Provost and T. Fawcett. Robust classification for imprecise environments. Machine Learning, 42:3:203231,2001.
-
(2001)
Machine Learning
, vol.42
, Issue.3
, pp. 203231
-
-
Provost, F.1
Fawcett, T.2
-
242
-
-
0002900357
-
The case against accuracy estimation for comparing induction algorithms
-
Morgan Kaufmann
-
F. Provost, T. Fawcett, and R. Kohavi. The case against accuracy estimation for comparing induction algorithms. In Proc. Fifteenth Intl. Conf. Machine Learning, pages 445-553. Morgan Kaufmann, 1998.
-
(1998)
Proc. Fifteenth Intl. Conf. Machine Learning
, pp. 445-553
-
-
Provost, F.1
Fawcett, T.2
Kohavi, R.3
-
243
-
-
0002442571
-
Discovering rules from large collections of examples
-
In D Michie, editor, Edinburgh University Press
-
J. R. Quinlan. Discovering rules from large collections of examples. In D. Michie, editor, Expert Systems in the Microelectronic Age. Edinburgh University Press, 1979.
-
(1979)
Expert Systems in the Microelectronic Age
-
-
Quinlan, J.R.1
-
244
-
-
33744584654
-
Induction of decision trees
-
J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 1986.
-
(1986)
Machine Learning
, vol.1
, pp. 81-106
-
-
Quinlan, J.R.1
-
245
-
-
0001172265
-
Learning logical definitions from relations
-
J. R. Quinlan. Learning logical definitions from relations. Machine Learning, 5(3):239-266, 1990.
-
(1990)
Machine Learning
, vol.5
, Issue.3
, pp. 239-266
-
-
Quinlan, J.R.1
-
247
-
-
0002591462
-
Lookahead feature construction for learning hard concepts
-
Amherst, MA, Morgan Kaufmann.
-
H. Ragavan and L. Rendell. Lookahead feature construction for learning hard concepts. In Proc. 10th Intern. Conf. on Machine Learning, pages 252-259, Amherst, MA, 1993. Morgan Kaufmann.
-
(1993)
Proc. 10th Intern. Conf. on Machine Learning
, pp. 252-259
-
-
Ragavan, H.1
Rendell, L.2
-
248
-
-
0040484429
-
A metric space of discrete probability distributions
-
C. Rajski. A metric space of discrete probability distributions. Information and Control, 4: 373-377, 1961.
-
(1961)
Information and Control
, vol.4
, pp. 373-377
-
-
Rajski, C.1
-
250
-
-
0018015137
-
Modeling by the shortest data description
-
J. Rissanen. Modeling by the shortest data description. Automatica- Journal IFAC, 14:465-471, 1978.
-
(1978)
Automatica- Journal IFAC
, vol.14
, pp. 465-471
-
-
Rissanen, J.1
-
251
-
-
0001098776
-
A universal prior for integers and estimation by minimum description length
-
J. Rissanen. A universal prior for integers and estimation by minimum description length. The Annals of Statistics, 11(2):416-431, 1993.
-
(1993)
The Annals of Statistics
, vol.11
, Issue.2
, pp. 416-431
-
-
Rissanen, J.1
-
253
-
-
0141990695
-
Theoretical and empirical analysis of ReliefF and RReliefF
-
M. Robnik-Sikonja and I. Kononenko. Theoretical and empirical analysis of ReliefF and RReliefF. Machine Learning, 53:23-69, 2003.
-
(2003)
Machine Learning
, vol.53
, pp. 23-69
-
-
Robnik-Sikonja, M.1
Kononenko, I.2
-
257
-
-
0001608026
-
Feature discovery by competitive learning
-
In D.E. Rumelhart and J.L McClelland, editors, Cambridge: MIT Press
-
D. E. Rumelhart and D. Zipser. Feature discovery by competitive learning. In D.E. Rumelhart and J.L. McClelland, editors, Parallel Distributed Processing: Foundations, volume 1. Cambridge: MIT Press, 1986.
-
(1986)
Parallel Distributed Processing: Foundations
, vol.1
-
-
Rumelhart, D.E.1
Zipser, D.2
-
258
-
-
0002520528
-
A general framework for parallel distributed processing
-
In D.E.Rumelhart, J. L McClelland, editors, Cambridge: MIT Press
-
D. E. Rumelhart, G. E. Hinton, and J. L. McClelland. A general framework for parallel distributed processing. In D. E. Rumelhart and J. L. McClelland, editors, Parallel Distributed Processing: Foundations, volume 1. Cambridge: MIT Press, 1986a.
-
(1986)
Parallel Distributed Processing: Foundations
, vol.1
-
-
Rumelhart, D.E.1
Hinton, G.E.2
McClelland, J.L.3
-
259
-
-
0000646059
-
Learning internal representations by error propagation
-
In D.E.Rumelhart, J. L McClelland, editors, Cambridge: MIT Press
-
D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error propagation. In D. E. Rumelhart and J. L. McClelland, editors, Parallel Distributed Processing: Foundations, volume 1. Cambridge: MIT Press, 1986b.
-
(1986)
Parallel Distributed Processing: Foundations
, vol.1
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
260
-
-
0035421210
-
Using association rules as texture features
-
J. A. Rushing, H. S. Ranagath, T. H. Hinke, and S. J. Graves. Using association rules as texture features. IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 845-858, 2001.
-
(2001)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, pp. 845-858
-
-
Rushing, J.A.1
Ranagath, H.S.2
Hinke, T.H.3
Graves, S.J.4
-
263
-
-
27144463192
-
On comparing classifiers: Pitfalls to avoid and a recommended approach
-
S. L. Salzberg. On comparing classifiers: Pitfalls to avoid and a recommended approach. Data Mining and Knowledge Discovery, 1:317-328, 1997.
-
(1997)
Data Mining and Knowledge Discovery
, vol.1
, pp. 317-328
-
-
Salzberg, L.S.1
-
264
-
-
0001201756
-
Some studies in machine learning using the game of checkers
-
A. L. Samuel. Some studies in machine learning using the game of checkers. IBM Journal, 3 (3), 1959.
-
(1959)
IBM Journal
, vol.3
, Issue.3
-
-
Samuel, A.L.1
-
265
-
-
0025448521
-
The strength of weak learnability
-
R. E. Schapire. The strength of weak learnability. Machine Learning, 5(2): 197-227, 1990.
-
(1990)
Machine Learning
, vol.5
, Issue.2
, pp. 197-227
-
-
Schapire, R.E.1
-
266
-
-
85004728351
-
-
DDU Univerzum, Ljubljana
-
P. Schauer. Interferon. DDU Univerzum, Ljubljana, 1984.
-
(1984)
Interferon
-
-
Schauer, P.1
-
270
-
-
0004120868
-
Inductive inference of theories from facts Research report 192
-
Dept. of Computer Sc., Yale University, New Haven
-
E. Shapiro. Inductive inference of theories from facts. Research report 192, Dept. of Computer Sc., Yale University, New Haven, 1981.
-
(1981)
-
-
Shapiro, E.1
-
272
-
-
84945247175
-
Discriminative clustering: Optimal contingency tables by learning metrics
-
In T. Elomaa, H. Mannila, and H. Toivonen, editors, Springer
-
J. Sinkkonen, S. Kaski, and J. Nikkila. Discriminative clustering: Optimal contingency tables by learning metrics. In T. Elomaa, H. Mannila, and H. Toivonen, editors, Proc. European Conf. on Machine Learning (ECML-2002), pages 418-430. Springer, 2002.
-
(2002)
Proc. European Conf. on Machine Learning (ECML-2002)
, pp. 418-430
-
-
Sinkkonen, J.1
Kaski, S.2
Nikkila, J.3
-
273
-
-
84975551912
-
A low-dimensional procedure for the characterisation of human faces
-
L. Sirovich and M. Kirby. A low-dimensional procedure for the characterisation of human faces. Journal of the Optical Society of America, pages 519-524, 1987.
-
(1987)
Journal of the Optical Society of America
, pp. 519-524
-
-
Sirovich, L.1
Kirby, M.2
-
274
-
-
85032870186
-
Types of noise in data for concept learning
-
San Mateo, CA., Morgan Kaufmann.
-
R. Sloan. Types of noise in data for concept learning. In Proc. 1st Annu. Workshop on Comput. Learning Theory, pages 91-96, San Mateo, CA., 1988. Morgan Kaufmann.
-
(1988)
Proc. 1st Annu. Workshop on Comput. Learning Theory
, pp. 91-96
-
-
Sloan, R.1
-
275
-
-
0026905118
-
The emperor's real mind: review of Roger Penrose's The Emperor's New Mind: Concerning computers, minds and laws of physics.
-
A. Sloman. The emperor's real mind: review of Roger Penrose's The Emperor's New Mind: Concerning computers, minds and laws of physics. Artificial Intelligence, 56:355-396, 1992.
-
(1992)
Artificial Intelligence
, vol.56
, pp. 355-396
-
-
Sloman, A.1
-
276
-
-
0002096830
-
Document clustering using word clusters via the information bottleneck method
-
N. Slonim and N. Tishby. Document clustering using word clusters via the information bottleneck method. In Research and Development in Information Retrieval, pages 208-215, 2000.
-
(2000)
Research and Development in Information Retrieval
, pp. 208-215
-
-
Slonim, N.1
Tishby, N.2
-
277
-
-
0000329993
-
Information processing in dynamical systems: Foundations of harmony theory
-
In D.E. Rumelhart and J.L. McClelland, editors, Cambridge: MIT Press
-
P. Smolensky. Information processing in dynamical systems: Foundations of harmony theory. In D.E. Rumelhart and J.L. McClelland, editors, Parallel Distributed Processing: Foundations, volume 1. Cambridge: MIT Press, 1986.
-
(1986)
Parallel Distributed Processing: Foundations
, vol.1
-
-
Smolensky, P.1
-
278
-
-
0141877525
-
Rule induction using information theory
-
In G. Piatetsky-Shapiro and W Frawley, editors, MIT Press
-
P. Smyth and R. M. Goodman. Rule induction using information theory. In G. Piatetsky-Shapiro and W. Frawley, editors, Knowledge Discovery in Databases. MIT Press, 1990.
-
(1990)
Knowledge Discovery in Databases
-
-
Smyth, P.1
Goodman, R.M.2
-
279
-
-
0001579335
-
A formal theory of inductive inference: Parts 1 and 2.
-
R. J. Solomonoff. A formal theory of inductive inference: Parts 1 and 2. Information and Control, 7:122 and 224254, 1964.
-
(1964)
Information and Control
, vol.7
, Issue.122
, pp. 224254
-
-
Solomonoff, J.R.1
-
280
-
-
0017996595
-
Complexity-based induction systems: Comparisons and convergence theorems
-
R. J. Solomonoff. Complexity-based induction systems: Comparisons and convergence theorems. IEEE Transaction on Information Theory, 24:422432, 1978.
-
(1978)
IEEE Transaction on Information Theory
, vol.24
, pp. 422432
-
-
Solomonoff, J.R.1
-
284
-
-
84958674093
-
Temporal difference learning of backgammon strategy
-
Aberdeen.
-
G. Tesauro. Temporal difference learning of backgammon strategy. In Int. Machine Learning Conf, 1992. Aberdeen.
-
(1992)
Int. Machine Learning Conf
-
-
Tesauro, G.1
-
285
-
-
0029276036
-
Temporal difference learning and td-gammon
-
G. Tesauro. Temporal difference learning and td-gammon. Communications of the ACM, 38(3), 1995.
-
(1995)
Communications of the ACM
, vol.38
, Issue.3
-
-
Tesauro, G.1
-
287
-
-
4043057772
-
-
Namaste Publishing Inc., Canada
-
E. Tolle. The Power of NOW. Namaste Publishing Inc., Canada, 1997.
-
(1997)
The Power of NOW
-
-
Tolle, E.1
-
289
-
-
0000865580
-
Cost-sensitive classification: empirical evaluation of a hybrid genetic decision tree induction algorithm
-
P. Turney. Cost-sensitive classification: empirical evaluation of a hybrid genetic decision tree induction algorithm. Journal of Artificial Intelligence Research, 2:369-409, 1995.
-
(1995)
Journal of Artificial Intelligence Research
, vol.2
, pp. 369-409
-
-
Turney, P.1
-
290
-
-
84882713734
-
Constructing control rules for dynamic system: probabilistic qualitative models, lookahead and exaggeration
-
T. Urbancic and I. Bratko. Constructing control rules for dynamic system: probabilistic qualitative models, lookahead and exaggeration. Int. J. Syst. Sci., 24(6): 1155-1164, 1993.
-
(1993)
Int. J. Syst. Sci
, vol.24
, Issue.6
, pp. 1155-1164
-
-
Urbancic, T.1
Bratko, I.2
-
291
-
-
0039271793
-
Improving a rule induction system using genetic algorithms In R. Michalski and G Tecuci, editors, Morgan Kaufmann
-
H. Vafie and K. DeJong. Improving a rule induction system using genetic algorithms. In R. Michalski and G. Tecuci, editors, Machine Learning: A Multistrategy approach, volume IV. Morgan Kaufmann, 1994.
-
(1994)
Machine Learning: A Multistrategy approach
, vol.4
-
-
Vafie, H.1
DeJong, K.2
-
292
-
-
0021518106
-
A theory of the learnable
-
L. G. Valiant. A theory of the learnable. Commun. ACM 27, pages 1134-1142, 1984.
-
(1984)
Commun. ACM 27
, pp. 1134-1142
-
-
Valiant, L.G.1
-
297
-
-
0001024505
-
On the uniform convergence of relative frequencies of events to their probabilities
-
V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probab. and its Applications, 16(2):264-280, 1971. A. Varsek. Qualitative model evolution. In Proc. 12th Int. Joint Conf. on Artificial Intelligence IJCAI-91, pages 1311-1316. Morgan Kaufmann, 1991.
-
(1971)
Theory of Probab. and its Applications
, vol.16
, Issue.2
, pp. 264-280
-
-
Vapnik, V.N.1
Chervonenkis, A.Y.2
-
299
-
-
77953325583
-
Asymptotic optimality of transductive confidence machine
-
In N.Cesa-Bianchi, M. Numao, and R Reischuk, editors, Berlin, Heidelberg, New York, Springer Verlag.
-
V. Vovk. Asymptotic optimality of transductive confidence machine. In N. Cesa-Bianchi, M. Numao, and R. Reischuk, editors, Proc. Thirteenth International Conference on Algorithmic Learning Theory, pages 336-350, Berlin, Heidelberg, New York, 2002. Springer Verlag. K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl. Constrained k-means clustering with background knowledge. In Proc. of 18th Intl. Conf. on Machine Learning (ICML-2001), pages 577-584, 2001.
-
(2002)
Proc. Thirteenth International Conference on Algorithmic Learning Theory
, pp. 336-350
-
-
Vovk, V.1
-
300
-
-
0042377235
-
Constrained k-means clustering with background knowledge
-
K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl. Constrained k-means clustering with background knowledge. In Proc. of 18th Intl. Conf. on Machine Learning (ICML-2001), pages 577-584, 2001.
-
(2001)
Proc. of 18th Intl. Conf. on Machine Learning (ICML-2001)
, pp. 577-584
-
-
Wagstaff, K.1
Cardie, C.2
Rogers, S.3
Schroedl, S.4
-
303
-
-
0023842981
-
Neural networks: What are they and why is everybody so interested in them now
-
Winter 1987, 10-12, part 2: Spring, IEEE Expert, 1987,1988.
-
P. D. Wasserman and T. Schwartz. Neural networks: What are they and why is everybody so interested in them now. part 1: Winter 1987, pp. 10-12, part 2: Spring 1988, pp. 10-15. IEEE Expert, 1987,1988.
-
(1988)
, Issue.PART 1
, pp. 10-15
-
-
Wasserman, P.D.1
Schwartz, T.2
-
304
-
-
0000539096
-
Generalization by weight-elimination with application to forecasting
-
In R.P.Lippmann, E J. Moody, and D.S Tburetzky, editors, San Mateo,CA: Morgan Kaufmann
-
A.S. Weigend, D.E. Rumelhart, and B.A. Huberman. Generalization by weight-elimination with application to forecasting. In R.P. Lippmann, J.E. Moody, and D.S. Tburetzky, editors, Advances in Neural Information Processing Systems 3, pages 875-882. San Mateo,CA: Morgan Kaufmann, 1991.
-
(1991)
Advances in Neural Information Processing Systems 3
, pp. 875-882
-
-
Weigend, A.S.1
Rumelhart, D.E.2
Huberman, B.A.3
-
306
-
-
0028443213
-
Bias in information-based measures in decision tree induction
-
A. P. White and W. Z. Liu. Bias in information-based measures in decision tree induction. Machine Learning, 15:321-329, 1994.
-
(1994)
Machine Learning
, vol.15
, pp. 321-329
-
-
White, A.P.1
Liu, W.Z.2
-
307
-
-
0023982347
-
Neural nets for adaptive filtering and adaptive pattern recognition
-
B. Widrow and R. Winter. Neural nets for adaptive filtering and adaptive pattern recognition. IEEE Computer, pages 25-39, 1988.
-
(1988)
IEEE Computer
, pp. 25-39
-
-
Widrow, B.1
Winter, R.2
-
308
-
-
0010257013
-
The logic of activation functions
-
In D.E. Rumelhart and J.L McClelland, editors, Cambridge: MIT Press
-
R. J. Williams. The logic of activation functions. In D.E. Rumelhart and J.L. McClelland, editors, Parallel Distributed Processing: Foundations, volume 1. Cambridge: MIT Press, 1986.
-
(1986)
Parallel Distributed Processing: Foundations
, vol.1
-
-
Williams, R.J.1
-
311
-
-
0023919728
-
Recognition of general patterns using neural networks
-
A. J. W. Wong. Recognition of general patterns using neural networks. Biological Cybernetics, 58(6):361-372, 1988.
-
(1988)
Biological Cybernetics
, vol.58
, Issue.6
, pp. 361-372
-
-
Wong, A.J.W.1
-
312
-
-
0031121318
-
Combination of multiple classifiers using local acuracy estimates
-
K. Woods, W. P. Kegelmeyer, and K. Bowyer. Combination of multiple classifiers using local acuracy estimates. IEEE Transactions on PAMI, 19(4):405-410, 1997.
-
(1997)
IEEE Transactions on PAMI
, vol.19
, Issue.4
, pp. 405-410
-
-
Woods, K.1
Kegelmeyer, W.P.2
Bowyer, K.3
-
313
-
-
84879571292
-
Distance metric learning with applications to clustering with side information
-
E. P. Xing, A. Ng, M. Jordan, and S. Russell. Distance metric learning with applications to clustering with side information. Advances in Neural Information Processing, 15, 2003.
-
(2003)
Advances in Neural Information Processing
, vol.15
-
-
Xing, E.P.1
Ng, A.2
Jordan, M.3
Russell, S.4
-
316
-
-
0003803229
-
-
PhD thesis, University of Ljubljana, Faculty of Computer and Information Science, (in Slovene).
-
B. Zupan. Machine Learning with Functional Decomposition. PhD thesis, University of Ljubljana, Faculty of Computer and Information Science, 1997. (in Slovene).
-
(1997)
Machine Learning with Functional Decomposition
-
-
Zupan, B.1
-
317
-
-
0033522717
-
Learning by discovering concept hierarchies
-
B. Zupan, M. Bohanec, J. Demsar, and I. Bratko. Learning by discovering concept hierarchies. Artificial Intelligence, 109:211-342, 1999.
-
(1999)
Artificial Intelligence
, vol.109
, pp. 211-342
-
-
Zupan, B.1
Bohanec, M.2
Demsar, J.3
Bratko, I.4
|