메뉴 건너뛰기




Volumn , Issue , 2007, Pages

Machine learning and data mining

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84882637032     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1533/9780857099440     Document Type: Book
Times cited : (305)

References (317)
  • 3
    • 0004190197 scopus 로고
    • Data Structures and Algorithms
    • Addison-Wesley, Reading, MA, Menclo Park, CA, London, Amsterdam
    • A.V. Aho, J.E. Hopcroft, and J.D. Ullman. Data Structures and Algorithms. Addison-Wesley, Reading, MA, Menclo Park, CA, London, Amsterdam, 1983.
    • (1983)
    • Aho, A.V.1    Hopcroft, J.E.2    Ullman, D.J.3
  • 7
    • 0004309536 scopus 로고
    • John Wiley and Sons, New York, 3rd Extended Edition.
    • J.A. Anderson. Learning and Memory. John Wiley and Sons, New York, 1995. 3rd Extended Edition.
    • (1985) Learning and Memory
    • Anderson, J.A.1
  • 9
    • 0000106131 scopus 로고
    • Inductive inference of formal languages from positive data
    • D. Angluin. Inductive inference of formal languages from positive data. Information and Control, 45:117-135, 1980.
    • (1980) Information and Control , vol.45 , pp. 117-135
    • Angluin, D.1
  • 10
    • 0023453626 scopus 로고
    • Learning regular sets from queries and counterexamples
    • D. Angluin. Learning regular sets from queries and counterexamples. Inform. Comput, 75(2): 87-106, 1987.
    • (1987) Inform. Comput , vol.75 , Issue.2 , pp. 87-106
    • Angluin, D.1
  • 11
    • 0000710299 scopus 로고
    • Queries and concept learning
    • D. Angluin. Queries and concept learning. Machine Learning, 2:319-342, 1988.
    • (1988) Machine Learning , vol.2 , pp. 319-342
    • Angluin, D.1
  • 12
    • 0025449393 scopus 로고
    • Negative results for equivalence queries
    • D. Angluin. Negative results for equivalence queries. Machine Learning, 5:121-150, 1990.
    • (1990) Machine Learning , vol.5 , pp. 121-150
    • Angluin, D.1
  • 13
    • 0000492326 scopus 로고
    • Learning from noisy examples
    • D. Angluin and P. Laird. Learning from noisy examples. Machine Learning, 2:343-370, 1988.
    • (1988) Machine Learning , vol.2 , pp. 343-370
    • Angluin, D.1    Laird, P.2
  • 15
    • 0000452640 scopus 로고
    • Learning conjunctions of Horn clauses
    • D. Angluin, M. Frazier, and L. Pitt. Learning conjunctions of Horn clauses. Machine Learning, 9:147-164, 1992.
    • (1992) Machine Learning , vol.9 , pp. 147-164
    • Angluin, D.1    Frazier, M.2    Pitt, L.3
  • 17
    • 84882579922 scopus 로고    scopus 로고
    • Specification and simulation of statistical query algorithms for efficiency and noise tolerance
    • J. A. Aslam and S. E. Decatur. Specification and simulation of statistical query algorithms for efficiency and noise tolerance. Journal of Computer and System Sciences, 1997.
    • (1997) Journal of Computer and System Sciences
    • Aslam, J.A.1    Decatur, S.E.2
  • 19
    • 0020970738 scopus 로고
    • Neuronlike adaptive elements that can solve difficult learning control problems
    • SMC-13
    • A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike adaptive elements that can solve difficult learning control problems. IEEE Trans, on Systems, Man, and Cybernetics, SMC-13 (5):834-846, 1983.
    • (1983) IEEE Trans, on Systems, Man, and Cybernetics , Issue.5 , pp. 834-846
    • Barto, A.G.1    Sutton, R.S.2    Anderson, C.W.3
  • 22
    • 34548104873 scopus 로고    scopus 로고
    • Towards symbolic mining of images with association rules: Preliminary results on textures
    • (in press).
    • M. Bevk and I. Kononenko. Towards symbolic mining of images with association rules: Preliminary results on textures. Intelligent Data Analysis, 2006. (in press).
    • (2006) Intelligent Data Analysis
    • Bevk, M.1    Kononenko, I.2
  • 23
    • 0025840732 scopus 로고    scopus 로고
    • Separating distribution-free and mistake-bound learning models over the Boolean domain
    • Los Alamitos, CA, 1990. IEEE Computer Society Press.
    • A. Blum. Separating distribution-free and mistake-bound learning models over the Boolean domain. In Proc. of the 31st Symposium on the Foundations of Comp. ScL, pages 211-218, Los Alamitos, CA, 1990. IEEE Computer Society Press.
    • Proc. of the 31st Symposium on the Foundations of Comp. ScL , pp. 211-218
    • Blum, A.1
  • 25
    • 0016521417 scopus 로고
    • Towards a mathematical theory of inductive inference
    • L. Blum and M. Blum. Towards a mathematical theory of inductive inference. Information and Control, 28:125-155, 1975.
    • (1975) Information and Control , vol.28 , pp. 125-155
    • Blum, L.1    Blum, M.2
  • 29
    • 39349103305 scopus 로고    scopus 로고
    • Estimation of prediction reliability in regression based on a transductive approach
    • In B Prasad, editor, Pune, India December 20-22
    • Z. Bosnie and I. Kononenko. Estimation of prediction reliability in regression based on a transductive approach. In B. Prasad, editor, Proc. 2nd Indian International Conference On Artificial Intelligence IICAI-05, pages 3502-3516, Pune, India December 20-22, 2005.
    • (2005) Proc. 2nd Indian International Conference On Artificial Intelligence IICAI-05 , pp. 3502-3516
    • Bosnie, Z.1    Kononenko, I.2
  • 30
    • 62249148128 scopus 로고    scopus 로고
    • Evaluation of prediction reliability in regression using the transduction principle
    • In B. Zajc and M Tkalcic, editors
    • Z. Bosnie, I. Kononenko, M. Robnik Sikonja, and M. Kukar. Evaluation of prediction reliability in regression using the transduction principle. In B. Zajc and M. Tkalcic, editors, Proceedings of The IEEE Region 8 EUROCON 2003, volume 2, pages 99-103, 2003.
    • (2003) Proceedings of The IEEE Region 8 EUROCON 2003 , vol.2 , pp. 99-103
    • Bosnie, Z.1    Kononenko, I.2    Robnik Sikonja, M.3    Kukar, M.4
  • 31
    • 33644955890 scopus 로고    scopus 로고
    • Evaluating the replicability of significance tests for comparing learning algorithms The University of Waikato
    • New Zealand
    • R. R. Bouckaert and E. Frank. Evaluating the replicability of significance tests for comparing learning algorithms. The University of Waikato, New Zealand, 2004.
    • (2004)
    • Bouckaert, R.R.1    Frank, E.2
  • 33
    • 80053221447 scopus 로고    scopus 로고
    • The download estimation task on KDD Cup 2003
    • J. Brank and J. Leskovec. The download estimation task on KDD Cup 2003. SIGKDD Explorations, 5(2): 160-162, 2003.
    • (2003) SIGKDD Explorations , vol.5 , Issue.2 , pp. 160-162
    • Brank, J.1    Leskovec, J.2
  • 35
    • 0035478854 scopus 로고    scopus 로고
    • Random forestss
    • L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 36
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman. Bagging predictors. Machine Learning, 24(2): 123-140, 1996.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 38
    • 0000621802 scopus 로고
    • Multivariable functional interpolation and adaptive networks
    • D. S. Broomhead and D. Lowe. Multivariable functional interpolation and adaptive networks. Complex Systems, 2:321-355, 1988.
    • (1988) Complex Systems , vol.2 , pp. 321-355
    • Broomhead, D.S.1    Lowe, D.2
  • 39
    • 0029487221 scopus 로고    scopus 로고
    • Simple learning algorithms for decision trees and multivariate polynomials
    • Los Alamitos, CA, 1995. IEEE Computer Society Press.
    • N. H. Bshouty and Y. Mansour. Simple learning algorithms for decision trees and multivariate polynomials. In Proc. 36th Annual Symposium on Foundations of Computer Science, pages 304-311, Los Alamitos, CA, 1995. IEEE Computer Society Press.
    • Proc. 36th Annual Symposium on Foundations of Computer Science , pp. 304-311
    • Bshouty, N.H.1    Mansour, Y.2
  • 41
    • 84873424228 scopus 로고    scopus 로고
    • PAC learning with nasty noise
    • Springer, 10th International Conference, ALT '99, Tokyo, Japan, December 1999, Proceedings
    • N. H. Bshouty, N. Eiron, and E. Kushilevitz. PAC learning with nasty noise. In Algorithmic Learning Theory, 10th International Conference, ALT '99, Tokyo, Japan, December 1999, Proceedings, volume 1720, pages 206-218. Springer, 1999.
    • (1999) Algorithmic Learning Theory , vol.1720 , pp. 206-218
    • Bshouty, N.H.1    Eiron, N.2    Kushilevitz, E.3
  • 45
    • 0021776661 scopus 로고
    • A massively parallel architecture for a self-organizing neural pattern recognition machine
    • G. A. Carpenter and S. Grossberg. A massively parallel architecture for a self-organizing neural pattern recognition machine. Computer Vision, Graphics, and Image Processing, 37:54-115, 1987a.
    • (1987) Computer Vision, Graphics, and Image Processing , vol.37 , pp. 54-115
    • Carpenter, G.A.1    Grossberg, S.2
  • 46
    • 84973857317 scopus 로고
    • ART 2: Self-organization of stable category recognition codes for analog input patterns.
    • G. A. Carpenter and S. Grossberg. ART 2: Self-organization of stable category recognition codes for analog input patterns. Applied Optics, 26:4919-4930, 1987b.
    • (1987) Applied Optics , vol.26 , pp. 4919-4930
    • Carpenter, G.A.1    Grossberg, S.2
  • 47
    • 0025235219 scopus 로고
    • ART 3: Hierarchical search using chemical transmitters in self-organizing pattern recognition architectures
    • G. A. Carpenter and S. Grossberg. ART 3: Hierarchical search using chemical transmitters in self-organizing pattern recognition architectures. Neural Networks, 3:129-152, 1990.
    • (1990) Neural Networks , vol.3 , pp. 129-152
    • Carpenter, G.A.1    Grossberg, S.2
  • 49
    • 0003006556 scopus 로고
    • Estimating probabilities: A crucial task in machine learning
    • August
    • B. Cestnik. Estimating probabilities: A crucial task in machine learning. In European Conf. on Artificial Intelligence 90, pages 147-149, August 1990.
    • (1990) European Conf. on Artificial Intelligence 90 , pp. 147-149
    • Cestnik, B.1
  • 50
    • 85031805771 scopus 로고
    • On estimating probabilities in tree pruning
    • In Y Kodratoff, editor, Springer Verlag, March
    • B. Cestnik and I. Bratko. On estimating probabilities in tree pruning. In Y. Kodratoff, editor, European Working Session on Learning, pages 138-150. Springer Verlag, March 1991.
    • (1991) European Working Session on Learning , pp. 138-150
    • Cestnik, B.1    Bratko, I.2
  • 51
    • 0001929348 scopus 로고
    • Assistant 86: A knowledge elicitation tool for sophisticated users
    • In I.Bratko and N. Lavrac, editors, Progress in Machine Learning . Sigma Press, Wilmslow, England
    • B. Cestnik, I. Kononenko, and I. Bratko. Assistant 86: A knowledge elicitation tool for sophisticated users. In I.Bratko and N. Lavrac, editors, Progress in Machine Learning. Sigma Press, Wilmslow, England, 1987.
    • (1987)
    • Cestnik, B.1    Kononenko, I.2    Bratko, I.3
  • 54
    • 85015191605 scopus 로고    scopus 로고
    • Rule induction with CN2: recent improvements
    • In Y. Kodratoff, editor, Proc. European Working Session on Learning, Porto, March 1991, 1991. Springer Verlag.
    • P. Clark and R. Boswell. Rule induction with CN2: recent improvements. In Y. Kodratoff, editor, Proc. European Working Session on Learning, pages 151-163, Porto, March 1991, 1991. Springer Verlag.
    • Clark, P.1    Boswell, R.2
  • 55
    • 0023468181 scopus 로고
    • Learning if-then rules in noisy domains
    • In B. Phelps, editor, Interactions in Artificial Intelligence and Statistical Methods. Technical Press, Hampshire, England
    • P. Clark and T. Niblett. Learning if-then rules in noisy domains. In B. Phelps, editor, Interactions in Artificial Intelligence and Statistical Methods. Technical Press, Hampshire, England, 1987a.
    • (1987)
    • Clark, P.1    Niblett, T.2
  • 56
    • 84882585902 scopus 로고
    • Induction Noisy domains.In I. Bratko and N Lavrac, editors, Progress in Machine learning Sigma Press, Wilmslow, England
    • P. Clark and T. Niblett. Induction in noisy domains. In I. Bratko and N. Lavrac, editors, Progress in Machine learning. Sigma Press, Wilmslow, England, 1987b.
    • (1987)
    • Clark, P.1    Niblettin, T.2
  • 57
    • 0020970741 scopus 로고
    • Absolute stability of global pattern formation and parallel memory storage by competitive neural networks
    • Man, and Cybernetics SMC-13
    • M. A. Cohen and S. Grossberg. Absolute stability of global pattern formation and parallel memory storage by competitive neural networks. IEEE Transactions on Systems, Man, and Cybernetics, SMC-13:815-826, 1983.
    • (1983) IEEE Transactions on Systems , pp. 815-826
    • Cohen, M.A.1    Grossberg, S.2
  • 61
    • 84949751696 scopus 로고
    • Genetic programming: Evolutionary approaches to multistrategy learning
    • In R. Michalski and G. Tecuci, editors, Machine Learning: A Multistrategy approach, Morgan Kaufmann
    • H. de Garis. Genetic programming: Evolutionary approaches to multistrategy learning. In R. Michalski and G. Tecuci, editors, Machine Learning: A Multistrategy approach, volume IV. Morgan Kaufmann, 1994.
    • (1994) , vol.4
    • de Garis, H.1
  • 62
    • 0033338339 scopus 로고    scopus 로고
    • Semi-supervised clustering using genetic algorithms
    • In Artificial Neural Networks in Engineering (ANNIE-99)
    • A. Demiriz, K. P. Bennett, and M. J. Embrechts. Semi-supervised clustering using genetic algorithms. In Artificial Neural Networks in Engineering (ANNIE-99), pages 809-814, 1999.
    • (1999) , pp. 809-814
    • Demiriz, A.1    Bennett, K.P.2    Embrechts, M.J.3
  • 64
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demsar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7:1-30, 2006.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 65
    • 84882671181 scopus 로고    scopus 로고
    • Transformation of attribute space by function decomposition
    • In G.Delia Riccia J H. Lenz, and R Kruse, editors, Data fusion and perception, New York, 2001. Springer.
    • J. Demsar, B. Zupan, and I. Bratko. Transformation of attribute space by function decomposition. In G. Delia Riccia, H. J. Lenz, and R. Kruse, editors, Data fusion and perception, pages 237-247, New York, 2001. Springer.
    • Demsar, J.1    Zupan, B.2    Bratko, I.3
  • 66
    • 0000484080 scopus 로고
    • Computer-intensive methods in statistics
    • P. Diaconis and B. Efron. Computer-intensive methods in statistics. Scientific American, 248: 96-108, 1983.
    • (1983) Scientific American , vol.248 , pp. 96-108
    • Diaconis, P.1    Efron, B.2
  • 67
    • 84882675048 scopus 로고
    • Dietterich.inductive inference
    • In P. Cohen and E.A Feigenbaum, editors, The Handbook of Artificial Intelligence Pitman Books Ltd
    • T. G. Dietterich. Learning and inductive inference. In P. Cohen and E.A. Feigenbaum, editors, The Handbook of Artificial Intelligence, volume 3. Pitman Books Ltd, 1982.
    • (1982) , vol.3
    • Learning, T.G.1
  • 68
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • T. G. Dietterich. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, 10(7): 1895-1924, 1998.
    • (1998) Neural Computation , vol.10 , Issue.7 , pp. 1895-1924
    • Dietterich, T.G.1
  • 69
  • 70
    • 0002106691 scopus 로고    scopus 로고
    • Metacost: A general method for making classifiers cost-sensitive
    • In Proc. of KDD-99 New York: ACM Press
    • P. Domingos. Metacost: A general method for making classifiers cost-sensitive. In Proc. of KDD-99, pages 155-164. New York: ACM Press, 1999.
    • (1999) , pp. 155-164
    • Domingos, P.1
  • 71
    • 85139983802 scopus 로고
    • Supervised and unsupervised discretization of continuous features
    • Morgan Kaufmann
    • J. Dougherty, R. Kohavi, and M. Sahami. Supervised and unsupervised discretization of continuous features. In Proc. ICML'95, pages 194-202. Morgan Kaufmann, 1995.
    • (1995) Proc. ICML'95 , pp. 194-202
    • Dougherty, J.1    Kohavi, R.2    Sahami, M.3
  • 77
    • 0024739191 scopus 로고
    • A general lower bound on the number of examples needed for learning
    • A. Ehrenfeucht and D. Haussier. A general lower bound on the number of examples needed for learning. Inform. Comput., 82(3):247-251, 1989.
    • (1989) Inform. Comput , vol.82 , Issue.3 , pp. 247-251
    • Ehrenfeucht, A.1    Haussier, D.2
  • 78
    • 84882596675 scopus 로고
    • Introduction to Evolutionary Computing 2003
    • Springer, Berlin, A.Einstein. Science and religion.
    • A. Eiben and J.E. Smith. Introduction to Evolutionary Computing. Springer, Berlin, 2003. A.Einstein. Science and religion. Nature, 146:605-607, 1940.
    • (1940) Nature , vol.146 , pp. 605-607
    • Eiben, A.1    Smith, E.J.2
  • 80
    • 0003586436 scopus 로고
    • On the induction of decision trees for multiple concept learning
    • PhD thesis, The University of Michigan
    • U. M. Fayyad. On the induction of decision trees for multiple concept learning. PhD thesis, The University of Michigan, 1991.
    • (1991)
    • Fayyad, U.M.1
  • 81
    • 0002593344 scopus 로고
    • Multi-interval discretization of continuous-valued attributes for classification learning
    • U. M. Fayyad. Multi-interval discretization of continuous-valued attributes for classification learning. In Proc. IJCAI1993, pages 1022-1027. Morgan Kaufmann, 1993.
    • (1993) In Proc. IJCAI Morgan Kaufmann , pp. 1022-1027
    • Fayyad, U.M.1
  • 82
    • 84882703676 scopus 로고
    • Sky image cataloging and analysis tool
    • U. M. Fayyad. Sky image cataloging and analysis tool. In Proc. IJCAI-95, pages 2067-2068, 1995. Montreal.
    • (1995) Proc. IJCAI-95 Montreal. , pp. 2067-2068
    • Fayyad, U.M.1
  • 83
    • 0030289446 scopus 로고    scopus 로고
    • Data mining and knowledge discovery in databases (editorial)
    • U. M. Fayyad and R. Uthurusamy. Data mining and knowledge discovery in databases (editorial). Communications of the ACM, 39(11 ):24-26, 1996.
    • (1996) Communications of the ACM , vol.39 , Issue.11 , pp. 24-26
    • Fayyad, U.M.1    Uthurusamy, R.2
  • 84
    • 0343442766 scopus 로고
    • Knowledge acquisition via incremental conceptual clustering
    • D. H. Fisher. Knowledge acquisition via incremental conceptual clustering. Machine Learning, 2:139-172, 1987.
    • (1987) Machine Learning , vol.2 , pp. 139-172
    • Fisher, D.H.1
  • 85
    • 0029678997 scopus 로고    scopus 로고
    • Iterative optimization and simplification of hierarchical clusterings
    • D. H. Fisher. Iterative optimization and simplification of hierarchical clusterings. Journal of Artificial Intelligence Research, 4:147-180, 1996.
    • (1996) Journal of Artificial Intelligence Research , vol.4 , pp. 147-180
    • Fisher, D.H.1
  • 86
    • 0003929250 scopus 로고
    • Evolutionary Computation: Toward a New Philosophy of Machine Intelligence
    • Piscataway, NJ, IEEE Press
    • D. B. Fogel. Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. Piscataway, NJ, IEEE Press, 1995.
    • (1995)
    • Fogel, B.D.1
  • 90
    • 0023981865 scopus 로고
    • A neural network for visual pattern recognition
    • K. Fukushima. A neural network for visual pattern recognition. IEEE Computer, pages 65-75, 3 1988.
    • (1988) IEEE Computer , vol.3 , pp. 65-75
    • Fukushima, K.1
  • 93
    • 84994037050 scopus 로고    scopus 로고
    • Dynamic classifier selection based on multiple classifier behaviour
    • G. Giacinto and F. Roli. Dynamic classifier selection based on multiple classifier behaviour. Pattern Recognition, 34:1879-1881, 2001.
    • (2001) Pattern Recognition , vol.34 , pp. 1879-1881
    • Giacinto, G.1    Roli, F.2
  • 94
    • 49949150022 scopus 로고
    • Language identification in the limit
    • E. M. Gold. Language identification in the limit. Information and Control, 10(5):447-474, 1967.
    • (1967) Information and Control , vol.10 , Issue.5 , pp. 447-474
    • Gold, E.M.1
  • 96
    • 84882583718 scopus 로고    scopus 로고
    • Computational learning theory
    • M. J Atallah, editor, Algorithms and Theory of Computation Handbook chapter 30. CRC Press
    • S. A. Goldman. Computational learning theory. In M. J. Atallah, editor, Algorithms and Theory of Computation Handbook, chapter 30. CRC Press, 1998.
    • (1998)
    • Goldman, S.A.1
  • 97
    • 0013411860 scopus 로고
    • Sloan Can PAC learning algorithms tolerate random attribute noise?
    • S. A. Goldman and R. Sloan. Can PAC learning algorithms tolerate random attribute noise? Algorithmica, 14(l):70-84, 1995.
    • (1995) Algorithmica , vol.14 , Issue.L , pp. 70-84
    • Goldman, S.A.R.1
  • 102
    • 0004241258 scopus 로고    scopus 로고
    • Chapman & Hall/CRC, 2nd edition
    • A. D. Gordon. Classification. Chapman & Hall/CRC, 2nd edition, 1999.
    • (1999) Classification
    • Gordon, D.A.1
  • 103
    • 0001330098 scopus 로고
    • A general coefficient of similarity and some of its properties
    • J. C. Gower. A general coefficient of similarity and some of its properties. Biometrics, 27: 857-72, 1971.
    • (1971) Biometrics , vol.27 , pp. 857-872
    • Gower, J.C.1
  • 104
    • 0000241046 scopus 로고
    • Measures of similarity, dissimilarity
    • In distance. S.Kotz N.L Johnson, and Reed C.B., John Wiley & Sons, New York
    • J. C. Gower. Measures of similarity, dissimilarity and distance. In S. Kotz, N. L. Johnson, and C.B. Reed, editors, Encyclopaedia of statistical sciences, volume 5. John Wiley & Sons, New York, 1985.
    • (1985) Encyclopaedia of statistical sciences , vol.5
    • Gower, J.C.1
  • 106
    • 0023847221 scopus 로고
    • On the stability, storage capacity and design of nonlinear continuous neural networks
    • A. Guez, V. Protopopsecu, and J. Barhen. On the stability, storage capacity and design of nonlinear continuous neural networks. IEEE Trans, on Systems, Man, and Cybernetics, 18 (l):80-87, 1988.
    • (1988) IEEE Trans, on Systems, Man, and Cybernetics , vol.18 , Issue.L , pp. 80-87
    • Guez, A.1    Protopopsecu, V.2    Barhen, J.3
  • 107
    • 0019042755 scopus 로고
    • Multiple mutual informations and multiple interactions in frequency data
    • T. S. Han. Multiple mutual informations and multiple interactions in frequency data. Information and Control, 46(l):26-45, 1980.
    • (1980) Information and Control , vol.46 , Issue.L , pp. 26-45
    • Han, T.S.1
  • 109
    • 84972525897 scopus 로고
    • Local regression: automatic kernel carpentry
    • T. Hastie and C. Loader. Local regression: automatic kernel carpentry. Statistical Science, 8: 120-143, 1993.
    • (1993) Statistical Science , vol.8 , pp. 120-143
    • Hastie, T.1    Loader, C.2
  • 110
    • 0002192516 scopus 로고
    • Decision theoretic generalizations of the PAC model for neural net and other learning applications
    • D. Haussier. Decision theoretic generalizations of the PAC model for neural net and other learning applications. Inform. Comput., 100(1):78-150, 1992.
    • (1992) Inform. Comput , vol.100 , Issue.1 , pp. 78-150
    • Haussier, D.1
  • 112
    • 43949159818 scopus 로고
    • Predicting {0,1} functions on randomly drawn points
    • D. Haussier, N. Littlestone, and M. K. Warmuth. Predicting {0,1} functions on randomly drawn points. Inform. Comput., 115(2):284-293, 1994.
    • (1994) Inform. Comput , vol.115 , Issue.2 , pp. 284-293
    • Haussier, D.1    Littlestone, N.2    Warmuth, K.M.3
  • 115
    • 33745834241 scopus 로고    scopus 로고
    • UCI repository of machine learning databases
    • S. Hettich, C.L. Blake, and C.J. Merz. UCI repository of machine learning databases, 1998. URL http://www.ics.uci.edu/~mlearn/MLRepository.html.
    • (1998)
    • Hettich, S.1    Blake, C.L.2    Merz, J.C.3
  • 116
    • 0019647151 scopus 로고
    • A parallel computation that assigns canonical object based frames of reference
    • G. E. Hinton. A parallel computation that assigns canonical object based frames of reference. In Proc. 7th Int. Joint Conf. on AI IJCAI-81, 1981.
    • (1981) Proc. 7th Int. Joint Conf. on AI IJCAI-81
    • Hinton, G.E.1
  • 117
    • 0000999440 scopus 로고
    • Learning and relearning in Boltzmann machines
    • In Rumelhart and J.L McClelland, editors, Parallel Distributed Processing, Foundations Cambridge: MIT Press
    • G. E. Hinton and T. J. Sejnowski. Learning and relearning in Boltzmann machines. In D.E. Rumelhart and J.L. McClelland, editors, Parallel Distributed Processing, Foundations, volume 1. Cambridge: MIT Press, 1986.
    • (1986) , vol.1
    • Hinton, G.E.1    Sejnowski, T.J.2
  • 119
    • 0000746883 scopus 로고
    • Escaping brittleness: The possibilities of general-purpose learning algorithms applied to parallel rule-based systems
    • In R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors, Morgan Kaufman., Los Altos
    • J. H. Holland. Escaping brittleness: The possibilities of general-purpose learning algorithms applied to parallel rule-based systems. In R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors, Machine Learning: An Artificial Intelligence approach, volume 2, pages 593-623. Morgan Kaufman., Los Altos, 1986.
    • (1986) Machine Learning: An Artificial Intelligence approach , vol.2 , pp. 593-623
    • Holland, H.J.1
  • 121
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • J. J. Hopfield. Neural networks and physical systems with emergent collective computational abilities. National Academy of Sciences, 79:2554-2558, 1982.
    • (1982) National Academy of Sciences , vol.79 , pp. 2554-2558
    • Hopfield, J.J.1
  • 122
    • 0004469897 scopus 로고
    • Neurons with graded response have collective computational properties like those of two-state neurons
    • J. J. Hopfield. Neurons with graded response have collective computational properties like those of two-state neurons. National Academy of Sciences, 81:4586-590, 1984.
    • (1984) National Academy of Sciences , vol.81 , pp. 4586-4590
    • Hopfield, J.J.1
  • 123
    • 0021835689 scopus 로고
    • Neural computation of decisions in optimization problems
    • J. J. Hopfield and D. W. Tank. Neural computation of decisions in optimization problems. Biological Cybernetics, 52:141-152, 1985.
    • (1985) Biological Cybernetics , vol.52 , pp. 141-152
    • Hopfield, J.J.1    Tank, D.W.2
  • 125
    • 2942695509 scopus 로고    scopus 로고
    • A genetic algorithm for cluster analysis
    • E. R. Hruschka and N. F. F. Ebecken. A genetic algorithm for cluster analysis. Intell. Data Anal, 7(l):15-25, 2003.
    • (2003) Intell. Data Anal , vol.7 , Issue.L , pp. 15-25
    • Hruschka, E.R.1    Ebecken, N.F.F.2
  • 127
    • 19544375033 scopus 로고    scopus 로고
    • Evolutionary algorithms for clustering gene-expression data
    • E. R. Hruschka, L. N. de Castro, and R. J. G. B. Campello. Evolutionary algorithms for clustering gene-expression data. In Proc. ICDM'04, pages 403-06, 2004b.
    • (2004) Proc. ICDM'04 , pp. 403-406
    • Hruschka, E.R.1    de Castro, L.N.2    Campello, R.J.G.B.3
  • 130
    • 0003905759 scopus 로고    scopus 로고
    • Series on Adaptive and Learning Systems for Signal Processing, Communications and Control. Wiley
    • A. Hyvarinen, J. Karhunen, and E. Oja. Independent Component Analysis. Series on Adaptive and Learning Systems for Signal Processing, Communications and Control. Wiley, 2001.
    • (2001) Independent Component Analysis
    • Hyvarinen, A.1    Karhunen, J.2    Oja, E.3
  • 131
    • 0001750957 scopus 로고
    • Approximations of the critical region of the Friedman statistic
    • R. L. Iman and J. M. Davenport. Approximations of the critical region of the Friedman statistic. Communications in Statistics, pages 571-595, 1980.
    • (1980) Communications in Statistics , pp. 571-595
    • Iman, R.L.1    Davenport, J.M.2
  • 132
    • 84882641109 scopus 로고    scopus 로고
    • Stochastic search methods
    • In M. Berthold and D.J Hand, editors, Springer, 2nd Edition.
    • C. Jacob. Stochastic search methods. In M. Berthold and D.J. Hand, editors, Intelligent data analysis: An Introduction. Springer, 2003. 2nd Edition.
    • (2003) Intelligent data analysis: An Introduction
    • Jacob, C.1
  • 134
    • 9444258137 scopus 로고    scopus 로고
    • Analyzing attribute dependencies
    • Berlin, Springer Verlag.
    • A. Jakulin and I. Bratko. Analyzing attribute dependencies. In Proc. PKDD 2003, pages 229- 240, Berlin, 2003. Springer Verlag.
    • (2003) Proc. PKDD 2003 , pp. 229-240
    • Jakulin, A.1    Bratko, I.2
  • 137
    • 0043155109 scopus 로고
    • Genetic-algorithms-based learning
    • In Y.Kodratoff, R. S Michalski, editors, Morgan Kaufmann
    • K. De Jong. Genetic-algorithms-based learning. In Y. Kodratoff and R. S. Michalski, editors, Machine Learning, An Artificial Intelligence Approach, volume 3. Morgan Kaufmann, 1990.
    • (1990) Machine Learning, An Artificial Intelligence Approach , vol.3
    • De Jong, K.1
  • 138
    • 0015711168 scopus 로고
    • Inability of humans to discriminate between visual textures that agree in second-order-statistics
    • B. Julesz, E. N. Gilbert, L. A. Shepp, and H. L. Frisch. Inability of humans to discriminate between visual textures that agree in second-order-statistics. Perception, 2:391-05, 1973.
    • (1973) Perception , vol.2 , pp. 391-305
    • Julesz, B.1    Gilbert, E.N.2    Shepp, L.A.3    Frisch, H.L.4
  • 139
    • 0031625017 scopus 로고    scopus 로고
    • Dimensionality reduction by random mapping: fast similarity computation for clustering.
    • S. Kaski. Dimensionality reduction by random mapping: fast similarity computation for clustering. In Proc. IEEE International Joint Conference on Neural Networks, pages 413-18, 1998.
    • (1998) Proc. IEEE International Joint Conference on Neural Networks , pp. 413-418
    • Kaski, S.1
  • 141
    • 0027188175 scopus 로고
    • Efficient noise-tolerant learning from statistical queries
    • New York, ACM Press.
    • M. Kearns. Efficient noise-tolerant learning from statistical queries. In Proc. 25th Annu. ACM Sympos. Theory Comput., pages 392-401, New York, 1993. ACM Press.
    • (1993) Proc. 25th Annu. ACM Sympos. Theory Comput , pp. 392-401
    • Kearns, M.1
  • 142
    • 0024863228 scopus 로고
    • Cryptographic limitations on learning Boolean formulae and finite automata
    • New York, ACM Press.
    • M. Kearns and L. G. Valiant. Cryptographic limitations on learning Boolean formulae and finite automata. In Proc. of the 21st Symposium on Theory of Computing, pages 433-444, New York, 1989. ACM Press.
    • (1989) Proc. of the 21st Symposium on Theory of Computing , pp. 433-444
    • Kearns, M.1    Valiant, L.G.2
  • 143
    • 0025794545 scopus 로고
    • Efficient distribution-free learning of probabilistic concepts
    • Los Alamitos, CA, IEEE Computer Society Press
    • M. J. Kearns and R. E. Schapire. Efficient distribution-free learning of probabilistic concepts. In Proc. of the 31st Symposium on the Foundations of Comp. Sci. (1990), pages 382-391, Los Alamitos, CA, 1990. IEEE Computer Society Press,.
    • (1990) Proc. of the 31st Symposium on the Foundations of Comp. Sci. (1990) , pp. 382-391
    • Kearns, M.J.1    Schapire, R.E.2
  • 145
    • 0026459988 scopus 로고
    • Drug design by machine learning: The use of ILP to model the structure-activity relationship of trimethoprim analogues binding to dihydrofolate reductase
    • R. King, S. Muggleton, R. Lewis, and M. Sternberg. Drug design by machine learning: The use of ILP to model the structure-activity relationship of trimethoprim analogues binding to dihydrofolate reductase. National Academy of Sciences, 1992.
    • (1992) National Academy of Sciences
    • King, R.1    Muggleton, S.2    Lewis, R.3    Sternberg, M.4
  • 146
  • 148
    • 85146422424 scopus 로고
    • practical approach to feature selection
    • In D. Sleeman and P Edwards, editors, Aberdeen, UK, Morgan Kaufmann.
    • K. Kira and L. Rendell. A practical approach to feature selection. In D. Sleeman and P. Edwards, editors, Proc. Intern. Conf. on Machine Learning, pages 249-256, Aberdeen, UK, 1992a. Morgan Kaufmann.
    • (1992) Proc. Intern. Conf. on Machine Learning , pp. 249-256
    • Kira, K.1    Rendell, A.L.2
  • 149
    • 0003036517 scopus 로고
    • The feature selection problem: traditional methods and new algorithm
    • San Jose, CA.
    • K. Kira and L. Rendell. The feature selection problem: traditional methods and new algorithm. In AAAl-92, 1992b. San Jose, CA.
    • (1992) In AAAl-92
    • Kira, K.1    Rendell, L.2
  • 150
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science, 220:671-680, 1983.
    • (1983) Science , vol.220 , pp. 671-680
    • Kirkpatrick, S.1    Gelatt, C.D.2    Vecchi, M.P.3
  • 151
    • 9444294778 scopus 로고    scopus 로고
    • From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering
    • D. Klein, S. D. Kamvar, and C. Manning. From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering. In Proc. of 19th Intl. Conf. on Machine Learning (ICML-2002), pages 307-314, 2002.
    • (2002) Proc. of 19th Intl. Conf. on Machine Learning (ICML-2002) , pp. 307-314
    • Klein, D.1    Kamvar, S.D.2    Manning, C.3
  • 154
    • 0003410791 scopus 로고    scopus 로고
    • Springer, Berlin, Heidelberg, New York, 3rd Extended Edition.
    • T. Kohonen. Self-Organizing Maps. Springer, Berlin, Heidelberg, New York, 2001. 3rd Extended Edition.
    • (2001) Self-Organizing Maps
    • Kohonen, T.1
  • 155
    • 0004349645 scopus 로고
    • Clustering, taxonomy, and topological maps of patterns
    • Munich, Germany
    • T. Kohonen. Clustering, taxonomy, and topological maps of patterns. In Proc. Sixth Int. Conf. on Pattern Recognition, pages 1148-1151, Munich, Germany, 1982.
    • (1982) Proc. Sixth Int. Conf. on Pattern Recognition , pp. 1148-1151
    • Kohonen, T.1
  • 157
    • 0024363909 scopus 로고
    • Bayesian neural networks
    • I. Kononenko. Bayesian neural networks. Biological Cybernetics, 61:361-370, 1989a.
    • (1989) Biological Cybernetics , vol.61 , pp. 361-370
    • Kononenko, I.1
  • 158
    • 26644444473 scopus 로고
    • ID3, sequential Bayes, naive Bayes and Bayesian neural networks
    • Montpellier, France
    • I. Kononenko. ID3, sequential Bayes, naive Bayes and Bayesian neural networks. In 4th European Working Session on Learning, pages 91-98, Montpellier, France, 1989b.
    • (1989) 4th European Working Session on Learning , pp. 91-98
    • Kononenko, I.1
  • 160
    • 85031799549 scopus 로고
    • Semi-naive Bayesian classifier
    • In Y Kodratoff, editor, Springer-Verlag, Porto, March 4-6.
    • I. Kononenko. Semi-naive Bayesian classifier. In Y. Kodratoff, editor, European Working Session on Learning'91, pages 206-219. Springer-Verlag, 1991b. Porto, March 4-6.
    • (1991) European Working Session on Learning'91 , pp. 206-219
    • Kononenko, I.1
  • 161
    • 0027682531 scopus 로고
    • Inductive and Bayesian learning in medical diagnosis
    • I. Kononenko. Inductive and Bayesian learning in medical diagnosis. Applied Artificial Intelligence, 7:317-337, 1993.
    • (1993) Applied Artificial Intelligence , vol.7 , pp. 317-337
    • Kononenko, I.1
  • 162
    • 84992726552 scopus 로고
    • Estimating attributes: Analysis and extensions of RELIEF
    • In L. De Raedt and F. Bergadano, editors, Catania, Italy, Springer Verlag.
    • I. Kononenko. Estimating attributes: Analysis and extensions of RELIEF. In L. De Raedt and F. Bergadano, editors, European Conf. on Machine Learning, pages 171-182, Catania, Italy, 1994. Springer Verlag.
    • (1994) European Conf. on Machine Learning , pp. 171-182
    • Kononenko, I.1
  • 163
    • 85077432727 scopus 로고
    • On biases in estimating multivalued attributes In
    • Montreal, August 20-25.
    • I. Kononenko. On biases in estimating multivalued attributes. In Int. Joint Conf. on Artificial Intelligence 1JCAI-95, pages 1034-1040, 1995. Montreal, August 20-25.
    • (1995) Int. Joint Conf. on Artificial Intelligence 1JCAI-95 , pp. 1034-1040
    • Kononenko, I.1
  • 164
    • 84882568918 scopus 로고    scopus 로고
    • Science and spirituality Technical report, FRI
    • I. Kononenko. Science and spirituality. Technical report, FRI, 2002. URL lkm.fri.uni-lj.si/xaigor/eng/sas.htm.
    • (2002)
    • Kononenko, I.1
  • 165
    • 0025803268 scopus 로고
    • Information based evaluation criterion for classifier's performance
    • I. Kononenko and I. Bratko. Information based evaluation criterion for classifier's performance. Machine Learning, 6:67-80, 1991.
    • (1991) Machine Learning , vol.6 , pp. 67-80
    • Kononenko, I.1    Bratko, I.2
  • 167
  • 171
    • 50049103518 scopus 로고    scopus 로고
    • ReliefF for estimation, discretization of attributes in classification, regression, ILP problems
    • In A Ramsey, editor, IOS Press, Sozopol, Bulgaria.
    • I. Kononenko, M. Robnik-Sikonja, and U. Pompe. ReliefF for estimation and discretization of attributes in classification, regression, and ILP problems. In A. Ramsey, editor, AIMSA-96, pages 31-40. IOS Press, 1996. Sozopol, Bulgaria.
    • (1996) AIMSA-96 , pp. 31-40
    • Kononenko, I.1    Robnik-Sikonja, M.2    Pompe, U.3
  • 172
    • 0030735972 scopus 로고    scopus 로고
    • Overcoming the myopia of inductive learning algorithms
    • I. Kononenko, E. Simec, and M. Robnik. Overcoming the myopia of inductive learning algorithms. Applied Intelligence, 7:39-55, 1997.
    • (1997) Applied Intelligence , vol.7 , pp. 39-55
    • Kononenko, I.1    Simec, E.2    Robnik, M.3
  • 173
    • 84882622738 scopus 로고    scopus 로고
    • Classification of different types of coronas using parametrization of images, machine learning
    • In K Korotkov, editor, Fair Lawn: Backbone, GDV bioelectrography series.
    • I. Kononenko, M. Bevk, A. Sadikov, and L. Sajn. Classification of different types of coronas using parametrization of images and machine learning. In K. Korotkov, editor, Measuring energy fields: state of the science, volume 1, pages 193-208. Fair Lawn: Backbone, 2004. GDV bioelectrography series.
    • (2004) Measuring energy fields: state of the science , vol.1 , pp. 193-208
    • Kononenko, I.1    Bevk, M.2    Sadikov, A.3    Sajn, L.4
  • 174
    • 0008819794 scopus 로고    scopus 로고
    • State Editing & Publishing Unit "Kultura", St.Petersburg, Russia.
    • K. Korotkov. Aura and Consciousness. State Editing & Publishing Unit "Kultura", 1998. St.Petersburg, Russia.
    • (1998) Aura and Consciousness
    • Korotkov, K.1
  • 175
    • 0023416155 scopus 로고
    • Constructing an associative memory
    • B. Kosko. Constructing an associative memory. Byte, pages 137-144, 1987.
    • (1987) Byte , pp. 137-144
    • Kosko, B.1
  • 177
    • 0025981567 scopus 로고
    • Markovian neural networks
    • M. Kovacic. Markovian neural networks. Biological Cybernetics, 64:337-342, 1991.
    • (1991) Biological Cybernetics , vol.64 , pp. 337-342
    • Kovacic, M.1
  • 179
    • 0001972236 scopus 로고    scopus 로고
    • Addressing the curse of imbalanced training sets: One sided selection
    • Morgan Kaufmann
    • M. Kubat and S. Matwin. Addressing the curse of imbalanced training sets: One sided selection. In Proc. Fourteenth Intl. Conf. Machine Learning, pages 179-186. Morgan Kaufmann, 1997.
    • (1997) Proc. Fourteenth Intl. Conf. Machine Learning , pp. 179-186
    • Kubat, M.1    Matwin, S.2
  • 180
    • 0041834856 scopus 로고    scopus 로고
    • Transductive reliability estimation for medical diagnosis
    • M. Kukar. Transductive reliability estimation for medical diagnosis. Artif. intell. med., pages 81-106, 2003.
    • (2003) Artif. intell. med , pp. 81-106
    • Kukar, M.1
  • 181
    • 33645537482 scopus 로고    scopus 로고
    • Quality assessment of individual classifications in machine learning and data mining
    • M. Kukar. Quality assessment of individual classifications in machine learning and data mining. Knowledge and Information Systems, 9(3):364-384, 2006.
    • (2006) Knowledge and Information Systems , vol.9 , Issue.3 , pp. 364-384
    • Kukar, M.1
  • 182
    • 84945287811 scopus 로고    scopus 로고
    • Reliable classifications with machine learning
    • In T.Elomaa, H. Helsinki, Mannila, and H Toivonen, editors, Springer Finland, August 19-23.
    • M. Kukar and I. Kononenko. Reliable classifications with machine learning. In T. Elomaa, H. Mannila, and H. Toivonen, editors, Proc. 13th European Conference on Machine Learning, pages 219-231. Springer, 2002. Helsinki, Finland, August 19-23.
    • (2002) Proc. 13th European Conference on Machine Learning , pp. 219-231
    • Kukar, M.1    Kononenko, I.2
  • 190
    • 0001689415 scopus 로고
    • The role of heuristics in learning by discovery: Three case studies
    • In R. Michalski, J.G. Carbonell, and T.M. Mitchell, editors, Tioga
    • D. B. Lenat. The role of heuristics in learning by discovery: Three case studies. In R. Michalski, J.G. Carbonell, and T.M. Mitchell, editors, Machine Learning, An Artificial Intelligence Approach. Tioga, 1983.
    • (1983) Machine Learning, An Artificial Intelligence Approach
    • Lenat, B.D.1
  • 194
    • 0036487280 scopus 로고    scopus 로고
    • The global k-means clustering algorithm
    • A. Likas, N. A. Vlassis, and J. J. Verbeek. The global k-means clustering algorithm. Pattern Recognition, 36(2):451-461, 2003.
    • (2003) Pattern Recognition , vol.36 , Issue.2 , pp. 451-461
    • Likas, A.1    Vlassis, N.A.2    Verbeek, J.J.3
  • 195
    • 0027609492 scopus 로고
    • DENDRAL: A case study of the first expert system for scientific hypothesis formation
    • R. Lindsay, B. Buchanan, E. Feigenbaum, and J. Lederberg. DENDRAL: A case study of the first expert system for scientific hypothesis formation. Artificial Intelligence, 61(2):209-261, 1993.
    • (1993) Artificial Intelligence , vol.61 , Issue.2 , pp. 209-261
    • Lindsay, R.1    Buchanan, B.2    Feigenbaum, E.3    Lederberg, J.4
  • 196
    • 34250091945 scopus 로고
    • Learning when irrelevant attributes abound: A new linear-threshold algorithm
    • N. Littlestone. Learning when irrelevant attributes abound: A new linear-threshold algorithm. Machine Learning, 2:285-318, 1988.
    • (1988) Machine Learning , vol.2 , pp. 285-318
    • Littlestone, N.1
  • 202
    • 0000586256 scopus 로고
    • Lower bound methods and separation results for on-line learning models
    • W. Maass and G Turân. Lower bound methods and separation results for on-line learning models. Machine Learning, 9:107-145, 1992.
    • (1992) Machine Learning , vol.9 , pp. 107-145
    • Maass, W.1    Turân, G.2
  • 207
    • 2342665025 scopus 로고
    • ID3 revisited: A distance based criterion for attribute selection
    • Charlotte, North Carolina, U.S.A.
    • R. L. Mantaras. ID3 revisited: A distance based criterion for attribute selection. In Int. Symp. Methodologies for Intelligent Systems, Charlotte, North Carolina, U.S.A. 1989.
    • (1989) Int. Symp. Methodologies for Intelligent Systems
    • Mantaras, L.R.1
  • 214
    • 0001161341 scopus 로고
    • Learning by being told and learning from examples: An experimental comparison of the two methods of knowledge acquisition in the context of developing an expert system for soybean disease diagnosis
    • R. S. Michalski and R. L. Chilausky. Learning by being told and learning from examples: An experimental comparison of the two methods of knowledge acquisition in the context of developing an expert system for soybean disease diagnosis. Int. Journal of Policy Analysis and Information Systems, 4:125-161, 1980.
    • (1980) Int. Journal of Policy Analysis and Information Systems , vol.4 , pp. 125-161
    • Michalski, R.S.1    Chilausky, L.R.2
  • 216
    • 8344253880 scopus 로고
    • Personal models of rationality
    • Special Issue on Foundations and Philosophy of Probability and Statistics.
    • D. Michie. Personal models of rationality. Journal of Statistical Planning and Inference, 21, 1989. Special Issue on Foundations and Philosophy of Probability and Statistics.
    • (1989) Journal of Statistical Planning and Inference , vol.21
    • Michie, D.1
  • 217
    • 0000827179 scopus 로고
    • BOXES: An experiment in adaptive control
    • In E. Dale and D. Michie, editors, Edinburgh: Oliver and Boyd
    • D. Michie and R. A. Chambers. BOXES: An experiment in adaptive control. In E. Dale andD. Michie, editors, Machine Intelligence 2. Edinburgh: Oliver and Boyd, 1968.
    • (1968) Machine Intelligence 2
    • Michie, D.1    Chambers, A.R.2
  • 219
    • 34250115918 scopus 로고
    • An examination of procedures for determining the number of clusters in a data set
    • G. W. Milligan and M. C. Cooper. An examination of procedures for determining the number of clusters in a data set. Psychometrika, pages 159-179, 1985.
    • (1985) Psychometrika , pp. 159-179
    • Milligan, G.W.1    Cooper, M.C.2
  • 222
    • 84882651145 scopus 로고    scopus 로고
    • Nomograms for visualization of naive Bayesian classifier
    • Springer Verlag, Pisa, Italy.
    • M. Mozina, J. Demsar, M. Kattan, and B. Zupan. Nomograms for visualization of naive Bayesian classifier. In ECML-04. Springer Verlag, 2004. Pisa, Italy.
    • (2004) ECML-04
    • Mozina, M.1    Demsar, J.2    Kattan, M.3    Zupan, B.4
  • 224
    • 0042847140 scopus 로고    scopus 로고
    • Inference for the generalization error
    • C. Nadeau and Y. Bengio. Inference for the generalization error. Machine learning, 52:239-281, 2003.
    • (2003) Machine learning , vol.52 , pp. 239-281
    • Nadeau, C.1    Bengio, Y.2
  • 227
    • 0005801045 scopus 로고
    • Learning decision rules in noisy domains
    • Brighton, UK.
    • T. Niblett and I. Bratko. Learning decision rules in noisy domains. In Expert Systems 86, 1986. Brighton, UK.
    • (1986) Expert Systems 86
    • Niblett, T.1    Bratko, I.2
  • 233
    • 85041528332 scopus 로고
    • Reducing misclassification costs: Knowledge-intensive approaches to learning from noisy data
    • Morgan Kaufmann
    • M. Pazzani, C. Merz, P. Murphy, K. Ali, T. Hume, and C. Brunk. Reducing misclassification costs: Knowledge-intensive approaches to learning from noisy data. In Proc. Eleventh Intl. Conf. Machine Learning, pages 217-225. Morgan Kaufmann, 1994.
    • (1994) Proc. Eleventh Intl. Conf. Machine Learning , pp. 217-225
    • Pazzani, M.1    Merz, C.2    Murphy, P.3    Ali, K.4    Hume, T.5    Brunk, C.6
  • 238
    • 0024092215 scopus 로고
    • Computational limitations on learning from examples
    • L. Pitt and L. Valiant. Computational limitations on learning from examples. Journal of ACM 35, pages 965-984, 1988.
    • (1988) Journal of ACM 35 , pp. 965-984
    • Pitt, L.1    Valiant, L.2
  • 241
    • 0035283313 scopus 로고    scopus 로고
    • Robust classification for imprecise environments
    • F. Provost and T. Fawcett. Robust classification for imprecise environments. Machine Learning, 42:3:203231,2001.
    • (2001) Machine Learning , vol.42 , Issue.3 , pp. 203231
    • Provost, F.1    Fawcett, T.2
  • 242
    • 0002900357 scopus 로고    scopus 로고
    • The case against accuracy estimation for comparing induction algorithms
    • Morgan Kaufmann
    • F. Provost, T. Fawcett, and R. Kohavi. The case against accuracy estimation for comparing induction algorithms. In Proc. Fifteenth Intl. Conf. Machine Learning, pages 445-553. Morgan Kaufmann, 1998.
    • (1998) Proc. Fifteenth Intl. Conf. Machine Learning , pp. 445-553
    • Provost, F.1    Fawcett, T.2    Kohavi, R.3
  • 243
    • 0002442571 scopus 로고
    • Discovering rules from large collections of examples
    • In D Michie, editor, Edinburgh University Press
    • J. R. Quinlan. Discovering rules from large collections of examples. In D. Michie, editor, Expert Systems in the Microelectronic Age. Edinburgh University Press, 1979.
    • (1979) Expert Systems in the Microelectronic Age
    • Quinlan, J.R.1
  • 244
    • 33744584654 scopus 로고
    • Induction of decision trees
    • J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 1986.
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 245
    • 0001172265 scopus 로고
    • Learning logical definitions from relations
    • J. R. Quinlan. Learning logical definitions from relations. Machine Learning, 5(3):239-266, 1990.
    • (1990) Machine Learning , vol.5 , Issue.3 , pp. 239-266
    • Quinlan, J.R.1
  • 247
    • 0002591462 scopus 로고
    • Lookahead feature construction for learning hard concepts
    • Amherst, MA, Morgan Kaufmann.
    • H. Ragavan and L. Rendell. Lookahead feature construction for learning hard concepts. In Proc. 10th Intern. Conf. on Machine Learning, pages 252-259, Amherst, MA, 1993. Morgan Kaufmann.
    • (1993) Proc. 10th Intern. Conf. on Machine Learning , pp. 252-259
    • Ragavan, H.1    Rendell, L.2
  • 248
    • 0040484429 scopus 로고
    • A metric space of discrete probability distributions
    • C. Rajski. A metric space of discrete probability distributions. Information and Control, 4: 373-377, 1961.
    • (1961) Information and Control , vol.4 , pp. 373-377
    • Rajski, C.1
  • 250
    • 0018015137 scopus 로고
    • Modeling by the shortest data description
    • J. Rissanen. Modeling by the shortest data description. Automatica- Journal IFAC, 14:465-471, 1978.
    • (1978) Automatica- Journal IFAC , vol.14 , pp. 465-471
    • Rissanen, J.1
  • 251
    • 0001098776 scopus 로고
    • A universal prior for integers and estimation by minimum description length
    • J. Rissanen. A universal prior for integers and estimation by minimum description length. The Annals of Statistics, 11(2):416-431, 1993.
    • (1993) The Annals of Statistics , vol.11 , Issue.2 , pp. 416-431
    • Rissanen, J.1
  • 253
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and empirical analysis of ReliefF and RReliefF
    • M. Robnik-Sikonja and I. Kononenko. Theoretical and empirical analysis of ReliefF and RReliefF. Machine Learning, 53:23-69, 2003.
    • (2003) Machine Learning , vol.53 , pp. 23-69
    • Robnik-Sikonja, M.1    Kononenko, I.2
  • 257
    • 0001608026 scopus 로고
    • Feature discovery by competitive learning
    • In D.E. Rumelhart and J.L McClelland, editors, Cambridge: MIT Press
    • D. E. Rumelhart and D. Zipser. Feature discovery by competitive learning. In D.E. Rumelhart and J.L. McClelland, editors, Parallel Distributed Processing: Foundations, volume 1. Cambridge: MIT Press, 1986.
    • (1986) Parallel Distributed Processing: Foundations , vol.1
    • Rumelhart, D.E.1    Zipser, D.2
  • 258
    • 0002520528 scopus 로고
    • A general framework for parallel distributed processing
    • In D.E.Rumelhart, J. L McClelland, editors, Cambridge: MIT Press
    • D. E. Rumelhart, G. E. Hinton, and J. L. McClelland. A general framework for parallel distributed processing. In D. E. Rumelhart and J. L. McClelland, editors, Parallel Distributed Processing: Foundations, volume 1. Cambridge: MIT Press, 1986a.
    • (1986) Parallel Distributed Processing: Foundations , vol.1
    • Rumelhart, D.E.1    Hinton, G.E.2    McClelland, J.L.3
  • 259
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • In D.E.Rumelhart, J. L McClelland, editors, Cambridge: MIT Press
    • D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error propagation. In D. E. Rumelhart and J. L. McClelland, editors, Parallel Distributed Processing: Foundations, volume 1. Cambridge: MIT Press, 1986b.
    • (1986) Parallel Distributed Processing: Foundations , vol.1
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 263
    • 27144463192 scopus 로고    scopus 로고
    • On comparing classifiers: Pitfalls to avoid and a recommended approach
    • S. L. Salzberg. On comparing classifiers: Pitfalls to avoid and a recommended approach. Data Mining and Knowledge Discovery, 1:317-328, 1997.
    • (1997) Data Mining and Knowledge Discovery , vol.1 , pp. 317-328
    • Salzberg, L.S.1
  • 264
    • 0001201756 scopus 로고
    • Some studies in machine learning using the game of checkers
    • A. L. Samuel. Some studies in machine learning using the game of checkers. IBM Journal, 3 (3), 1959.
    • (1959) IBM Journal , vol.3 , Issue.3
    • Samuel, A.L.1
  • 265
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • R. E. Schapire. The strength of weak learnability. Machine Learning, 5(2): 197-227, 1990.
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.E.1
  • 266
    • 85004728351 scopus 로고
    • DDU Univerzum, Ljubljana
    • P. Schauer. Interferon. DDU Univerzum, Ljubljana, 1984.
    • (1984) Interferon
    • Schauer, P.1
  • 270
    • 0004120868 scopus 로고
    • Inductive inference of theories from facts Research report 192
    • Dept. of Computer Sc., Yale University, New Haven
    • E. Shapiro. Inductive inference of theories from facts. Research report 192, Dept. of Computer Sc., Yale University, New Haven, 1981.
    • (1981)
    • Shapiro, E.1
  • 272
    • 84945247175 scopus 로고    scopus 로고
    • Discriminative clustering: Optimal contingency tables by learning metrics
    • In T. Elomaa, H. Mannila, and H. Toivonen, editors, Springer
    • J. Sinkkonen, S. Kaski, and J. Nikkila. Discriminative clustering: Optimal contingency tables by learning metrics. In T. Elomaa, H. Mannila, and H. Toivonen, editors, Proc. European Conf. on Machine Learning (ECML-2002), pages 418-430. Springer, 2002.
    • (2002) Proc. European Conf. on Machine Learning (ECML-2002) , pp. 418-430
    • Sinkkonen, J.1    Kaski, S.2    Nikkila, J.3
  • 273
    • 84975551912 scopus 로고
    • A low-dimensional procedure for the characterisation of human faces
    • L. Sirovich and M. Kirby. A low-dimensional procedure for the characterisation of human faces. Journal of the Optical Society of America, pages 519-524, 1987.
    • (1987) Journal of the Optical Society of America , pp. 519-524
    • Sirovich, L.1    Kirby, M.2
  • 274
    • 85032870186 scopus 로고
    • Types of noise in data for concept learning
    • San Mateo, CA., Morgan Kaufmann.
    • R. Sloan. Types of noise in data for concept learning. In Proc. 1st Annu. Workshop on Comput. Learning Theory, pages 91-96, San Mateo, CA., 1988. Morgan Kaufmann.
    • (1988) Proc. 1st Annu. Workshop on Comput. Learning Theory , pp. 91-96
    • Sloan, R.1
  • 275
    • 0026905118 scopus 로고
    • The emperor's real mind: review of Roger Penrose's The Emperor's New Mind: Concerning computers, minds and laws of physics.
    • A. Sloman. The emperor's real mind: review of Roger Penrose's The Emperor's New Mind: Concerning computers, minds and laws of physics. Artificial Intelligence, 56:355-396, 1992.
    • (1992) Artificial Intelligence , vol.56 , pp. 355-396
    • Sloman, A.1
  • 276
    • 0002096830 scopus 로고    scopus 로고
    • Document clustering using word clusters via the information bottleneck method
    • N. Slonim and N. Tishby. Document clustering using word clusters via the information bottleneck method. In Research and Development in Information Retrieval, pages 208-215, 2000.
    • (2000) Research and Development in Information Retrieval , pp. 208-215
    • Slonim, N.1    Tishby, N.2
  • 277
    • 0000329993 scopus 로고
    • Information processing in dynamical systems: Foundations of harmony theory
    • In D.E. Rumelhart and J.L. McClelland, editors, Cambridge: MIT Press
    • P. Smolensky. Information processing in dynamical systems: Foundations of harmony theory. In D.E. Rumelhart and J.L. McClelland, editors, Parallel Distributed Processing: Foundations, volume 1. Cambridge: MIT Press, 1986.
    • (1986) Parallel Distributed Processing: Foundations , vol.1
    • Smolensky, P.1
  • 278
    • 0141877525 scopus 로고
    • Rule induction using information theory
    • In G. Piatetsky-Shapiro and W Frawley, editors, MIT Press
    • P. Smyth and R. M. Goodman. Rule induction using information theory. In G. Piatetsky-Shapiro and W. Frawley, editors, Knowledge Discovery in Databases. MIT Press, 1990.
    • (1990) Knowledge Discovery in Databases
    • Smyth, P.1    Goodman, R.M.2
  • 279
    • 0001579335 scopus 로고
    • A formal theory of inductive inference: Parts 1 and 2.
    • R. J. Solomonoff. A formal theory of inductive inference: Parts 1 and 2. Information and Control, 7:122 and 224254, 1964.
    • (1964) Information and Control , vol.7 , Issue.122 , pp. 224254
    • Solomonoff, J.R.1
  • 280
    • 0017996595 scopus 로고
    • Complexity-based induction systems: Comparisons and convergence theorems
    • R. J. Solomonoff. Complexity-based induction systems: Comparisons and convergence theorems. IEEE Transaction on Information Theory, 24:422432, 1978.
    • (1978) IEEE Transaction on Information Theory , vol.24 , pp. 422432
    • Solomonoff, J.R.1
  • 284
    • 84958674093 scopus 로고
    • Temporal difference learning of backgammon strategy
    • Aberdeen.
    • G. Tesauro. Temporal difference learning of backgammon strategy. In Int. Machine Learning Conf, 1992. Aberdeen.
    • (1992) Int. Machine Learning Conf
    • Tesauro, G.1
  • 285
    • 0029276036 scopus 로고
    • Temporal difference learning and td-gammon
    • G. Tesauro. Temporal difference learning and td-gammon. Communications of the ACM, 38(3), 1995.
    • (1995) Communications of the ACM , vol.38 , Issue.3
    • Tesauro, G.1
  • 287
    • 4043057772 scopus 로고    scopus 로고
    • Namaste Publishing Inc., Canada
    • E. Tolle. The Power of NOW. Namaste Publishing Inc., Canada, 1997.
    • (1997) The Power of NOW
    • Tolle, E.1
  • 289
    • 0000865580 scopus 로고
    • Cost-sensitive classification: empirical evaluation of a hybrid genetic decision tree induction algorithm
    • P. Turney. Cost-sensitive classification: empirical evaluation of a hybrid genetic decision tree induction algorithm. Journal of Artificial Intelligence Research, 2:369-409, 1995.
    • (1995) Journal of Artificial Intelligence Research , vol.2 , pp. 369-409
    • Turney, P.1
  • 290
    • 84882713734 scopus 로고
    • Constructing control rules for dynamic system: probabilistic qualitative models, lookahead and exaggeration
    • T. Urbancic and I. Bratko. Constructing control rules for dynamic system: probabilistic qualitative models, lookahead and exaggeration. Int. J. Syst. Sci., 24(6): 1155-1164, 1993.
    • (1993) Int. J. Syst. Sci , vol.24 , Issue.6 , pp. 1155-1164
    • Urbancic, T.1    Bratko, I.2
  • 291
    • 0039271793 scopus 로고
    • Improving a rule induction system using genetic algorithms In R. Michalski and G Tecuci, editors, Morgan Kaufmann
    • H. Vafie and K. DeJong. Improving a rule induction system using genetic algorithms. In R. Michalski and G. Tecuci, editors, Machine Learning: A Multistrategy approach, volume IV. Morgan Kaufmann, 1994.
    • (1994) Machine Learning: A Multistrategy approach , vol.4
    • Vafie, H.1    DeJong, K.2
  • 292
    • 0021518106 scopus 로고
    • A theory of the learnable
    • L. G. Valiant. A theory of the learnable. Commun. ACM 27, pages 1134-1142, 1984.
    • (1984) Commun. ACM 27 , pp. 1134-1142
    • Valiant, L.G.1
  • 297
    • 0001024505 scopus 로고
    • On the uniform convergence of relative frequencies of events to their probabilities
    • V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probab. and its Applications, 16(2):264-280, 1971. A. Varsek. Qualitative model evolution. In Proc. 12th Int. Joint Conf. on Artificial Intelligence IJCAI-91, pages 1311-1316. Morgan Kaufmann, 1991.
    • (1971) Theory of Probab. and its Applications , vol.16 , Issue.2 , pp. 264-280
    • Vapnik, V.N.1    Chervonenkis, A.Y.2
  • 299
    • 77953325583 scopus 로고    scopus 로고
    • Asymptotic optimality of transductive confidence machine
    • In N.Cesa-Bianchi, M. Numao, and R Reischuk, editors, Berlin, Heidelberg, New York, Springer Verlag.
    • V. Vovk. Asymptotic optimality of transductive confidence machine. In N. Cesa-Bianchi, M. Numao, and R. Reischuk, editors, Proc. Thirteenth International Conference on Algorithmic Learning Theory, pages 336-350, Berlin, Heidelberg, New York, 2002. Springer Verlag. K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl. Constrained k-means clustering with background knowledge. In Proc. of 18th Intl. Conf. on Machine Learning (ICML-2001), pages 577-584, 2001.
    • (2002) Proc. Thirteenth International Conference on Algorithmic Learning Theory , pp. 336-350
    • Vovk, V.1
  • 303
    • 0023842981 scopus 로고
    • Neural networks: What are they and why is everybody so interested in them now
    • Winter 1987, 10-12, part 2: Spring, IEEE Expert, 1987,1988.
    • P. D. Wasserman and T. Schwartz. Neural networks: What are they and why is everybody so interested in them now. part 1: Winter 1987, pp. 10-12, part 2: Spring 1988, pp. 10-15. IEEE Expert, 1987,1988.
    • (1988) , Issue.PART 1 , pp. 10-15
    • Wasserman, P.D.1    Schwartz, T.2
  • 304
    • 0000539096 scopus 로고
    • Generalization by weight-elimination with application to forecasting
    • In R.P.Lippmann, E J. Moody, and D.S Tburetzky, editors, San Mateo,CA: Morgan Kaufmann
    • A.S. Weigend, D.E. Rumelhart, and B.A. Huberman. Generalization by weight-elimination with application to forecasting. In R.P. Lippmann, J.E. Moody, and D.S. Tburetzky, editors, Advances in Neural Information Processing Systems 3, pages 875-882. San Mateo,CA: Morgan Kaufmann, 1991.
    • (1991) Advances in Neural Information Processing Systems 3 , pp. 875-882
    • Weigend, A.S.1    Rumelhart, D.E.2    Huberman, B.A.3
  • 306
    • 0028443213 scopus 로고
    • Bias in information-based measures in decision tree induction
    • A. P. White and W. Z. Liu. Bias in information-based measures in decision tree induction. Machine Learning, 15:321-329, 1994.
    • (1994) Machine Learning , vol.15 , pp. 321-329
    • White, A.P.1    Liu, W.Z.2
  • 307
    • 0023982347 scopus 로고
    • Neural nets for adaptive filtering and adaptive pattern recognition
    • B. Widrow and R. Winter. Neural nets for adaptive filtering and adaptive pattern recognition. IEEE Computer, pages 25-39, 1988.
    • (1988) IEEE Computer , pp. 25-39
    • Widrow, B.1    Winter, R.2
  • 308
    • 0010257013 scopus 로고
    • The logic of activation functions
    • In D.E. Rumelhart and J.L McClelland, editors, Cambridge: MIT Press
    • R. J. Williams. The logic of activation functions. In D.E. Rumelhart and J.L. McClelland, editors, Parallel Distributed Processing: Foundations, volume 1. Cambridge: MIT Press, 1986.
    • (1986) Parallel Distributed Processing: Foundations , vol.1
    • Williams, R.J.1
  • 311
    • 0023919728 scopus 로고
    • Recognition of general patterns using neural networks
    • A. J. W. Wong. Recognition of general patterns using neural networks. Biological Cybernetics, 58(6):361-372, 1988.
    • (1988) Biological Cybernetics , vol.58 , Issue.6 , pp. 361-372
    • Wong, A.J.W.1
  • 312
    • 0031121318 scopus 로고    scopus 로고
    • Combination of multiple classifiers using local acuracy estimates
    • K. Woods, W. P. Kegelmeyer, and K. Bowyer. Combination of multiple classifiers using local acuracy estimates. IEEE Transactions on PAMI, 19(4):405-410, 1997.
    • (1997) IEEE Transactions on PAMI , vol.19 , Issue.4 , pp. 405-410
    • Woods, K.1    Kegelmeyer, W.P.2    Bowyer, K.3
  • 316
    • 0003803229 scopus 로고    scopus 로고
    • PhD thesis, University of Ljubljana, Faculty of Computer and Information Science, (in Slovene).
    • B. Zupan. Machine Learning with Functional Decomposition. PhD thesis, University of Ljubljana, Faculty of Computer and Information Science, 1997. (in Slovene).
    • (1997) Machine Learning with Functional Decomposition
    • Zupan, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.