메뉴 건너뛰기




Volumn 879, Issue , 2015, Pages 10-23

A tutorial review: Metabolomics and partial least squares-discriminant analysis - a marriage of convenience or a shotgun wedding

Author keywords

Chemometrics; Metabolomics; Partial least squares discriminant analysis; Principal component discriminant function analysis; Random forests; Support vector machines

Indexed keywords

DECISION TREES; DISCRIMINANT ANALYSIS; INFORMATION DISSEMINATION; LEAST SQUARES APPROXIMATIONS; RANDOM FORESTS; SUPPORT VECTOR MACHINES;

EID: 84929947684     PISSN: 00032670     EISSN: 18734324     Source Type: Journal    
DOI: 10.1016/j.aca.2015.02.012     Document Type: Review
Times cited : (657)

References (162)
  • 2
    • 84897566379 scopus 로고    scopus 로고
    • Partial least squares discriminant analysis: taking the magic away
    • Brereton R.G., Lloyd G.R. Partial least squares discriminant analysis: taking the magic away. J. Chemom. 2014, 28:213-225.
    • (2014) J. Chemom. , vol.28 , pp. 213-225
    • Brereton, R.G.1    Lloyd, G.R.2
  • 3
    • 84860386341 scopus 로고    scopus 로고
    • Double-check: validation of diagnostic statistics for PLS-DA models in metabolomics studies
    • Szymanska E., Saccenti E., Smilde A.K., Westerhuis J.A. Double-check: validation of diagnostic statistics for PLS-DA models in metabolomics studies. Metabolomics 2012, 8:S3-S16.
    • (2012) Metabolomics , vol.8 , pp. S3-S16
    • Szymanska, E.1    Saccenti, E.2    Smilde, A.K.3    Westerhuis, J.A.4
  • 5
    • 33846515112 scopus 로고    scopus 로고
    • Partial least squares: a versatile tool for the analysis of high-dimensional genomic data
    • Boulesteix A.-L., Strimmer K. Partial least squares: a versatile tool for the analysis of high-dimensional genomic data. Brief. Bioinf. 2007, 8:32-44.
    • (2007) Brief. Bioinf. , vol.8 , pp. 32-44
    • Boulesteix, A.-L.1    Strimmer, K.2
  • 6
    • 4444351323 scopus 로고    scopus 로고
    • Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites
    • Oksman-Caldentey K.M., Inze D. Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites. Trends Plant Sci. 2004, 9:433-440.
    • (2004) Trends Plant Sci. , vol.9 , pp. 433-440
    • Oksman-Caldentey, K.M.1    Inze, D.2
  • 9
    • 70350694448 scopus 로고    scopus 로고
    • IntegrOmics: an R package to unravel relationships between two omics datasets
    • Le Cao K.-A., Gonzalez I., Dejean S. integrOmics: an R package to unravel relationships between two omics datasets. Bioinformatics 2009, 25:2855-2856.
    • (2009) Bioinformatics , vol.25 , pp. 2855-2856
    • Le Cao, K.-A.1    Gonzalez, I.2    Dejean, S.3
  • 10
    • 64549138422 scopus 로고    scopus 로고
    • Automics: an integrated platform for NMR-based metabonomics spectral processing and data analysis
    • Wang T., Shao K., Chu Q., Ren Y., Mu Y., Qu L., He J., Jin C., Xia B. Automics: an integrated platform for NMR-based metabonomics spectral processing and data analysis. BMC Bioinformatics 2009, 10:83.
    • (2009) BMC Bioinformatics , vol.10 , pp. 83
    • Wang, T.1    Shao, K.2    Chu, Q.3    Ren, Y.4    Mu, Y.5    Qu, L.6    He, J.7    Jin, C.8    Xia, B.9
  • 11
    • 79953740072 scopus 로고    scopus 로고
    • Processing and analysis of GC/LC-MS-based metabolomics data
    • Want E., Masson P. Processing and analysis of GC/LC-MS-based metabolomics data. Methods Mol. Biol. 2011, 708:277-298.
    • (2011) Methods Mol. Biol. , vol.708 , pp. 277-298
    • Want, E.1    Masson, P.2
  • 12
    • 67849106535 scopus 로고    scopus 로고
    • MetaboAnalyst: a web server for metabolomic data analysis and interpretation
    • Xia J., Psychogios N., Young N., Wishart D.S. MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 2009, 37:W652-W660.
    • (2009) Nucleic Acids Res. , vol.37 , pp. W652-W660
    • Xia, J.1    Psychogios, N.2    Young, N.3    Wishart, D.S.4
  • 13
    • 84855890664 scopus 로고    scopus 로고
    • Chemometric approaches to improve PLSDA model outcome for predicting human non-alcoholic fatty liver disease using UPLC-MS as a metabolic profiling tool
    • Quintas G., Portillo N., Carlos Garcia-Canaveras J., Vicente Castell J., Ferrer A., Lahoz A. Chemometric approaches to improve PLSDA model outcome for predicting human non-alcoholic fatty liver disease using UPLC-MS as a metabolic profiling tool. Metabolomics 2012, 8:86-98.
    • (2012) Metabolomics , vol.8 , pp. 86-98
    • Quintas, G.1    Portillo, N.2    Carlos Garcia-Canaveras, J.3    Vicente Castell, J.4    Ferrer, A.5    Lahoz, A.6
  • 14
    • 33846240326 scopus 로고    scopus 로고
    • Statistical strategies for avoiding false discoveries in metabolomics and related experiments
    • Broadhurst D.I., Kell D.B. Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics 2006, 2:171-196.
    • (2006) Metabolomics , vol.2 , pp. 171-196
    • Broadhurst, D.I.1    Kell, D.B.2
  • 16
    • 34748891078 scopus 로고    scopus 로고
    • A roadmap for the establishment of standard data exchange structures for metabolomics
    • Hardy N.W., Taylor C.F. A roadmap for the establishment of standard data exchange structures for metabolomics. Metabolomics 2007, 3:243-248.
    • (2007) Metabolomics , vol.3 , pp. 243-248
    • Hardy, N.W.1    Taylor, C.F.2
  • 18
    • 84908011819 scopus 로고    scopus 로고
    • Available from: (27.04.2014).
    • Bioinformatics Market Analysis And Segment Forecasts To 2020, Grand View Research, Inc., 2014. Available from: (27.04.2014). http://www.grandviewresearch.com/industry-analysis/bioinformatics-industry.
    • (2014) Grand View Research, Inc.
  • 19
    • 84857124407 scopus 로고    scopus 로고
    • Bioinformatics tools for mass spectroscopy-based metabolomic data processing and analysis
    • Sugimoto M., Kawakami M., Robert M., Soga T., Tomita M. Bioinformatics tools for mass spectroscopy-based metabolomic data processing and analysis. Curr. Bioinf. 2012, 7:96-108.
    • (2012) Curr. Bioinf. , vol.7 , pp. 96-108
    • Sugimoto, M.1    Kawakami, M.2    Robert, M.3    Soga, T.4    Tomita, M.5
  • 23
    • 79956328118 scopus 로고    scopus 로고
    • Multivariate methods in metabolomics - from pre-processing to dimension reduction and statistical analysis
    • Liland K.H. Multivariate methods in metabolomics - from pre-processing to dimension reduction and statistical analysis. Trends Anal. Chem. 2011, 30:827-841.
    • (2011) Trends Anal. Chem. , vol.30 , pp. 827-841
    • Liland, K.H.1
  • 24
    • 79959363113 scopus 로고    scopus 로고
    • From data processing to multivariate validation - essential steps in extracting interpretable information from metabolomics data
    • Eliasson M., Rannar S., Trygg J. From data processing to multivariate validation - essential steps in extracting interpretable information from metabolomics data. Curr. Pharm. Biotechnol. 2011, 12:996-1004.
    • (2011) Curr. Pharm. Biotechnol. , vol.12 , pp. 996-1004
    • Eliasson, M.1    Rannar, S.2    Trygg, J.3
  • 26
    • 84867336104 scopus 로고    scopus 로고
    • NMR and pattern recognition methods in metabolomics: From data acquisition to biomarker discovery: a review
    • Smolinska A., Blanchet L., Buydens L.M.C., Wijmenga S.S. NMR and pattern recognition methods in metabolomics: From data acquisition to biomarker discovery: a review. Anal. Chim. Acta 2012, 750:82-97.
    • (2012) Anal. Chim. Acta , vol.750 , pp. 82-97
    • Smolinska, A.1    Blanchet, L.2    Buydens, L.M.C.3    Wijmenga, S.S.4
  • 29
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C., Vapnik V. Support-vector networks. Mach. Learn. 1995, 20:273-297.
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 30
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach. Learn. 2001, 45:5-32.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 31
    • 33645673600 scopus 로고    scopus 로고
    • Metabolomic approaches reveal that phosphatidic and phosphatidyl glycerol phospholipids are major discriminatory non-polar metabolites in responses by Brachypodium distachyon to challenge by Magnaporthe grisea
    • Allwood J.W., Ellis D.I., Heald J.K., Goodacre R., Mur L.A.J. Metabolomic approaches reveal that phosphatidic and phosphatidyl glycerol phospholipids are major discriminatory non-polar metabolites in responses by Brachypodium distachyon to challenge by Magnaporthe grisea. Plant J. 2006, 46:351-368.
    • (2006) Plant J. , vol.46 , pp. 351-368
    • Allwood, J.W.1    Ellis, D.I.2    Heald, J.K.3    Goodacre, R.4    Mur, L.A.J.5
  • 32
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C.J.C. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 1998, 2:121-167.
    • (1998) Data Min. Knowl. Discov. , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 34
    • 33845462550 scopus 로고    scopus 로고
    • Support vector machines: a recent method for classification in chemometrics
    • Xu Y., Zomer S., Brereton R.G. Support vector machines: a recent method for classification in chemometrics. Crit. Rev. Anal. Chem. 2006, 36:177-188.
    • (2006) Crit. Rev. Anal. Chem. , vol.36 , pp. 177-188
    • Xu, Y.1    Zomer, S.2    Brereton, R.G.3
  • 35
    • 79953210805 scopus 로고    scopus 로고
    • Support vector machine regression (SVR/LS-SVM)-an alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data
    • Balabin R.M., Lomakina E.I. Support vector machine regression (SVR/LS-SVM)-an alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data. Analyst 2011, 136:1703-1712.
    • (2011) Analyst , vol.136 , pp. 1703-1712
    • Balabin, R.M.1    Lomakina, E.I.2
  • 37
    • 0037350844 scopus 로고    scopus 로고
    • Partial least squares for discrimination
    • Barker M., Rayens W. Partial least squares for discrimination. J. Chemom. 2003, 17:166-173.
    • (2003) J. Chemom. , vol.17 , pp. 166-173
    • Barker, M.1    Rayens, W.2
  • 41
    • 77949497074 scopus 로고    scopus 로고
    • Bioinformatics challenges for genome-wide association studies
    • Moore J.H., Asselbergs F.W., Williams S.M. Bioinformatics challenges for genome-wide association studies. Bioinformatics 2010, 26:445-455.
    • (2010) Bioinformatics , vol.26 , pp. 445-455
    • Moore, J.H.1    Asselbergs, F.W.2    Williams, S.M.3
  • 43
    • 0036007687 scopus 로고    scopus 로고
    • Metabolomics - the link between genotypes and phenotypes
    • Fiehn O. Metabolomics - the link between genotypes and phenotypes. Plant Mol. Biol. 2002, 48:155-171.
    • (2002) Plant Mol. Biol. , vol.48 , pp. 155-171
    • Fiehn, O.1
  • 45
    • 34447542843 scopus 로고    scopus 로고
    • Metabolomic biomarkers: search, discovery and validation
    • Kell D.B. Metabolomic biomarkers: search, discovery and validation. Expert Rev. Mol. Diagn. 2007, 7:329-333.
    • (2007) Expert Rev. Mol. Diagn. , vol.7 , pp. 329-333
    • Kell, D.B.1
  • 46
    • 16244402990 scopus 로고    scopus 로고
    • Metabolomics: current analytical platforms and methodologies
    • Dunn W.B., Ellis D.I. Metabolomics: current analytical platforms and methodologies. Trends Anal. Chem. 2005, 24:285-294.
    • (2005) Trends Anal. Chem. , vol.24 , pp. 285-294
    • Dunn, W.B.1    Ellis, D.I.2
  • 47
    • 78650315006 scopus 로고    scopus 로고
    • Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy
    • Dunn W.B., Broadhurst D.I., Atherton H.J., Goodacre R., Griffin J.L. Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chem. Soc. Rev. 2011, 40:387-426.
    • (2011) Chem. Soc. Rev. , vol.40 , pp. 387-426
    • Dunn, W.B.1    Broadhurst, D.I.2    Atherton, H.J.3    Goodacre, R.4    Griffin, J.L.5
  • 48
    • 33748468414 scopus 로고    scopus 로고
    • Metabolomics technology and bioinformatics
    • Shulaev V. Metabolomics technology and bioinformatics. Brief. Bioinform. 2006, 7:128-139.
    • (2006) Brief. Bioinform. , vol.7 , pp. 128-139
    • Shulaev, V.1
  • 49
    • 83455203337 scopus 로고    scopus 로고
    • Modern analytical techniques in metabolomics analysis
    • Zhang A., Sun H., Wang P., Han Y., Wang X. Modern analytical techniques in metabolomics analysis. Analyst 2012, 137:293-300.
    • (2012) Analyst , vol.137 , pp. 293-300
    • Zhang, A.1    Sun, H.2    Wang, P.3    Han, Y.4    Wang, X.5
  • 50
  • 51
    • 0043069547 scopus 로고    scopus 로고
    • Understanding 'global' systems biology: metabonomics and the continuum of metabolism
    • Nicholson J.K., Wilson I.D. Understanding 'global' systems biology: metabonomics and the continuum of metabolism. Nat. Rev. Drug Discov. 2003, 2:668-676.
    • (2003) Nat. Rev. Drug Discov. , vol.2 , pp. 668-676
    • Nicholson, J.K.1    Wilson, I.D.2
  • 52
    • 84871831660 scopus 로고    scopus 로고
    • Fingerprinting food: current technologies for the detection of food adulteration and contamination
    • Ellis D.I., Brewster V.L., Dunn W.B., Allwood J.W., Golovanov A.P., Goodacre R. Fingerprinting food: current technologies for the detection of food adulteration and contamination. Chem. Soc. Rev. 2012, 41:5706-5727.
    • (2012) Chem. Soc. Rev. , vol.41 , pp. 5706-5727
    • Ellis, D.I.1    Brewster, V.L.2    Dunn, W.B.3    Allwood, J.W.4    Golovanov, A.P.5    Goodacre, R.6
  • 56
    • 33746449986 scopus 로고    scopus 로고
    • Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy
    • Ellis D.I., Goodacre R. Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy. Analyst 2006, 131:875-885.
    • (2006) Analyst , vol.131 , pp. 875-885
    • Ellis, D.I.1    Goodacre, R.2
  • 58
    • 33847621211 scopus 로고    scopus 로고
    • FT-IR imaging of native and tissue-engineered bone and cartilage
    • Boskey A., Camacho N.P. FT-IR imaging of native and tissue-engineered bone and cartilage. Biomaterials 2007, 28:2465-2478.
    • (2007) Biomaterials , vol.28 , pp. 2465-2478
    • Boskey, A.1    Camacho, N.P.2
  • 59
    • 1342264356 scopus 로고    scopus 로고
    • Imaging of colorectal adenocarcinoma using FT-IR microspectroscopy and cluster analysis
    • Lasch P., Haensch W., Naumann D., Diem M. Imaging of colorectal adenocarcinoma using FT-IR microspectroscopy and cluster analysis. Biochim. Biophys. Acta-Mol. Basis Dis. 2004, 1688:176-186.
    • (2004) Biochim. Biophys. Acta-Mol. Basis Dis. , vol.1688 , pp. 176-186
    • Lasch, P.1    Haensch, W.2    Naumann, D.3    Diem, M.4
  • 60
    • 84886004304 scopus 로고    scopus 로고
    • Illuminating disease and enlightening biomedicine: Raman spectroscopy as a diagnostic tool
    • Ellis D.I., Cowcher D.P., Ashton L., O'Hagan S., Goodacre R. Illuminating disease and enlightening biomedicine: Raman spectroscopy as a diagnostic tool. Analyst 2013, 138:3871-3884.
    • (2013) Analyst , vol.138 , pp. 3871-3884
    • Ellis, D.I.1    Cowcher, D.P.2    Ashton, L.3    O'Hagan, S.4    Goodacre, R.5
  • 62
    • 73349121270 scopus 로고    scopus 로고
    • An introduction to liquid chromatography-mass spectrometry instrumentation applied in plant metabolomic analyses
    • Allwood J.W., Goodacre R. An introduction to liquid chromatography-mass spectrometry instrumentation applied in plant metabolomic analyses. Phytochem. Anal. 2010, 21:33-47.
    • (2010) Phytochem. Anal. , vol.21 , pp. 33-47
    • Allwood, J.W.1    Goodacre, R.2
  • 63
  • 64
    • 79956103990 scopus 로고    scopus 로고
    • NMR-based plant metabolomics: where do we stand, where do we go?
    • Kim H.K., Choi Y.H., Verpoorte R. NMR-based plant metabolomics: where do we stand, where do we go?. Trends Biotechnol. 2011, 29:267-275.
    • (2011) Trends Biotechnol. , vol.29 , pp. 267-275
    • Kim, H.K.1    Choi, Y.H.2    Verpoorte, R.3
  • 65
    • 79960384696 scopus 로고    scopus 로고
    • Mass spectrometry strategies in metabolomics
    • Lei Z., Huhman D.V., Sumner L.W. Mass spectrometry strategies in metabolomics. J. Biol. Chem. 2011, 286:25435-25442.
    • (2011) J. Biol. Chem. , vol.286 , pp. 25435-25442
    • Lei, Z.1    Huhman, D.V.2    Sumner, L.W.3
  • 73
    • 79953267955 scopus 로고    scopus 로고
    • PeakML/mzmatch: a file format, java library, R library, and tool-chain for mass spectrometry data analysis
    • Scheltema R.A., Jankevics A., Jansen R.C., Swertz M.A., Breitling R. PeakML/mzmatch: a file format, java library, R library, and tool-chain for mass spectrometry data analysis. Anal. Chem. 2011, 83:2786-2793.
    • (2011) Anal. Chem. , vol.83 , pp. 2786-2793
    • Scheltema, R.A.1    Jankevics, A.2    Jansen, R.C.3    Swertz, M.A.4    Breitling, R.5
  • 74
    • 82755192534 scopus 로고    scopus 로고
    • Improving validation practices in omics research
    • Ioannidis J.P.A., Khoury M.J. Improving validation practices in omics research. Science 2011, 334:1230-1232.
    • (2011) Science , vol.334 , pp. 1230-1232
    • Ioannidis, J.P.A.1    Khoury, M.J.2
  • 75
    • 84861223878 scopus 로고    scopus 로고
    • The biological interpretation of metabolomic data can be misled by the extraction method used
    • Duportet X., Aggio R.B.M., Carneiro S., Villas-Boas S.G. The biological interpretation of metabolomic data can be misled by the extraction method used. Metabolomics 2012, 8:410-421.
    • (2012) Metabolomics , vol.8 , pp. 410-421
    • Duportet, X.1    Aggio, R.B.M.2    Carneiro, S.3    Villas-Boas, S.G.4
  • 77
    • 33751417111 scopus 로고    scopus 로고
    • Consequences of sample size, variable selection, and model validation and optimisation for predicting classification ability from analytical data
    • Brereton R.G. Consequences of sample size, variable selection, and model validation and optimisation for predicting classification ability from analytical data. Trends Anal. Chem. 2006, 25:1103-1111.
    • (2006) Trends Anal. Chem. , vol.25 , pp. 1103-1111
    • Brereton, R.G.1
  • 79
    • 84865407521 scopus 로고    scopus 로고
    • A review of variable selection methods in partial least squares regression
    • Mehmood T., Liland K.H., Snipen L., Saebo S. A review of variable selection methods in partial least squares regression. Chemom. Intell. Lab. 2012, 118:62-69.
    • (2012) Chemom. Intell. Lab. , vol.118 , pp. 62-69
    • Mehmood, T.1    Liland, K.H.2    Snipen, L.3    Saebo, S.4
  • 80
    • 79955023796 scopus 로고    scopus 로고
    • Partial least squares (PLS) methods for neuroimaging: a tutorial and review
    • Krishnan A., Williams L.J., McIntosh A.R., Abdi H. Partial least squares (PLS) methods for neuroimaging: a tutorial and review. Neuroimage 2011, 56:455-475.
    • (2011) Neuroimage , vol.56 , pp. 455-475
    • Krishnan, A.1    Williams, L.J.2    McIntosh, A.R.3    Abdi, H.4
  • 81
    • 84870695041 scopus 로고    scopus 로고
    • Utilities for quantifying separation in PCA/PLS-DA scores plots
    • Worley B., Halouska S., Powers R. Utilities for quantifying separation in PCA/PLS-DA scores plots. Anal. Biochem. 2013, 433:102-104.
    • (2013) Anal. Biochem. , vol.433 , pp. 102-104
    • Worley, B.1    Halouska, S.2    Powers, R.3
  • 82
    • 84872759605 scopus 로고    scopus 로고
    • Evolution of PLS for modeling SAR and omics data
    • Hasegawa K., Funatsu K. Evolution of PLS for modeling SAR and omics data. Mol. Inform. 2012, 31:766-775.
    • (2012) Mol. Inform. , vol.31 , pp. 766-775
    • Hasegawa, K.1    Funatsu, K.2
  • 86
    • 84894384066 scopus 로고    scopus 로고
    • Statistical errors
    • Nuzzo R. Statistical errors. Nature 2014, 506:150-152.
    • (2014) Nature , vol.506 , pp. 150-152
    • Nuzzo, R.1
  • 87
    • 84901018651 scopus 로고    scopus 로고
    • A comparative investigation of modern feature selection and classification approaches for the analysis of mass spectrometry data
    • Gromski P.S., Xu Y., Correa E., Ellis D.I., Turner M.L., Goodacre R. A comparative investigation of modern feature selection and classification approaches for the analysis of mass spectrometry data. Anal. Chim. Acta. 2014, 829:1-8.
    • (2014) Anal. Chim. Acta. , vol.829 , pp. 1-8
    • Gromski, P.S.1    Xu, Y.2    Correa, E.3    Ellis, D.I.4    Turner, M.L.5    Goodacre, R.6
  • 89
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the roc curve in the evaluation of machine learning algorithms
    • Bradley A.P. The use of the area under the roc curve in the evaluation of machine learning algorithms. Pattern Recognit. 1997, 30:1145-1159.
    • (1997) Pattern Recognit. , vol.30 , pp. 1145-1159
    • Bradley, A.P.1
  • 92
    • 84855392494 scopus 로고    scopus 로고
    • Pattern recognition approaches and computational systems tools for ultra performance liquid chromatography-mass-spectrometry-based comprehensive metabolomic profiling and pathways analysis of biological data sets
    • Wang X., Yang B., Sun H., Zhang A. Pattern recognition approaches and computational systems tools for ultra performance liquid chromatography-mass-spectrometry-based comprehensive metabolomic profiling and pathways analysis of biological data sets. Anal. Chem. 2012, 84:428-439.
    • (2012) Anal. Chem. , vol.84 , pp. 428-439
    • Wang, X.1    Yang, B.2    Sun, H.3    Zhang, A.4
  • 93
    • 0017926672 scopus 로고
    • Use of canonical variates analysis in differentiation of bacteria by pyrolysis gas-liquid chromatography
    • MacFie H.J.H., Gutteridge C.S., Norris J.R. Use of canonical variates analysis in differentiation of bacteria by pyrolysis gas-liquid chromatography. J. Gen. Microbiol. 1978, 104:67-74.
    • (1978) J. Gen. Microbiol. , vol.104 , pp. 67-74
    • MacFie, H.J.H.1    Gutteridge, C.S.2    Norris, J.R.3
  • 94
    • 33845550232 scopus 로고
    • Interpretation of sets of pyrolysis mass spectra by discriminant analysis and graphical rotation
    • Windig W., Haverkamp J., Kistemaker P.G. Interpretation of sets of pyrolysis mass spectra by discriminant analysis and graphical rotation. Anal. Chem. 1983, 55:81-88.
    • (1983) Anal. Chem. , vol.55 , pp. 81-88
    • Windig, W.1    Haverkamp, J.2    Kistemaker, P.G.3
  • 95
    • 0020824208 scopus 로고
    • Discriminant analysis by double stage principal component analysis
    • Hoogerbrugge R., Willig S.J., Kistemaker P.G. Discriminant analysis by double stage principal component analysis. Anal. Chem. 1983, 55:1710-1712.
    • (1983) Anal. Chem. , vol.55 , pp. 1710-1712
    • Hoogerbrugge, R.1    Willig, S.J.2    Kistemaker, P.G.3
  • 96
    • 0031781727 scopus 로고    scopus 로고
    • Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks
    • Goodacre R., Timmins E.M., Burton R., Kaderbhai N., Woodward A.M., Kell D.B., Rooney P.J. Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks. Microbiology 1998, 144:1157-1170.
    • (1998) Microbiology , vol.144 , pp. 1157-1170
    • Goodacre, R.1    Timmins, E.M.2    Burton, R.3    Kaderbhai, N.4    Woodward, A.M.5    Kell, D.B.6    Rooney, P.J.7
  • 97
    • 58149421595 scopus 로고
    • Analysis of a complex of statistical variables into principal components
    • Hotelling H. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 1933, 24:417-441.
    • (1933) J. Educ. Psychol. , vol.24 , pp. 417-441
    • Hotelling, H.1
  • 99
  • 101
    • 84984318261 scopus 로고
    • Orthogonal canonical variates for discrimination and classification
    • Krzanowski W.J. Orthogonal canonical variates for discrimination and classification. J. Chemom. 1995, 9:509-520.
    • (1995) J. Chemom. , vol.9 , pp. 509-520
    • Krzanowski, W.J.1
  • 102
    • 21844512674 scopus 로고
    • Discriminant analysis with singular covariance matrices: methods and applications to spectroscopic data
    • Krzanowski W.J., Jonathan P., McCarthy W.V., Thomas M.R. Discriminant analysis with singular covariance matrices: methods and applications to spectroscopic data. J. R. Stat. Soc. Ser. C Appl. Stat. 1995, 44:101-115.
    • (1995) J. R. Stat. Soc. Ser. C Appl. Stat. , vol.44 , pp. 101-115
    • Krzanowski, W.J.1    Jonathan, P.2    McCarthy, W.V.3    Thomas, M.R.4
  • 103
    • 34249294419 scopus 로고    scopus 로고
    • A modification of canonical variates analysis to handle highly collinear multivariate data
    • Norgaard L., Bro R., Westad F., Engelsen S.B. A modification of canonical variates analysis to handle highly collinear multivariate data. J. Chemom. 2006, 20:425-435.
    • (2006) J. Chemom. , vol.20 , pp. 425-435
    • Norgaard, L.1    Bro, R.2    Westad, F.3    Engelsen, S.B.4
  • 105
    • 70149096300 scopus 로고    scopus 로고
    • A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis
    • Witten D.M., Tibshirani R., Hastie T. A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics 2009, 10:515-534.
    • (2009) Biostatistics , vol.10 , pp. 515-534
    • Witten, D.M.1    Tibshirani, R.2    Hastie, T.3
  • 106
    • 60349120338 scopus 로고    scopus 로고
    • Modified linear discriminant analysis approaches for classification of high-dimensional microarray data
    • Xu P., Brock G.N., Parrish R.S. Modified linear discriminant analysis approaches for classification of high-dimensional microarray data. Comput. Stat. Data Anal. 2009, 53:1674-1687.
    • (2009) Comput. Stat. Data Anal. , vol.53 , pp. 1674-1687
    • Xu, P.1    Brock, G.N.2    Parrish, R.S.3
  • 107
    • 84939138183 scopus 로고    scopus 로고
    • The influence of scaling metabolomics data on model classification accuracy
    • Gromski P.S., Xu Y., Hollywood K.A., Turner M.L., Goodacre R. The influence of scaling metabolomics data on model classification accuracy. Metabolomics 2014, 10.1007/s11306-014-0738-7.
    • (2014) Metabolomics
    • Gromski, P.S.1    Xu, Y.2    Hollywood, K.A.3    Turner, M.L.4    Goodacre, R.5
  • 108
    • 33748774619 scopus 로고    scopus 로고
    • Surface-enhanced Raman scattering for the rapid discrimination of bacteria
    • Jarvis R.M., Brooker A., Goodacre R. Surface-enhanced Raman scattering for the rapid discrimination of bacteria. Faraday Discuss. 2006, 132:281-292.
    • (2006) Faraday Discuss. , vol.132 , pp. 281-292
    • Jarvis, R.M.1    Brooker, A.2    Goodacre, R.3
  • 109
    • 77953598931 scopus 로고    scopus 로고
    • Rapid monitoring of recombinant antibody production by mammalian cell cultures using Fourier transform infrared spectroscopy and chemometrics
    • Sellick C.A., Hansen R., Jarvis R.M., Maqsood A.R., Stephens G.M., Dickson A.J., Goodacre R. Rapid monitoring of recombinant antibody production by mammalian cell cultures using Fourier transform infrared spectroscopy and chemometrics. Biotechnol. Bioeng. 2010, 106:432-442.
    • (2010) Biotechnol. Bioeng. , vol.106 , pp. 432-442
    • Sellick, C.A.1    Hansen, R.2    Jarvis, R.M.3    Maqsood, A.R.4    Stephens, G.M.5    Dickson, A.J.6    Goodacre, R.7
  • 110
    • 84873629621 scopus 로고    scopus 로고
    • High-throughput phenotyping of uropathogenic E. coli isolates with Fourier transform infrared spectroscopy
    • AlRabiah H., Correa E., Upton M., Goodacre R. High-throughput phenotyping of uropathogenic E. coli isolates with Fourier transform infrared spectroscopy. Analyst 2013, 138:1363-1369.
    • (2013) Analyst , vol.138 , pp. 1363-1369
    • AlRabiah, H.1    Correa, E.2    Upton, M.3    Goodacre, R.4
  • 111
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • Hsu C.W., Lin C.J. A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 2002, 13:415-425.
    • (2002) IEEE Trans. Neural Netw. , vol.13 , pp. 415-425
    • Hsu, C.W.1    Lin, C.J.2
  • 112
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • Cherkassky V., Ma Y.Q. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw. 2004, 17:113-126.
    • (2004) Neural Netw. , vol.17 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.Q.2
  • 113
    • 77958106713 scopus 로고    scopus 로고
    • Simultaneous feature selection and classification using kernel-penalized support vector machines
    • Maldonado S., Weber R., Basak J. Simultaneous feature selection and classification using kernel-penalized support vector machines. Inf. Sci. 2011, 181:115-128.
    • (2011) Inf. Sci. , vol.181 , pp. 115-128
    • Maldonado, S.1    Weber, R.2    Basak, J.3
  • 114
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I., Weston J., Barnhill S., Vapnik V. Gene selection for cancer classification using support vector machines. Mach. Learn. 2002, 46:389-422.
    • (2002) Mach. Learn. , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 115
    • 26644466101 scopus 로고    scopus 로고
    • Multiple SVM-RFE for gene selection in cancer classification with expression data
    • Duan K.B., Rajapakse J.C., Wang H.Y., Azuaje F. Multiple SVM-RFE for gene selection in cancer classification with expression data. IEEE Trans. Nanobiosci. 2005, 4:228-234.
    • (2005) IEEE Trans. Nanobiosci. , vol.4 , pp. 228-234
    • Duan, K.B.1    Rajapakse, J.C.2    Wang, H.Y.3    Azuaje, F.4
  • 116
    • 22144466197 scopus 로고    scopus 로고
    • A support vector machine approach to classify human cytochrome P450 3A4 inhibitors
    • Kriegl J.M., Arnhold T., Beck B., Fox T. A support vector machine approach to classify human cytochrome P450 3A4 inhibitors. J. Comput.-Aided Mol. Des. 2005, 19:189-201.
    • (2005) J. Comput.-Aided Mol. Des. , vol.19 , pp. 189-201
    • Kriegl, J.M.1    Arnhold, T.2    Beck, B.3    Fox, T.4
  • 117
    • 42649109407 scopus 로고    scopus 로고
    • Determination of effective wavelengths for discrimination of fruit vinegars using near infrared spectroscopy and multivariate analysis
    • Liu F., He Y., Wang L. Determination of effective wavelengths for discrimination of fruit vinegars using near infrared spectroscopy and multivariate analysis. Anal. Chim. Acta 2008, 615:10-17.
    • (2008) Anal. Chim. Acta , vol.615 , pp. 10-17
    • Liu, F.1    He, Y.2    Wang, L.3
  • 118
    • 77951572390 scopus 로고    scopus 로고
    • Investigation of support vector machines and Raman spectroscopy for lymph node diagnostics
    • Sattlecker M., Bessant C., Smith J., Stone N. Investigation of support vector machines and Raman spectroscopy for lymph node diagnostics. Analyst 2010, 135:895-901.
    • (2010) Analyst , vol.135 , pp. 895-901
    • Sattlecker, M.1    Bessant, C.2    Smith, J.3    Stone, N.4
  • 119
    • 64249114977 scopus 로고    scopus 로고
    • Gaussian mixture discriminant analysis for the single-cell differentiation of bacteria using micro-Raman spectroscopy
    • Schmid U., Roesch P., Krause M., Harz M., Popp J., Baumann K. Gaussian mixture discriminant analysis for the single-cell differentiation of bacteria using micro-Raman spectroscopy. Chemom. Intell. Lab. Syst. 2009, 96:159-171.
    • (2009) Chemom. Intell. Lab. Syst. , vol.96 , pp. 159-171
    • Schmid, U.1    Roesch, P.2    Krause, M.3    Harz, M.4    Popp, J.5    Baumann, K.6
  • 120
    • 54749109964 scopus 로고    scopus 로고
    • Analysis of metabolomic data using support vector machines
    • Mahadevan S., Shah S.L., Marrie T.J., Slupsky C.M. Analysis of metabolomic data using support vector machines. Anal. Chem. 2008, 80:7562-7570.
    • (2008) Anal. Chem. , vol.80 , pp. 7562-7570
    • Mahadevan, S.1    Shah, S.L.2    Marrie, T.J.3    Slupsky, C.M.4
  • 121
    • 77955644255 scopus 로고    scopus 로고
    • Visualization and recovery of the (bio) chemical interesting variables in data analysis with support vector machine classification
    • Krooshof P.W.T., Ustun B., Postma G.J., Buydens L.M.C. Visualization and recovery of the (bio) chemical interesting variables in data analysis with support vector machine classification. Anal. Chem. 2010, 82:7000-7007.
    • (2010) Anal. Chem. , vol.82 , pp. 7000-7007
    • Krooshof, P.W.T.1    Ustun, B.2    Postma, G.J.3    Buydens, L.M.C.4
  • 122
    • 82755177807 scopus 로고    scopus 로고
    • Diagnosis of lung cancer based on direct-infusion electrospray mass spectrometry of blood plasma metabolites
    • Lokhov P.G., Kharybin O.N., Archakov A.I. Diagnosis of lung cancer based on direct-infusion electrospray mass spectrometry of blood plasma metabolites. Int. J. Mass Spectrom. 2012, 309:200-205.
    • (2012) Int. J. Mass Spectrom. , vol.309 , pp. 200-205
    • Lokhov, P.G.1    Kharybin, O.N.2    Archakov, A.I.3
  • 123
    • 79957842729 scopus 로고    scopus 로고
    • Prediction of metabolic reactions based on atomic and molecular properties of small-molecule compounds
    • Mu F., Unkefer C.J., Unkefer P.J., Hlavacek W.S. Prediction of metabolic reactions based on atomic and molecular properties of small-molecule compounds. Bioinformatics 2011, 27:1537-1545.
    • (2011) Bioinformatics , vol.27 , pp. 1537-1545
    • Mu, F.1    Unkefer, C.J.2    Unkefer, P.J.3    Hlavacek, W.S.4
  • 124
    • 0002344794 scopus 로고
    • 1977 Rietz lecture. Bootstrap methods: another look at the jackknife
    • Efron B. 1977 Rietz lecture. Bootstrap methods: another look at the jackknife. Ann. Stat. 1979, 7:1-26.
    • (1979) Ann. Stat. , vol.7 , pp. 1-26
    • Efron, B.1
  • 125
    • 84945737762 scopus 로고
    • A leisurely look at the bootstrap the jackknife, and cross-validation
    • Efron B., Gong G. A leisurely look at the bootstrap the jackknife, and cross-validation. Am. Stat. 1983, 37:36-48.
    • (1983) Am. Stat. , vol.37 , pp. 36-48
    • Efron, B.1    Gong, G.2
  • 126
    • 84860701629 scopus 로고    scopus 로고
    • Analysis of a random forests model
    • Biau G. Analysis of a random forests model. J. Mach. Learn. Res. 2012, 13:1063-1095.
    • (2012) J. Mach. Learn. Res. , vol.13 , pp. 1063-1095
    • Biau, G.1
  • 127
    • 54249099241 scopus 로고    scopus 로고
    • Consistency of random forests and other averaging classifiers
    • Biau G., Devroye L., Lugosi G. Consistency of random forests and other averaging classifiers. J. Mach. Learn. Res. 2008, 9:2015-2033.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 2015-2033
    • Biau, G.1    Devroye, L.2    Lugosi, G.3
  • 128
    • 84861813244 scopus 로고    scopus 로고
    • Random forest Gini importance favours SNPs with large minor allele frequency: impact, sources and recommendations
    • Boulesteix A.-L., Bender A., Bermejo J.L., Strobl C. Random forest Gini importance favours SNPs with large minor allele frequency: impact, sources and recommendations. Brief. Bioinform. 2012, 13:292-304.
    • (2012) Brief. Bioinform. , vol.13 , pp. 292-304
    • Boulesteix, A.-L.1    Bender, A.2    Bermejo, J.L.3    Strobl, C.4
  • 129
    • 84891629894 scopus 로고    scopus 로고
    • A new variable importance measure for random forests with missing data
    • Hapfelmeier A., Hothorn T., Ulm K., Strobl C. A new variable importance measure for random forests with missing data. Stat. Comput. 2014, 24:21-34.
    • (2014) Stat. Comput. , vol.24 , pp. 21-34
    • Hapfelmeier, A.1    Hothorn, T.2    Ulm, K.3    Strobl, C.4
  • 130
    • 33645330972 scopus 로고    scopus 로고
    • Newer classification and regression tree techniques: Bagging and random forests for ecological prediction
    • Prasad A.M., Iverson L.R., Liaw A. Newer classification and regression tree techniques: Bagging and random forests for ecological prediction. Ecosystems 2006, 9:181-199.
    • (2006) Ecosystems , vol.9 , pp. 181-199
    • Prasad, A.M.1    Iverson, L.R.2    Liaw, A.3
  • 131
    • 16444381830 scopus 로고    scopus 로고
    • Tumor classification by tissue microarray profiling: random forest clustering applied to renal cell carcinoma
    • Shi T., Seligson D., Belldegrun A.S., Palotie A., Horvath S. Tumor classification by tissue microarray profiling: random forest clustering applied to renal cell carcinoma. Modern Pathol. 2005, 18:547-557.
    • (2005) Modern Pathol. , vol.18 , pp. 547-557
    • Shi, T.1    Seligson, D.2    Belldegrun, A.S.3    Palotie, A.4    Horvath, S.5
  • 133
    • 33847096395 scopus 로고    scopus 로고
    • Bias in random forest variable importance measures: illustrations, sources and a solution
    • Strobl C., Boulesteix A.-L., Zeileis A., Hothorn T. Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinformatics 2007, 8:25.
    • (2007) BMC Bioinformatics , vol.8 , pp. 25
    • Strobl, C.1    Boulesteix, A.-L.2    Zeileis, A.3    Hothorn, T.4
  • 134
    • 72449170109 scopus 로고    scopus 로고
    • An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests
    • Strobl C., Malley J., Tutz G. An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests. Psychol. Methods 2009, 14:323-348.
    • (2009) Psychol. Methods , vol.14 , pp. 323-348
    • Strobl, C.1    Malley, J.2    Tutz, G.3
  • 135
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • Ho T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20:832-844.
    • (1998) IEEE Trans. Pattern Anal. Mach. Intell. , vol.20 , pp. 832-844
    • Ho, T.K.1
  • 136
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomforest
    • Liaw A., Wiener M. Classification and regression by randomforest. R News 2002, 2:18-22.
    • (2002) R News , vol.2 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 137
    • 48549094895 scopus 로고    scopus 로고
    • A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification
    • Statnikov A., Wang L., Aliferis C.F. A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinformatics 2008, 9:319.
    • (2008) BMC Bioinformatics , vol.9 , pp. 319
    • Statnikov, A.1    Wang, L.2    Aliferis, C.F.3
  • 138
    • 68949140728 scopus 로고    scopus 로고
    • A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data
    • Menze B.H., Kelm B.M., Masuch R., Himmelreich U., Bachert P., Petrich W., Hamprecht F.A. A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data. BMC Bioinformatics 2009, 10:213.
    • (2009) BMC Bioinformatics , vol.10 , pp. 213
    • Menze, B.H.1    Kelm, B.M.2    Masuch, R.3    Himmelreich, U.4    Bachert, P.5    Petrich, W.6    Hamprecht, F.A.7
  • 140
    • 79952385040 scopus 로고    scopus 로고
    • Applying random forests to identify biomarker panels in serum 2D-DIGE data for the detection and staging of prostate cancer
    • Fan Y., Murphy T.B., Byrne J.C., Brennan L., Fitzpatrick J.M., Watson R.W.G. Applying random forests to identify biomarker panels in serum 2D-DIGE data for the detection and staging of prostate cancer. J. Proteome Res. 2011, 10:1361-1373.
    • (2011) J. Proteome Res. , vol.10 , pp. 1361-1373
    • Fan, Y.1    Murphy, T.B.2    Byrne, J.C.3    Brennan, L.4    Fitzpatrick, J.M.5    Watson, R.W.G.6
  • 141
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • Chapelle O., Vapnik V., Bousquet O., Mukherjee S. Choosing multiple parameters for support vector machines. Mach. Learn. 2002, 46:131-159.
    • (2002) Mach. Learn. , vol.46 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 143
    • 84861499898 scopus 로고    scopus 로고
    • Development of ecom(50) and retention index models for nontargeted metabolomics: identification of 1,3-dicyclohexylurea in human serum by HPLC/mass spectrometry
    • Hall L.M., Hall L.H., Kertesz T.M., Hill D.W., Sharp T.R., Oblak E.Z., Dong Y.W., Wishart D.S., Chen M.-H., Grant D.F. Development of ecom(50) and retention index models for nontargeted metabolomics: identification of 1,3-dicyclohexylurea in human serum by HPLC/mass spectrometry. J. Chem. Inf. Model. 2012, 52:1222-1237.
    • (2012) J. Chem. Inf. Model. , vol.52 , pp. 1222-1237
    • Hall, L.M.1    Hall, L.H.2    Kertesz, T.M.3    Hill, D.W.4    Sharp, T.R.5    Oblak, E.Z.6    Dong, Y.W.7    Wishart, D.S.8    Chen, M.-H.9    Grant, D.F.10
  • 145
    • 84877625730 scopus 로고    scopus 로고
    • Metabolomic analyses show that electron donor and acceptor ratios control anaerobic electron transfer pathways in Shewanella oneidensis
    • Wang H., Correa E., Dunn W.B., Winder C.L., Goodacre R., Lloyd J.R. Metabolomic analyses show that electron donor and acceptor ratios control anaerobic electron transfer pathways in Shewanella oneidensis. Metabolomics 2013, 9:642-656.
    • (2013) Metabolomics , vol.9 , pp. 642-656
    • Wang, H.1    Correa, E.2    Dunn, W.B.3    Winder, C.L.4    Goodacre, R.5    Lloyd, J.R.6
  • 146
    • 0026988817 scopus 로고
    • Genetic algorithms
    • Holland J.H. Genetic algorithms. SciAm 1992, 267:66-72.
    • (1992) SciAm , vol.267 , pp. 66-72
    • Holland, J.H.1
  • 147
    • 78951476312 scopus 로고    scopus 로고
    • A genetic algorithm-Bayesian network approach for the analysis of metabolomics and spectroscopic data: application to the rapid identification of Bacillus spores and classification of Bacillus species
    • Correa E., Goodacre R. A genetic algorithm-Bayesian network approach for the analysis of metabolomics and spectroscopic data: application to the rapid identification of Bacillus spores and classification of Bacillus species. BMC Bioinformatics 2011, 12:33.
    • (2011) BMC Bioinformatics , vol.12 , pp. 33
    • Correa, E.1    Goodacre, R.2
  • 149
    • 33644963733 scopus 로고    scopus 로고
    • Novel biomarkers for pre-eclampsia detected using metabolomics and machine learning
    • Kenny L.C., Dunn W.B., Ellis D.I., Myers J., Baker P.N., Kell D.B. Novel biomarkers for pre-eclampsia detected using metabolomics and machine learning. Metabolomics 2005, 1:227-234.
    • (2005) Metabolomics , vol.1 , pp. 227-234
    • Kenny, L.C.1    Dunn, W.B.2    Ellis, D.I.3    Myers, J.4    Baker, P.N.5    Kell, D.B.6
  • 151
    • 84875451629 scopus 로고    scopus 로고
    • Portable, quantitative detection of bacillus bacterial spores using surface-enhanced raman scattering
    • Cowcher D.P., Xu Y., Goodacre R. Portable, quantitative detection of bacillus bacterial spores using surface-enhanced raman scattering. Anal. Chem. 2013, 85:3297-3302.
    • (2013) Anal. Chem. , vol.85 , pp. 3297-3302
    • Cowcher, D.P.1    Xu, Y.2    Goodacre, R.3
  • 152
    • 84860373798 scopus 로고    scopus 로고
    • Multiblock principal component analysis: an efficient tool for analyzing metabolomics data which contain two influential factors
    • Xu Y., Goodacre R. Multiblock principal component analysis: an efficient tool for analyzing metabolomics data which contain two influential factors. Metabolomics 2012, 8:S37-S51.
    • (2012) Metabolomics , vol.8 , pp. S37-S51
    • Xu, Y.1    Goodacre, R.2
  • 153
    • 0000736392 scopus 로고    scopus 로고
    • Analysis of multiblock and hierarchical PCA and PLS models
    • Westerhuis J.A., Kourti T., MacGregor J.F. Analysis of multiblock and hierarchical PCA and PLS models. J. Chemom. 1998, 12:301-321.
    • (1998) J. Chemom. , vol.12 , pp. 301-321
    • Westerhuis, J.A.1    Kourti, T.2    MacGregor, J.F.3
  • 154
    • 84878268081 scopus 로고    scopus 로고
    • Integrating multiple analytical platforms and chemometrics for comprehensive metabolic profiling: application to meat spoilage detection
    • Xu Y., Correa E., Goodacre R. Integrating multiple analytical platforms and chemometrics for comprehensive metabolic profiling: application to meat spoilage detection. Anal. Bioanal. Chem. 2013, 405:5063-5074.
    • (2013) Anal. Bioanal. Chem. , vol.405 , pp. 5063-5074
    • Xu, Y.1    Correa, E.2    Goodacre, R.3
  • 157
    • 34249335649 scopus 로고    scopus 로고
    • OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification
    • Bylesjo M., Rantalainen M., Cloarec O., Nicholson J.K., Holmes E., Trygg J. OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification. J. Chemom. 2006, 20:341-351.
    • (2006) J. Chemom. , vol.20 , pp. 341-351
    • Bylesjo, M.1    Rantalainen, M.2    Cloarec, O.3    Nicholson, J.K.4    Holmes, E.5    Trygg, J.6
  • 158
    • 0030813663 scopus 로고    scopus 로고
    • PARAFAC. Tutorial and applications
    • Bro R. PARAFAC. Tutorial and applications. Chemom. Intell. Lab. Syst. 1997, 38:149-171.
    • (1997) Chemom. Intell. Lab. Syst. , vol.38 , pp. 149-171
    • Bro, R.1
  • 162
    • 84925486858 scopus 로고    scopus 로고
    • A comparison of different chemometrics approaches for the robust classification of electronic nose data
    • Gromski P.S., Correa E., Vaughan A.A., Wedge D.C., Turner M.L., Goodacre R. A comparison of different chemometrics approaches for the robust classification of electronic nose data. Anal. Bioanal. Chem. 2014, 406:7581-7590.
    • (2014) Anal. Bioanal. Chem. , vol.406 , pp. 7581-7590
    • Gromski, P.S.1    Correa, E.2    Vaughan, A.A.3    Wedge, D.C.4    Turner, M.L.5    Goodacre, R.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.