메뉴 건너뛰기




Volumn 406, Issue 29, 2014, Pages 7581-7590

A comparison of different chemometrics approaches for the robust classification of electronic nose data

Author keywords

Bootstrapping; Cross validation; Linear discriminant analysis; Partial least squares discriminant analysis; Random forests; Support vector machines

Indexed keywords

CHEMICAL DETECTION; DECISION TREES; DIAGNOSIS; DISCRIMINANT ANALYSIS; LEAST SQUARES APPROXIMATIONS; PATTERN RECOGNITION;

EID: 84925486858     PISSN: 16182642     EISSN: 16182650     Source Type: Journal    
DOI: 10.1007/s00216-014-8216-7     Document Type: Article
Times cited : (72)

References (46)
  • 2
    • 40449096268 scopus 로고    scopus 로고
    • Electronic nose: Current status and future trends
    • Rock F, Barsan N, Weimar U (2008) Electronic nose: current status and future trends. Chem Rev 108:705-725
    • (2008) Chem Rev , vol.108 , pp. 705-725
    • Rock, F.1    Barsan, N.2    Weimar, U.3
  • 3
    • 33845520883 scopus 로고    scopus 로고
    • Data analysis for electronic nose systems
    • 1:CAS:528:DC%2BD28XhtlaitLvO
    • Scott SM, James D, Ali Z (2006) Data analysis for electronic nose systems. Microchim Acta 156:183-207
    • (2006) Microchim Acta , vol.156 , pp. 183-207
    • Scott, S.M.1    James, D.2    Ali, Z.3
  • 5
    • 0034228462 scopus 로고    scopus 로고
    • Computational methods for the analysis of chemical sensor array data from volatile analytes
    • 1:CAS:528:DC%2BD3cXjslGlur4%3D
    • Jurs PC, Bakken GA, McClelland HE (2000) Computational methods for the analysis of chemical sensor array data from volatile analytes. Chem Rev 100:2649-2678
    • (2000) Chem Rev , vol.100 , pp. 2649-2678
    • Jurs, P.C.1    Bakken, G.A.2    McClelland, H.E.3
  • 8
    • 0035965476 scopus 로고    scopus 로고
    • PLS-regression: A basic tool of chemometrics
    • 1:CAS:528:DC%2BD3MXotF2mtLw%3D
    • Wold S, Sjostrom M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemometr Intell Lab 58:109-130
    • (2001) Chemometr Intell Lab , vol.58 , pp. 109-130
    • Wold, S.1    Sjostrom, M.2    Eriksson, L.3
  • 9
    • 74549124768 scopus 로고    scopus 로고
    • Classification of Tempranillo wines according to geographic origin: Combination of mass spectrometry based electronic nose and chemometrics
    • 1:CAS:528:DC%2BC3cXhtVensb8%3D
    • Cynkar W, Dambergs R, Smith P, Cozzolino D (2010) Classification of Tempranillo wines according to geographic origin: combination of mass spectrometry based electronic nose and chemometrics. Anal Chim Acta 660:227-231
    • (2010) Anal Chim Acta , vol.660 , pp. 227-231
    • Cynkar, W.1    Dambergs, R.2    Smith, P.3    Cozzolino, D.4
  • 13
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L (2001) Random forests. Mach Learn 45:5-32
    • (2001) Mach Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 14
    • 41449085604 scopus 로고    scopus 로고
    • Random forests and nearest shrunken centroids for the classification of sensor array data
    • 1:CAS:528:DC%2BD1cXktlOiur4%3D
    • Pardo M, Sberveglieri G (2008) Random forests and nearest shrunken centroids for the classification of sensor array data. Sens Actuators B-Chem 131:93-99
    • (2008) Sens Actuators B-Chem , vol.131 , pp. 93-99
    • Pardo, M.1    Sberveglieri, G.2
  • 15
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • 1:STN:280:DC%2BD1c%2FpsFSqtA%3D%3D
    • Vapnik VN (1999) An overview of statistical learning theory. IEEE Trans Neural Netw 10:988-999
    • (1999) IEEE Trans Neural Netw , vol.10 , pp. 988-999
    • Vapnik, V.N.1
  • 16
    • 18544377322 scopus 로고    scopus 로고
    • Classification of electronic nose data with support vector machines
    • 1:CAS:528:DC%2BD2MXktlartL0%3D
    • Pardo M, Sberveglieri G (2005) Classification of electronic nose data with support vector machines. Sensors Actuators B Chem 107:730-737
    • (2005) Sensors Actuators B Chem , vol.107 , pp. 730-737
    • Pardo, M.1    Sberveglieri, G.2
  • 19
    • 77951572390 scopus 로고    scopus 로고
    • Investigation of support vector machines and Raman spectroscopy for lymph node diagnostics
    • 1:CAS:528:DC%2BC3cXlt1Chs78%3D
    • Sattlecker M, Bessant C, Smith J, Stone N (2010) Investigation of support vector machines and Raman spectroscopy for lymph node diagnostics. Analyst 135:895-901
    • (2010) Analyst , vol.135 , pp. 895-901
    • Sattlecker, M.1    Bessant, C.2    Smith, J.3    Stone, N.4
  • 20
    • 0037207624 scopus 로고    scopus 로고
    • Support vector machines for olfactory signals recognition
    • 1:CAS:528:DC%2BD38XovFemtr0%3D
    • Distante C, Ancona N, Siciliano P (2003) Support vector machines for olfactory signals recognition. Sensors Actuators B Chem 88:30-39
    • (2003) Sensors Actuators B Chem , vol.88 , pp. 30-39
    • Distante, C.1    Ancona, N.2    Siciliano, P.3
  • 22
    • 0000384929 scopus 로고    scopus 로고
    • Genetic programming: A novel method for the quantitative analysis of pyrolysis mass spectral data
    • 1:CAS:528:DyaK2sXmt12msrk%3D
    • Gilbert RJ, Goodacre R, Woodward AM, Kell DB (1997) Genetic programming: a novel method for the quantitative analysis of pyrolysis mass spectral data. Anal Chem 69:4381-4389
    • (1997) Anal Chem , vol.69 , pp. 4381-4389
    • Gilbert, R.J.1    Goodacre, R.2    Woodward, A.M.3    Kell, D.B.4
  • 24
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2:121-167
    • (1998) Data Min Knowl Discov , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 26
    • 0002344794 scopus 로고
    • 1977 Rietz lecture-bootstrap methods: Another look at the jackknife
    • Efron B (1979) 1977 Rietz lecture-bootstrap methods: another look at the jackknife. Ann Stat 7:1-26
    • (1979) Ann Stat , vol.7 , pp. 1-26
    • Efron, B.1
  • 29
    • 33751417111 scopus 로고    scopus 로고
    • Consequences of sample size, variable selection, and model validation and optimisation, for predicting classification ability from analytical data
    • 1:CAS:528:DC%2BD28Xht1yktrrO
    • Brereton RG (2006) Consequences of sample size, variable selection, and model validation and optimisation, for predicting classification ability from analytical data. Trac-Trend Anal Chem 25:1103-1111
    • (2006) Trac-Trend Anal Chem , vol.25 , pp. 1103-1111
    • Brereton, R.G.1
  • 30
    • 84897566379 scopus 로고    scopus 로고
    • Partial least squares discriminant analysis: Taking the magic away
    • 1:CAS:528:DC%2BC2cXksVSlt7c%3D
    • Brereton RG, Lloyd GR (2014) Partial least squares discriminant analysis: taking the magic away. J Chemometrics 28:213-225
    • (2014) J Chemometrics , vol.28 , pp. 213-225
    • Brereton, R.G.1    Lloyd, G.R.2
  • 31
    • 57649157675 scopus 로고    scopus 로고
    • Comparison of performance of five common classifiers represented as boundary methods: Euclidean distance to centroids, linear discriminant analysis, quadratic discriminant analysis, learning vector quantization and support vector machines, as dependent on data structure
    • 1:CAS:528:DC%2BD1cXhsFagur7L
    • Dixon SJ, Brereton RG (2009) Comparison of performance of five common classifiers represented as boundary methods: Euclidean distance to centroids, linear discriminant analysis, quadratic discriminant analysis, learning vector quantization and support vector machines, as dependent on data structure. Chemometr Intell Lab 95:1-17
    • (2009) Chemometr Intell Lab , vol.95 , pp. 1-17
    • Dixon, S.J.1    Brereton, R.G.2
  • 32
    • 0031536511 scopus 로고    scopus 로고
    • Improvements on cross-validation: The 632 + bootstrap method
    • Efron B, Tibshirani R (1997) Improvements on cross-validation: the 632 + bootstrap method. JASA 92:548-560
    • (1997) JASA , vol.92 , pp. 548-560
    • Efron, B.1    Tibshirani, R.2
  • 34
    • 33845462550 scopus 로고    scopus 로고
    • Support vector machines: A recent method for classification in chemometrics
    • 1:CAS:528:DC%2BD28XhtlGqs7vK
    • Xu Y, Zomer S, Brereton RG (2006) Support vector machines: a recent method for classification in chemometrics. Crit Rev Anal Chem 36:177-188
    • (2006) Crit Rev Anal Chem , vol.36 , pp. 177-188
    • Xu, Y.1    Zomer, S.2    Brereton, R.G.3
  • 38
    • 0031781727 scopus 로고    scopus 로고
    • Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks
    • 1:CAS:528:DyaK1cXjsVait7c%3D
    • Goodacre R, Timmins EM, Burton R, Kaderbhai N, Woodward AM, Kell DB, Rooney PJ (1998) Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks. Microbiology 144:1157-1170
    • (1998) Microbiology , vol.144 , pp. 1157-1170
    • Goodacre, R.1    Timmins, E.M.2    Burton, R.3    Kaderbhai, N.4    Woodward, A.M.5    Kell, D.B.6    Rooney, P.J.7
  • 41
    • 56249113343 scopus 로고    scopus 로고
    • Building predictive models in R using the caret package
    • Kuhn M (2008) Building predictive models in R using the caret package. J Stat Softw 28:1-26
    • (2008) J Stat Softw , vol.28 , pp. 1-26
    • Kuhn, M.1
  • 42
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomforest
    • Liaw A, Wiener M (2002) Classification and regression by randomforest. R News 2:18-22
    • (2002) R News , vol.2 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 44
    • 84901018651 scopus 로고    scopus 로고
    • A comparative investigation of modern feature selection and classification approaches for the analysis of mass spectrometry data
    • 1:CAS:528:DC%2BC2cXmtFSku7k%3D
    • Gromski PS, Xu Y, Correa E, Ellis DI, Turner ML, Goodacre R (2014) A comparative investigation of modern feature selection and classification approaches for the analysis of mass spectrometry data. Anal Chim Acta 829:1-8
    • (2014) Anal Chim Acta , vol.829 , pp. 1-8
    • Gromski, P.S.1    Xu, Y.2    Correa, E.3    Ellis, D.I.4    Turner, M.L.5    Goodacre, R.6
  • 45
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46:389-422
    • (2002) Mach Learn , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 46
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • Chapelle O, Vapnik V, Bousquet O, Mukherjee S (2002) Choosing multiple parameters for support vector machines. Mach Learn 46:131-159
    • (2002) Mach Learn , vol.46 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.