메뉴 건너뛰기




Volumn 31, Issue 14, 2010, Pages 2225-2236

Variable selection using random forests

Author keywords

Classification; High dimensional data; Random forests; Regression; Variable importance; Variable selection

Indexed keywords

CLASSIFICATION; HIGH DIMENSIONAL DATA; RANDOM FORESTS; REGRESSION; VARIABLE IMPORTANCE; VARIABLE SELECTION;

EID: 77957922514     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2010.03.014     Document Type: Article
Times cited : (1932)

References (38)
  • 1
    • 0034598746 scopus 로고    scopus 로고
    • Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling
    • A.A. Alizadeh Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling Nature 403 2000 503 511
    • (2000) Nature , vol.403 , pp. 503-511
    • Alizadeh, A.A.1
  • 2
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • U. Alon, N. Barkai, D.A. Notterman, K. Gish, S. Ybarra, D. Mack, and A.J. Levine Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays Proc. Natl. Acad. Sci. USA 96 12 1999 6745 6750
    • (1999) Proc. Natl. Acad. Sci. USA , vol.96 , Issue.12 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.A.3    Gish, K.4    Ybarra, S.5    MacK, D.6    Levine, A.J.7
  • 3
    • 35748978234 scopus 로고    scopus 로고
    • Empirical characterization of random forest variable importance measures
    • K.J. Archer, and R.V. Kimes Empirical characterization of random forest variable importance measures Comput. Statist. Data Anal. 52 2008 2249 2260
    • (2008) Comput. Statist. Data Anal. , vol.52 , pp. 2249-2260
    • Archer, K.J.1    Kimes, R.V.2
  • 4
    • 77957928361 scopus 로고    scopus 로고
    • Sélection de variables pour la classification binaire en grande dimension: Comparaisons et application aux données de biopuces
    • A. Ben Ishak, and B. Ghattas Sélection de variables pour la classification binaire en grande dimension: comparaisons et application aux données de biopuces J. de la SFdS 149 3 2008 43 66
    • (2008) J. de la SFdS , vol.149 , Issue.3 , pp. 43-66
    • Ben Ishak, A.1    Ghattas, B.2
  • 5
    • 54249099241 scopus 로고    scopus 로고
    • Consistency of random forests and other averaging classifiers
    • G. Biau, L. Devroye, and G. Lugosi Consistency of random forests and other averaging classifiers J. Machine Learn. Res. 9 2008 2039 2057
    • (2008) J. Machine Learn. Res. , vol.9 , pp. 2039-2057
    • Biau, G.1    Devroye, L.2    Lugosi, G.3
  • 6
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman Bagging predictors Machine Learn. 26 2 1996 123 140
    • (1996) Machine Learn. , vol.26 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 7
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • L. Breiman Random Forests Machine Learn. 45 2001 5 32
    • (2001) Machine Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 8
    • 33745182398 scopus 로고    scopus 로고
    • Consistency for a simple model of random forests
    • Berkeley
    • Breiman, L., 2004. Consistency for a simple model of random forests. Technical Report 670, Berkeley.
    • (2004) Technical Report , pp. 670
    • Breiman, L.1
  • 9
    • 0041382385 scopus 로고    scopus 로고
    • Berkeley. Available from:
    • Breiman, L., Cutler, A., 2005. Random forests, Berkeley. Available from: http://www.stat.berkeley.edu/users/breiman/RandomForests/.
    • (2005) Random Forests
    • Breiman, L.1    Cutler, A.2
  • 11
    • 0043289776 scopus 로고    scopus 로고
    • Analyzing bagging
    • P. Bühlmann, and B. Yu Analyzing bagging The Ann. Statist. 30 4 2002 927 961
    • (2002) The Ann. Statist. , vol.30 , Issue.4 , pp. 927-961
    • Bühlmann, P.1    Yu, B.2
  • 12
    • 24944568859 scopus 로고    scopus 로고
    • Partial and recombined estimators for nonlinear additive models
    • N. Cheze, J.M. Poggi, and B. Portier Partial and recombined estimators for nonlinear additive models Statist. Inference Stoch. Process. 6 2 2003 155 197
    • (2003) Statist. Inference Stoch. Process. , vol.6 , Issue.2 , pp. 155-197
    • Cheze, N.1    Poggi, J.M.2    Portier, B.3
  • 13
    • 33646403804 scopus 로고    scopus 로고
    • Pert - Perfect random tree ensembles
    • A. Cutler, and G. Zhao Pert - perfect random tree ensembles Comput. Sci. Statist. 33 2001 490 497
    • (2001) Comput. Sci. Statist. , vol.33 , pp. 490-497
    • Cutler, A.1    Zhao, G.2
  • 14
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • R. Díaz-Uriarte, and S. Alvarez de Andrés Gene selection and classification of microarray data using random forest BMC Bioinf. 7 2006 3
    • (2006) BMC Bioinf. , vol.7 , pp. 3
    • Díaz-Uriarte, R.1    Alvarez De Andrés, S.2
  • 15
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization
    • T. Dietterich An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization Machine Lear. 40 1999 139 157
    • (1999) Machine Lear. , vol.40 , pp. 139-157
    • Dietterich, T.1
  • 16
    • 80053403826 scopus 로고    scopus 로고
    • Ensemble methods in machine learning
    • T. Dietterich Ensemble methods in machine learning Lecture Notes Comput. Sci. 1857 2000 1 15
    • (2000) Lecture Notes Comput. Sci. , vol.1857 , pp. 1-15
    • Dietterich, T.1
  • 18
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • J. Fan, and R. Li Variable selection via nonconcave penalized likelihood and its oracle properties J. Amer. Statist. Assoc. 96 2001 1348 1359
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 1348-1359
    • Fan, J.1    Li, R.2
  • 19
    • 53849086824 scopus 로고    scopus 로고
    • Sure independence screening for ultra-high dimensional feature space
    • J. Fan, and J. Lv Sure independence screening for ultra-high dimensional feature space J. Roy. Statist. Soc. Ser. B. 70 2008 849 911
    • (2008) J. Roy. Statist. Soc. Ser. B. , vol.70 , pp. 849-911
    • Fan, J.1    Lv, J.2
  • 20
    • 70350623143 scopus 로고    scopus 로고
    • Random Forests: Some methodological insights
    • RR-6729. Available from:
    • Genuer, R., Poggi, J.-M., Tuleau, C., 2008. Random Forests: Some methodological insights. Research report INRIA Saclay, RR-6729. Available from: http://hal.inria.fr/inria-00340725/fr/.
    • (2008) Research Report INRIA Saclay
    • Genuer, R.1    Poggi, J.-M.2    Tuleau, C.3
  • 21
    • 77957892936 scopus 로고    scopus 로고
    • Random forests based feature selection for decoding fMRI data
    • August 22-27, Paris, France. Paper 267
    • Genuer, R., Michel, V., Eger, E., Thirion, B., 2010. Random forests based feature selection for decoding fMRI data. In: Proceedings Compstat 2010, August 22-27, Paris, France. Paper 267, pp. 1-8.
    • (2010) Proceedings Compstat 2010 , pp. 1-8
    • Genuer, R.1    Michel, V.2    Eger, E.3    Thirion, B.4
  • 23
    • 34248397223 scopus 로고    scopus 로고
    • Estimators of relative importance in linear regression based on variance decomposition
    • U. Grömping Estimators of relative importance in linear regression based on variance decomposition The Am. Statistician 61 2007 139 147
    • (2007) The Am. Statistician , vol.61 , pp. 139-147
    • Grömping, U.1
  • 24
    • 70450064693 scopus 로고    scopus 로고
    • Variable importance assessment in regression: Linear regression versus random forest
    • U. Grömping Variable importance assessment in regression: Linear regression versus random forest The Am. Statistician 63 4 2009 308 319
    • (2009) The Am. Statistician , vol.63 , Issue.4 , pp. 308-319
    • Grömping, U.1
  • 25
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon, and A. Elisseff An introduction to variable and feature selection J. Machine Learn. Res. 3 2003 1157 1182
    • (2003) J. Machine Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseff, A.2
  • 26
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill, and V.N. Vapnik Gene selection for cancer classification using support vector machines Machine Learn. 46 1-3 2002 389 422
    • (2002) Machine Learn. , vol.46 , Issue.13 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.N.4
  • 29
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi, and G.H. John Wrappers for feature subset selection Artif. Intell. 97 1-2 1997 273 324
    • (1997) Artif. Intell. , vol.97 , Issue.12 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 30
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by random forest
    • A. Liaw, and M. Wiener Classification and regression by random forest R News 2 3 2002 18 22
    • (2002) R News , vol.2 , Issue.3 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 31
    • 34547849507 scopus 로고    scopus 로고
    • An L1 regularization-path algorithm for generalized linear models
    • M.Y. Park, and T. Hastie An L1 regularization-path algorithm for generalized linear models J. Roy. Statist. Soc. Ser. B. 69 2007 659 677
    • (2007) J. Roy. Statist. Soc. Ser. B. , vol.69 , pp. 659-677
    • Park, M.Y.1    Hastie, T.2
  • 33
    • 84890447445 scopus 로고    scopus 로고
    • Variable selection using SVM-based criteria
    • A. Rakotomamonjy Variable selection using SVM-based criteria J. Machine Learn. Res. 3 2003 1357 1370
    • (2003) J. Machine Learn. Res. , vol.3 , pp. 1357-1370
    • Rakotomamonjy, A.1
  • 35
    • 0000760143 scopus 로고
    • Sensitivity analysis for nonlinear mathematical models
    • I.M. Sobol' Sensitivity analysis for nonlinear mathematical models Math. Model. Comput. Exp. 1 4 1993 407 414
    • (1993) Math. Model. Comput. Exp. , vol.1 , Issue.4 , pp. 407-414
    • Sobol, I.M.1
  • 36
    • 33847096395 scopus 로고    scopus 로고
    • Bias in random forest variable importance measures: Illustrations, sources and a solution
    • C. Strobl, A.-L. Boulesteix, A. Zeileis, and T. Hothorn Bias in random forest variable importance measures: Illustrations, sources and a solution BMC Bioinf. 8 2007 25
    • (2007) BMC Bioinf. , vol.8 , pp. 25
    • Strobl, C.1    Boulesteix, A.-L.2    Zeileis, A.3    Hothorn, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.