-
2
-
-
0031673833
-
History of some early developments in ion-implantation technology leading to silicon transistor manufacturing
-
Fair, R. B. History of some early developments in ion-implantation technology leading to silicon transistor manufacturing. Proc. IEEE 86, 111-137 (1998).
-
(1998)
Proc. IEEE
, vol.86
, pp. 111-137
-
-
Fair, R.B.1
-
3
-
-
78049321984
-
Electrical nanogap devices for biosensing
-
Chen, X. et al. Electrical nanogap devices for biosensing. Mater. Today 13, 28-41 (2010).
-
(2010)
Mater. Today
, vol.13
, pp. 28-41
-
-
Chen, X.1
-
4
-
-
70350584983
-
Nanogap biosensors for electrical and label-free detection of biomolecular interactions
-
Kyu Kim, S. et al. Nanogap biosensors for electrical and label-free detection of biomolecular interactions. Nanotechnology 20, 455502 (2009).
-
(2009)
Nanotechnology
, vol.20
, pp. 455502
-
-
Kyu Kim, S.1
-
5
-
-
69349094480
-
Mass-produced nanogap sensor arrays for ultrasensitive detection of DNA
-
Roy, S., Chen, X., Li, M., Peng, Y. & Anariba, F. Mass-produced nanogap sensor arrays for ultrasensitive detection of DNA. J. Am. Chem. Soc. 131, 12211-12217 (2009).
-
(2009)
J. Am. Chem. Soc
, vol.131
, pp. 12211-12217
-
-
Roy, S.1
Chen, X.2
Li, M.3
Peng, Y.4
Anariba, F.5
-
6
-
-
72549094483
-
Programming the detection limits of biosensors through controlled nanostructuring
-
Soleymani, L., Fang, Z., Sargent, E. H. & Kelley, S. O. Programming the detection limits of biosensors through controlled nanostructuring. Nat. Nanotechnol. 4, 844-848 (2009).
-
(2009)
Nat. Nanotechnol
, vol.4
, pp. 844-848
-
-
Soleymani, L.1
Fang, Z.2
Sargent, E.H.3
Kelley, S.O.4
-
7
-
-
84893681881
-
Free-standing kinked nanowire transistor probes for targeted intracellular recording in three dimensions
-
Qing, Q. et al. Free-standing kinked nanowire transistor probes for targeted intracellular recording in three dimensions. Nat. Nanotechnol. 9, 142-147 (2014).
-
(2014)
Nat. Nanotechnol
, vol.9
, pp. 142-147
-
-
Qing, Q.1
-
8
-
-
17944366258
-
Nanostructures in biodiagnostics
-
Rosi, N. L. & Mirkin, C. a. Nanostructures in biodiagnostics. Chem. Rev. 105, 1547-1562 (2005).
-
(2005)
Chem. Rev
, vol.105
, pp. 1547-1562
-
-
Rosi, N.L.1
Mirkin, C.A.2
-
9
-
-
84880679610
-
Molecule-hugging graphene nanopores
-
Garaj, S., Liu, S., Golovchenko, J. A. & Branton, D. Molecule-hugging graphene nanopores. Proc. Natl Acad. Sci. USA 110, 12192 (2013).
-
(2013)
Proc. Natl Acad. Sci. USA
, vol.110
, pp. 12192
-
-
Garaj, S.1
Liu, S.2
Golovchenko, J.A.3
Branton, D.4
-
10
-
-
17644387736
-
Nanostructured materials for advanced energy conversion and storage devices
-
Aricò, A. S. et al. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366-377 (2005).
-
(2005)
Nat. Mater
, vol.4
, pp. 366-377
-
-
Aricò, A.S.1
-
11
-
-
78650890768
-
A highly durable platinum nanocatalyst for proton exchange membrane fuel cells: Multiarmed starlike nanowire single crystal
-
Sun, S. et al. A highly durable platinum nanocatalyst for proton exchange membrane fuel cells: multiarmed starlike nanowire single crystal. Angew. Chem. Int. Ed. Engl. 50, 422-426 (2011).
-
(2011)
Angew. Chem. Int. Ed. Engl
, vol.50
, pp. 422-426
-
-
Sun, S.1
-
12
-
-
84901502703
-
Sub-15-nm patterning of asymmetric metal electrodes and devices by adhesion lithography
-
Beesley, D. J. et al. Sub-15-nm patterning of asymmetric metal electrodes and devices by adhesion lithography. Nat. Commun. 5, 3933 (2014).
-
(2014)
Nat. Commun
, vol.5
, pp. 3933
-
-
Beesley, D.J.1
-
13
-
-
82055161674
-
Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy
-
Linic, S., Christopher, P. & Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911-921 (2011).
-
(2011)
Nat. Mater
, vol.10
, pp. 911-921
-
-
Linic, S.1
Christopher, P.2
Ingram, D.B.3
-
14
-
-
84875171955
-
Self-assembled, nanowire network electrodes for depleted bulk heterojunction solar cells
-
Lan, X. et al. Self-assembled, nanowire network electrodes for depleted bulk heterojunction solar cells. Adv. Mater. 25, 1769-1773 (2013).
-
(2013)
Adv. Mater
, vol.25
, pp. 1769-1773
-
-
Lan, X.1
-
15
-
-
77955218067
-
Nanostructured materials for photon detection
-
Konstantatos, G. & Sargent, E. H. Nanostructured materials for photon detection. Nat. Nanotechnol. 5, 391-400 (2010).
-
(2010)
Nat. Nanotechnol
, vol.5
, pp. 391-400
-
-
Konstantatos, G.1
Sargent, E.H.2
-
16
-
-
0042532330
-
Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates
-
Kim, S. O. et al. Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates. Nature 424, 411-414 (2003).
-
(2003)
Nature
, vol.424
, pp. 411-414
-
-
Kim, S.O.1
-
17
-
-
84892597058
-
Block copolymer lithography
-
Bates, C. M., Maher, M. J., Janes, D. W., Ellison, C. J. & Willson, C. G. Block copolymer lithography. Macromolecules 47, 2-12 (2014).
-
(2014)
Macromolecules
, vol.47
, pp. 2-12
-
-
Bates, C.M.1
Maher, M.J.2
Janes, D.W.3
Ellison, C.J.4
Willson, C.G.5
-
18
-
-
49649099742
-
Density multiplication and improved copolymer assembly
-
Ruiz, R. et al. Density multiplication and improved copolymer assembly. Science 321, 936-939 (2008).
-
(2008)
Science
, vol.321
, pp. 936-939
-
-
Ruiz, R.1
-
19
-
-
79251485673
-
Controlling the composition of plasmonic nanoparticle arrays via galvanic displacement reactions on block copolymer nanotemplates
-
Lee, J. Y. et al. Controlling the composition of plasmonic nanoparticle arrays via galvanic displacement reactions on block copolymer nanotemplates. Chem. Commun. (Camb). 47, 1782-1784 (2011).
-
(2011)
Chem. Commun. (Camb).
, vol.47
, pp. 1782-1784
-
-
Lee, J.Y.1
-
20
-
-
70349528265
-
Heteroepitaxial growth of gold nanostructures on silicon by galvanic displacement
-
Sayed, S. Y. et al. Heteroepitaxial growth of gold nanostructures on silicon by galvanic displacement. ACS Nano 3, 2809-2817 (2009).
-
(2009)
ACS Nano
, vol.3
, pp. 2809-2817
-
-
Sayed, S.Y.1
-
21
-
-
36049045481
-
3D micro- and nanostructures via interference lithography
-
Jang, J.-H. et al. 3D micro- and nanostructures via interference lithography. Adv. Funct. Mater. 17, 3027-3041 (2007).
-
(2007)
Adv. Funct. Mater
, vol.17
, pp. 3027-3041
-
-
Jang, J.-H.1
-
22
-
-
80053199536
-
Optical interference lithography using azobenzene-functionalized polymers for micro- and nanopatterning of silicon
-
Kravchenko, A., Shevchenko, A., Ovchinnikov, V., Priimagi, A. & Kaivola, M. Optical interference lithography using azobenzene-functionalized polymers for micro- and nanopatterning of silicon. Adv. Mater. 23, 4174-4177 (2011).
-
(2011)
Adv. Mater
, vol.23
, pp. 4174-4177
-
-
Kravchenko, A.1
Shevchenko, A.2
Ovchinnikov, V.3
Priimagi, A.4
Kaivola, M.5
-
23
-
-
84862281754
-
Toward optimized light utilization in nanowire arrays using scalable nanosphere lithography and selected area growth
-
Madaria, A. R. et al. Toward optimized light utilization in nanowire arrays using scalable nanosphere lithography and selected area growth. Nano Lett. 12, 2839-2845 (2012).
-
(2012)
Nano Lett
, vol.12
, pp. 2839-2845
-
-
Madaria, A.R.1
-
24
-
-
34247346115
-
Ordered silicon nanowire arrays via nanosphere lithography and metal-induced etching
-
Peng, K. et al. Ordered silicon nanowire arrays via nanosphere lithography and metal-induced etching. Appl. Phys. Lett. 90, 163123 (2007).
-
(2007)
Appl. Phys. Lett
, vol.90
, pp. 163123
-
-
Peng, K.1
-
25
-
-
75749108206
-
Nanogap electrodes
-
Li, T., Hu, W. & Zhu, D. Nanogap electrodes. Adv. Mater. 22, 286-300 (2010).
-
(2010)
Adv. Mater
, vol.22
, pp. 286-300
-
-
Li, T.1
Hu, W.2
Zhu, D.3
-
26
-
-
4444297158
-
DPN-generated nanostructures made of gold, silver, and palladium
-
Zhang, H. & Mirkin, C. A. DPN-generated nanostructures made of gold, silver, and palladium. Chem. Mater. 16, 1480-1484 (2004).
-
(2004)
Chem. Mater
, vol.16
, pp. 1480-1484
-
-
Zhang, H.1
Mirkin, C.A.2
-
27
-
-
77951675351
-
Parallel fabrication of electrode arrays on single-walled carbon nanotubes using dip-pen-nanolithography-patterned etch masks
-
Park, S., Wang, W. M. & Bao, Z. Parallel fabrication of electrode arrays on single-walled carbon nanotubes using dip-pen-nanolithography-patterned etch masks. Langmuir 26, 6853-6859 (2010).
-
(2010)
Langmuir
, vol.26
, pp. 6853-6859
-
-
Park, S.1
Wang, W.M.2
Bao, Z.3
-
28
-
-
0001001627
-
Lithographic imaging techniques for the formation of nanoscopic features
-
Wallraff, G. M. & Hinsberg, W. D. Lithographic imaging techniques for the formation of nanoscopic features. Chem. Rev. 99, 1801-1822 (1999).
-
(1999)
Chem. Rev
, vol.99
, pp. 1801-1822
-
-
Wallraff, G.M.1
Hinsberg, W.D.2
-
29
-
-
84876067733
-
Resolution limits of electron-beam lithography toward the atomic scale
-
Manfrinato, V. et al. Resolution limits of electron-beam lithography toward the atomic scale. Nano Lett. 13, 1555-1558 (2013).
-
(2013)
Nano Lett
, vol.13
, pp. 1555-1558
-
-
Manfrinato, V.1
-
30
-
-
13644283817
-
Controlled fabrication of nanogaps in ambient environment for molecular electronics
-
Strachan, D. R. et al. Controlled fabrication of nanogaps in ambient environment for molecular electronics. Appl. Phys. Lett. 86, 043109 (2005).
-
(2005)
Appl. Phys. Lett
, vol.86
, pp. 043109
-
-
Strachan, D.R.1
-
31
-
-
56649088467
-
Electronic transport through ruthenium-based redox-active molecules in metal-molecule-metal nanogap junctions
-
Mahapatro, A. K., Ying, J., Ren, T. & Janes, D. B. Electronic transport through ruthenium-based redox-active molecules in metal-molecule-metal nanogap junctions. Nano Lett. 8, 2131 (2008).
-
(2008)
Nano Lett
, vol.8
, pp. 2131
-
-
Mahapatro, A.K.1
Ying, J.2
Ren, T.3
Janes, D.B.4
-
32
-
-
69549086726
-
Large-area roll-to-roll and roll-to-plate nanoimprint lithography: A step toward high-throughput application of continuous nanoimprinting
-
Ahn, S. H. & Guo, L. J. Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting. ACS Nano 3, 2304-2310 (2009).
-
(2009)
ACS Nano
, vol.3
, pp. 2304-2310
-
-
Ahn, S.H.1
Guo, L.J.2
-
33
-
-
34250642011
-
Nanoimprint lithography: Methods and material requirements
-
Guo, L. J. Nanoimprint lithography: methods and material requirements. Adv. Mater. 19, 495-513 (2007).
-
(2007)
Adv. Mater
, vol.19
, pp. 495-513
-
-
Guo, L.J.1
-
34
-
-
80051542669
-
Nanogap electrode fabrication for a nanoscale device by volume-expanding electrochemical synthesis
-
Kim, J.-H., Moon, H., Yoo, S. & Choi, Y.-K. Nanogap electrode fabrication for a nanoscale device by volume-expanding electrochemical synthesis. Small 7, 2210-2216 (2011).
-
(2011)
Small
, vol.7
, pp. 2210-2216
-
-
Kim, J.-H.1
Moon, H.2
Yoo, S.3
Choi, Y.-K.4
-
35
-
-
80052097263
-
Nanoparticle single-electron transistor with metal-bridged top-gate and nanogap electrodes
-
Azuma, Y. et al. Nanoparticle single-electron transistor with metal-bridged top-gate and nanogap electrodes. Appl. Phys. Lett. 99, 073109 (2011).
-
(2011)
Appl. Phys. Lett
, vol.99
, pp. 073109
-
-
Azuma, Y.1
-
36
-
-
67649235472
-
Self-assembled nanogaps for molecular electronics
-
Tang, Q. et al. Self-assembled nanogaps for molecular electronics. Nanotechnology 20, 245205 (2009).
-
(2009)
Nanotechnology
, vol.20
, pp. 245205
-
-
Tang, Q.1
-
38
-
-
0344430057
-
Colloidal PbS nanocrystals with size-tunable near-infrared emission: Observation of post-synthesis self-narrowing of the particle size distribution
-
Hines, M. A. & Scholes, G. D. Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution. Adv. Mater. 15, 1844-1849 (2003).
-
(2003)
Adv. Mater
, vol.15
, pp. 1844-1849
-
-
Hines, M.A.1
Scholes, G.D.2
-
39
-
-
33746130812
-
Ultrasensitive solution-cast quantum dot photodetectors
-
Konstantatos, G. et al. Ultrasensitive solution-cast quantum dot photodetectors. Nature 442, 180-183 (2006).
-
(2006)
Nature
, vol.442
, pp. 180-183
-
-
Konstantatos, G.1
-
40
-
-
84898918188
-
Three-dimensional, sharp-tipped electrodes concentrate applied fields to enable direct electrical release of intact biomarkers from cells
-
Poudineh, M. et al. Three-dimensional, sharp-tipped electrodes concentrate applied fields to enable direct electrical release of intact biomarkers from cells. Lab Chip 14, 1785-1790 (2014).
-
(2014)
Lab Chip
, vol.14
, pp. 1785-1790
-
-
Poudineh, M.1
|