메뉴 건너뛰기




Volumn 12, Issue 2, 2015, Pages 153-164

Targeting histone deacetylases: Perspectives for epigenetic-based therapy in cardio-cerebrovascular disease

Author keywords

Atherosclerosis; Epigenetic modification; Heart failure; Histone deacetylase; Stroke

Indexed keywords

HISTONE ACETYLTRANSFERASE; HISTONE DEACETYLASE; HISTONE DEACETYLASE 1; HISTONE DEACETYLASE 2; HISTONE DEACETYLASE 4; HISTONE DEACETYLASE INHIBITOR; NICOTINAMIDE ADENINE DINUCLEOTIDE; SIRTUIN; ZINC;

EID: 84925755997     PISSN: 16715411     EISSN: None     Source Type: Journal    
DOI: 10.11909/j.issn.1671-5411.2015.02.010     Document Type: Review
Times cited : (27)

References (122)
  • 1
    • 84884931588 scopus 로고    scopus 로고
    • Noncommunicable diseases
    • Hunter DJ, Reddy KS. Noncommunicable diseases. N Engl J Med 2013;369:1336-1343.
    • (2013) N Engl J Med , vol.369 , pp. 1336-1343
    • Hunter, D.J.1    Reddy, K.S.2
  • 2
    • 84880036835 scopus 로고    scopus 로고
    • HDAC-dependent ventricular remodeling
    • Xie M, Hill JA. HDAC-dependent ventricular remodeling. Trends Cardiovasc Med 2013;23(6):229-235.
    • (2013) Trends Cardiovasc Med , vol.23 , Issue.6 , pp. 229-235
    • Xie, M.1    Hill, J.A.2
  • 3
    • 78649876797 scopus 로고    scopus 로고
    • Non-natural macrocyclic inhibitors of histone deacetylases: Design, synthesis, and activity
    • Auzzas L, Larsson A, Matera R, et al. Non-natural macrocyclic inhibitors of histone deacetylases: design, synthesis, and activity. J Med Chem 2010;53:8387-8399.
    • (2010) J Med Chem , vol.53 , pp. 8387-8399
    • Auzzas, L.1    Larsson, A.2    Matera, R.3
  • 4
    • 84891135858 scopus 로고    scopus 로고
    • Histone deacetylases in cardiac fibrosis: Current perspectives for therapy
    • Tao H, Shi KH, Yang JJ, et al. Histone deacetylases in cardiac fibrosis: current perspectives for therapy. Cell Signal 2014;26:521-527.
    • (2014) Cell Signal , vol.26 , pp. 521-527
    • Tao, H.1    Shi, K.H.2    Yang, J.J.3
  • 5
    • 16844362441 scopus 로고    scopus 로고
    • Histone deacetylation in epigenetics: An attractive target for anticancer therapy
    • Mai A, Massa S, Rotili D, et al. Histone deacetylation in epigenetics: an attractive target for anticancer therapy. Med Res Rev 2005;25:261-309.
    • (2005) Med Res Rev , vol.25 , pp. 261-309
    • Mai, A.1    Massa, S.2    Rotili, D.3
  • 6
    • 70350018325 scopus 로고    scopus 로고
    • Multiple roles of HDAC inhibition in neurodegenerative conditions
    • Chuang DM, Leng Y, Marinova Z, et al. Multiple roles of HDAC inhibition in neurodegenerative conditions. Trends Neurosci 2009;32:591-601.
    • (2009) Trends Neurosci , vol.32 , pp. 591-601
    • Chuang, D.M.1    Leng, Y.2    Marinova, Z.3
  • 7
    • 0037382681 scopus 로고    scopus 로고
    • Collaborative spirit of histone deacetylases in regulating chromatin structure and gene expression
    • Yang XJ, Seto E. Collaborative spirit of histone deacetylases in regulating chromatin structure and gene expression. Curr Opin Genet Dev 2003;13:143-153.
    • (2003) Curr Opin Genet Dev , vol.13 , pp. 143-153
    • Yang, X.J.1    Seto, E.2
  • 8
    • 18544387930 scopus 로고    scopus 로고
    • Isolation and characterization of a novel class II histone deacetylase, HDAC10
    • Fischer DD, Cai R, Bhatia U, et al. Isolation and characterization of a novel class II histone deacetylase, HDAC10. J Biol Chem 2002;277:6656-6666.
    • (2002) J Biol Chem , vol.277 , pp. 6656-6666
    • Fischer, D.D.1    Cai, R.2    Bhatia, U.3
  • 9
    • 57849096553 scopus 로고    scopus 로고
    • The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance
    • Villagra A, Cheng F, Wang HW, et al. The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance. Nat Immunol 2009;10:92-100.
    • (2009) Nat Immunol , vol.10 , pp. 92-100
    • Villagra, A.1    Cheng, F.2    Wang, H.W.3
  • 10
    • 77949887506 scopus 로고    scopus 로고
    • Mammalian sirtuins: Biological insights and disease relevance
    • Haigis MC, Sinclair DA. Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 2010;5:253-295.
    • (2010) Annu Rev Pathol , vol.5 , pp. 253-295
    • Haigis, M.C.1    Sinclair, D.A.2
  • 11
    • 26244436281 scopus 로고    scopus 로고
    • Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins
    • Michishita E, Park JY, Burneskis JM, et al. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 2005;16:4623-4635.
    • (2005) Mol Biol Cell , vol.16 , pp. 4623-4635
    • Michishita, E.1    Park, J.Y.2    Burneskis, J.M.3
  • 12
    • 34250365395 scopus 로고    scopus 로고
    • Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1
    • Tanno M, Sakamoto J, Miura T, et al. Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J Biol Chem 2007;282:6823-6832.
    • (2007) J Biol Chem , vol.282 , pp. 6823-6832
    • Tanno, M.1    Sakamoto, J.2    Miura, T.3
  • 13
    • 39149122568 scopus 로고    scopus 로고
    • Interphase nucleo-cytoplasmic shuttling and localization of SIRT2 during mitosis
    • North BJ, Verdin E. Interphase nucleo-cytoplasmic shuttling and localization of SIRT2 during mitosis. PLoS One 2007;2:e784.
    • (2007) PLoS One , vol.2 , pp. e784
    • North, B.J.1    Verdin, E.2
  • 14
    • 0034765511 scopus 로고    scopus 로고
    • Histone deacetylase inhibitors as new cancer drugs
    • Marks PA, Richon VM, Breslow R, et al. Histone deacetylase inhibitors as new cancer drugs. Curr Opin Oncol 2001;13:477-483.
    • (2001) Curr Opin Oncol , vol.13 , pp. 477-483
    • Marks, P.A.1    Richon, V.M.2    Breslow, R.3
  • 15
    • 84908265816 scopus 로고    scopus 로고
    • Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders
    • Falkenberg KJ, Johnstone RW. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov 2014;13:673-691.
    • (2014) Nat Rev Drug Discov , vol.13 , pp. 673-691
    • Falkenberg, K.J.1    Johnstone, R.W.2
  • 16
    • 0024996768 scopus 로고
    • Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A
    • Yoshida M, Kijima M, Akita M, et al. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem 1990;265:17174-17179.
    • (1990) J Biol Chem , vol.265 , pp. 17174-17179
    • Yoshida, M.1    Kijima, M.2    Akita, M.3
  • 17
    • 33846122993 scopus 로고    scopus 로고
    • Dimethyl sulfoxide to vorinostat: Development of this histone deacetylase inhibitor as an anticancer drug
    • Marks PA, Breslow R. Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol 2007;25:84-90.
    • (2007) Nat Biotechnol , vol.25 , pp. 84-90
    • Marks, P.A.1    Breslow, R.2
  • 18
    • 59649092334 scopus 로고    scopus 로고
    • Zn (II)-dependent histone deacetylase inhibitors: Suberoylanilide hydroxamic acid and trichostatin A
    • Codd R, Braich N, Liu J, et al. Zn (II)-dependent histone deacetylase inhibitors: suberoylanilide hydroxamic acid and trichostatin A. Int J Biochem Cell Biol 2009;41:736-739.
    • (2009) Int J Biochem Cell Biol , vol.41 , pp. 736-739
    • Codd, R.1    Braich, N.2    Liu, J.3
  • 19
    • 77749309291 scopus 로고    scopus 로고
    • Romidepsin for the treatment of cutaneous T-cell lymphoma
    • Campas-Moya C. Romidepsin for the treatment of cutaneous T-cell lymphoma. Drugs Today (Barc) 2009;45:787-795.
    • (2009) Drugs Today (Barc) , vol.45 , pp. 787-795
    • Campas-Moya, C.1
  • 20
    • 34447101115 scopus 로고    scopus 로고
    • MS-275, a potent orally available inhibitor of histone deacetylases-the development of an anticancer agent
    • Hess-Stumpp H, Bracker TU, Henderson D, et al. MS-275, a potent orally available inhibitor of histone deacetylases-the development of an anticancer agent. Int J Biochem Cell Biol 2007;39:1388-1405.
    • (2007) Int J Biochem Cell Biol , vol.39 , pp. 1388-1405
    • Hess-Stumpp, H.1    Bracker, T.U.2    Henderson, D.3
  • 21
    • 37849019672 scopus 로고    scopus 로고
    • Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors
    • Khan N, Jeffers M, Kumar S, et al. Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochem J 2008;409:581-589.
    • (2008) Biochem J , vol.409 , pp. 581-589
    • Khan, N.1    Jeffers, M.2    Kumar, S.3
  • 22
    • 42049118549 scopus 로고    scopus 로고
    • Isoform-selective histone deacetylase inhibitors
    • Itoh Y, Suzuki T, Miyata N. Isoform-selective histone deacetylase inhibitors. Curr Pharm Des 2008;14:529-544.
    • (2008) Curr Pharm Des , vol.14 , pp. 529-544
    • Itoh, Y.1    Suzuki, T.2    Miyata, N.3
  • 23
    • 6344222799 scopus 로고    scopus 로고
    • Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor
    • Vannini A, Volpari C, Filocamo G, et al. Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor. Proc Natl Acad Sci U S A 2004;101:15064-15069.
    • (2004) Proc Natl Acad Sci U S A , vol.101 , pp. 15064-15069
    • Vannini, A.1    Volpari, C.2    Filocamo, G.3
  • 24
    • 34247376560 scopus 로고    scopus 로고
    • Design and evaluation of 'Linkerless' hydroxamic acids as selective HDAC8 inhibitors
    • Krennhrubec K, Marshall BL, Hedglin M, et al. Design and evaluation of 'Linkerless' hydroxamic acids as selective HDAC8 inhibitors. Bioorg Med Chem Lett 2007;17:2874-2878.
    • (2007) Bioorg Med Chem Lett , vol.17 , pp. 2874-2878
    • Krennhrubec, K.1    Marshall, B.L.2    Hedglin, M.3
  • 25
    • 43749109171 scopus 로고    scopus 로고
    • A novel histone deacetylase 8 (HDAC8)-specific inhibitor PCI-34051 induces apoptosis in T-cell lymphomas
    • Balasubramanian S, Ramos J, Luo W, et al. A novel histone deacetylase 8 (HDAC8)-specific inhibitor PCI-34051 induces apoptosis in T-cell lymphomas. Leukemia 2008;22:1026-1034.
    • (2008) Leukemia , vol.22 , pp. 1026-1034
    • Balasubramanian, S.1    Ramos, J.2    Luo, W.3
  • 26
    • 0344640906 scopus 로고    scopus 로고
    • Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6) - Mediated tubulin deacetylation
    • Haggarty SJ, Koeller KM, Wong JC, et al. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6) - mediated tubulin deacetylation. Proc Natl Acad Sci USA 2003;100:4389-4394.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 4389-4394
    • Haggarty, S.J.1    Koeller, K.M.2    Wong, J.C.3
  • 27
    • 41449086790 scopus 로고    scopus 로고
    • Cardiac plasticity
    • Hill JA, Olson EN. Cardiac plasticity. N Engl J Med 2008;358:1370-1380.
    • (2008) N Engl J Med , vol.358 , pp. 1370-1380
    • Hill, J.A.1    Olson, E.N.2
  • 28
    • 78650121847 scopus 로고    scopus 로고
    • Molecular distinction between physiological and pathological cardiac hypertrophy: Experimental findings and therapeutic strategies
    • Bernardo BC, Weeks KL, Pretorius L, et al. Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther 2010;128:191-227.
    • (2010) Pharmacol Ther , vol.128 , pp. 191-227
    • Bernardo, B.C.1    Weeks, K.L.2    Pretorius, L.3
  • 29
    • 33644861578 scopus 로고    scopus 로고
    • Inhibition of histone deacetylation blocks cardiac hypertrophy induced by angiotensin II infusion and aortic banding
    • Kee HJ, Sohn IS, Nam KI, et al. Inhibition of histone deacetylation blocks cardiac hypertrophy induced by angiotensin II infusion and aortic banding. Circulation 2006;113:51-59.
    • (2006) Circulation , vol.113 , pp. 51-59
    • Kee, H.J.1    Sohn, I.S.2    Nam, K.I.3
  • 30
    • 33745173485 scopus 로고    scopus 로고
    • Suppression of class I and II histone deacetylases blunts pressure-overload cardiac hypertrophy
    • Kong Y, Tannous P, Lu G, et al. Suppression of class I and II histone deacetylases blunts pressure-overload cardiac hypertrophy. Circulation 2006;113:2579-2588.
    • (2006) Circulation , vol.113 , pp. 2579-2588
    • Kong, Y.1    Tannous, P.2    Lu, G.3
  • 31
    • 0041530268 scopus 로고    scopus 로고
    • Dose-dependent blockade to cardiomyocyte hypertrophy by histone deacetylase inhibitors
    • Antos CL, McKinsey TA, Dreitz M, et al. Dose-dependent blockade to cardiomyocyte hypertrophy by histone deacetylase inhibitors. J Biol Chem 2003;278:28930-28937.
    • (2003) J Biol Chem , vol.278 , pp. 28930-28937
    • Antos, C.L.1    McKinsey, T.A.2    Dreitz, M.3
  • 32
    • 18444414332 scopus 로고    scopus 로고
    • Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression
    • Lagger G, O'Carroll D, Rembold M, et al. Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J 2002;21:2672-2681.
    • (2002) EMBO J , vol.21 , pp. 2672-2681
    • Lagger, G.1    O'Carroll, D.2    Rembold, M.3
  • 33
    • 58549098709 scopus 로고    scopus 로고
    • WNT signaling promotes Nkx2.5 expression and early cardiomyogenesis via downregulation of Hdac1
    • Liu Z, Li T, Liu Y, et al. WNT signaling promotes Nkx2.5 expression and early cardiomyogenesis via downregulation of Hdac1. Biochim Biophys Acta 2009;1793:300-311.
    • (2009) Biochim Biophys Acta , vol.1793 , pp. 300-311
    • Liu, Z.1    Li, T.2    Liu, Y.3
  • 34
    • 33847695362 scopus 로고    scopus 로고
    • Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity
    • Trivedi CM, Luo Y, Yin Z, et al. Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity. Nat Med 2007;13:324-331.
    • (2007) Nat Med , vol.13 , pp. 324-331
    • Trivedi, C.M.1    Luo, Y.2    Yin, Z.3
  • 35
    • 79958168664 scopus 로고    scopus 로고
    • Casein kinase-2alpha1 induces hypertrophic response by phosphorylation of histone deacetylase 2 S394 and its activation in the heart
    • Eom GH, Cho YK, Ko JH, et al. Casein kinase-2alpha1 induces hypertrophic response by phosphorylation of histone deacetylase 2 S394 and its activation in the heart. Circulation 2011;123:2392-2403.
    • (2011) Circulation , vol.123 , pp. 2392-2403
    • Eom, G.H.1    Cho, Y.K.2    Ko, J.H.3
  • 36
    • 58149352444 scopus 로고    scopus 로고
    • Activation of histone deacetylase 2 by inducible heat shock protein 70 in cardiac hypertrophy
    • Kee HJ, Eom GH, Joung H, et al. Activation of histone deacetylase 2 by inducible heat shock protein 70 in cardiac hypertrophy. Circ Res 2008;103:1259-1269.
    • (2008) Circ Res , vol.103 , pp. 1259-1269
    • Kee, H.J.1    Eom, G.H.2    Joung, H.3
  • 37
    • 67650572769 scopus 로고    scopus 로고
    • Epigenetic control of skull morphogenesis by histone deacetylase 8
    • Haberland M, Mokalled MH, Montgomery RL, et al. Epigenetic control of skull morphogenesis by histone deacetylase 8. Genes Dev 2009;23:1625-1630.
    • (2009) Genes Dev , vol.23 , pp. 1625-1630
    • Haberland, M.1    Mokalled, M.H.2    Montgomery, R.L.3
  • 38
    • 84880183268 scopus 로고    scopus 로고
    • HDAC inhibition suppresses cardiac hypertrophy and fibrosis in DOCA-salt hypertensive rats via regulation of HDAC6/HDAC8 enzyme activity
    • Kee HJ, Bae EH, Park S, et al. HDAC inhibition suppresses cardiac hypertrophy and fibrosis in DOCA-salt hypertensive rats via regulation of HDAC6/HDAC8 enzyme activity. Kidney Blood Press Res 2013;37:229-239.
    • (2013) Kidney Blood Press Res , vol.37 , pp. 229-239
    • Kee, H.J.1    Bae, E.H.2    Park, S.3
  • 39
    • 55549099609 scopus 로고    scopus 로고
    • Transgenic overexpression of Hdac3 in the heart produces increased postnatal cardiac myocyte proliferation but does not induce hypertrophy
    • Trivedi CM, Lu MM, Wang Q, et al. Transgenic overexpression of Hdac3 in the heart produces increased postnatal cardiac myocyte proliferation but does not induce hypertrophy. J Biol Chem 2008;283:26484-26489.
    • (2008) J Biol Chem , vol.283 , pp. 26484-26489
    • Trivedi, C.M.1    Lu, M.M.2    Wang, Q.3
  • 40
    • 55849084700 scopus 로고    scopus 로고
    • Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice
    • Montgomery RL, Potthoff MJ, Haberland M, et al. Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice. J Clin Invest 2008;118:3588-3597.
    • (2008) J Clin Invest , vol.118 , pp. 3588-3597
    • Montgomery, R.L.1    Potthoff, M.J.2    Haberland, M.3
  • 41
    • 0037162697 scopus 로고    scopus 로고
    • Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy
    • Zhang CL, McKinsey TA, Chang S, et al. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 2002;110:479-488.
    • (2002) Cell , vol.110 , pp. 479-488
    • Zhang, C.L.1    McKinsey, T.A.2    Chang, S.3
  • 42
    • 8344261349 scopus 로고    scopus 로고
    • Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis
    • Vega RB, Matsuda K, Oh J, et al. Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell 2004;119:555-566.
    • (2004) Cell , vol.119 , pp. 555-566
    • Vega, R.B.1    Matsuda, K.2    Oh, J.3
  • 43
    • 4544358659 scopus 로고    scopus 로고
    • Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development
    • Chang S, McKinsey TA, Zhang CL, et al. Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol Cell Biol 2004;24:8467-8476.
    • (2004) Mol Cell Biol , vol.24 , pp. 8467-8476
    • Chang, S.1    McKinsey, T.A.2    Zhang, C.L.3
  • 44
    • 9644265333 scopus 로고    scopus 로고
    • Mechanism of recruitment of class II histone deacetylases by myocyte enhancer factor-2
    • Han A, He J, Wu Y, et al. Mechanism of recruitment of class II histone deacetylases by myocyte enhancer factor-2. J Mol Biol 2005;345:91-102.
    • (2005) J Mol Biol , vol.345 , pp. 91-102
    • Han, A.1    He, J.2    Wu, Y.3
  • 45
    • 27644521346 scopus 로고    scopus 로고
    • The DnaJ-related factor Mrj interacts with nuclear factor of activated T cells c3 and mediates transcriptional repression through class II histone deacetylase recruitment
    • Dai YS, Xu J, Molkentin JD. The DnaJ-related factor Mrj interacts with nuclear factor of activated T cells c3 and mediates transcriptional repression through class II histone deacetylase recruitment. Mol Cell Biol 2005;25:9936-9948.
    • (2005) Mol Cell Biol , vol.25 , pp. 9936-9948
    • Dai, Y.S.1    Xu, J.2    Molkentin, J.D.3
  • 46
    • 0034595311 scopus 로고    scopus 로고
    • GATA-dependent recruitment of MEF2 proteins to target promoters
    • Morin S, Charron F, Robitaille L, et al. GATA-dependent recruitment of MEF2 proteins to target promoters. EMBO J 2000;19:2046-2055.
    • (2000) EMBO J , vol.19 , pp. 2046-2055
    • Morin, S.1    Charron, F.2    Robitaille, L.3
  • 47
    • 0037805720 scopus 로고    scopus 로고
    • Calcium/calmodulin-dependent protein kinase activates serum response factor transcription activity by its dissociation from histone deacetylase, HDAC4. Implications in cardiac muscle gene regulation during hypertrophy
    • Davis FJ, Gupta M, Camoretti-Mercado B, et al. Calcium/calmodulin-dependent protein kinase activates serum response factor transcription activity by its dissociation from histone deacetylase, HDAC4. Implications in cardiac muscle gene regulation during hypertrophy. J Biol Chem 2003;278:20047-20058.
    • (2003) J Biol Chem , vol.278 , pp. 20047-20058
    • Davis, F.J.1    Gupta, M.2    Camoretti-Mercado, B.3
  • 48
    • 33646144852 scopus 로고    scopus 로고
    • The transcriptional coactivator CAMTA2 stimulates cardiac growth by opposing class II histone deacetylases
    • Song K, Backs J, McAnally J, et al. The transcriptional coactivator CAMTA2 stimulates cardiac growth by opposing class II histone deacetylases. Cell 2006;125:453-466.
    • (2006) Cell , vol.125 , pp. 453-466
    • Song, K.1    Backs, J.2    McAnally, J.3
  • 49
    • 79956317095 scopus 로고    scopus 로고
    • Cardiac HDAC6 catalytic activity is induced in response to chronic hypertension
    • Lemon DD, Horn TR, Cavasin MA, et al. Cardiac HDAC6 catalytic activity is induced in response to chronic hypertension. J Mol Cell Cardiol 2011;51:41-50.
    • (2011) J Mol Cell Cardiol , vol.51 , pp. 41-50
    • Lemon, D.D.1    Horn, T.R.2    Cavasin, M.A.3
  • 50
    • 34249669270 scopus 로고    scopus 로고
    • Sirt1 regulates aging and resistance to oxidative stress in the heart
    • Alcendor RR, Gao S, Zhai P, et al. Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ Res 2007;100:1512-1521.
    • (2007) Circ Res , vol.100 , pp. 1512-1521
    • Alcendor, R.R.1    Gao, S.2    Zhai, P.3
  • 51
    • 8844247034 scopus 로고    scopus 로고
    • Silent information regulator 2alpha, a longevity factor and class III histone deacetylase, is an essential endogenous apoptosis inhibitor in cardiac myocytes
    • Alcendor RR, Kirshenbaum LA, Imai S, et al. Silent information regulator 2alpha, a longevity factor and class III histone deacetylase, is an essential endogenous apoptosis inhibitor in cardiac myocytes. Circ Res 2004;95:971-980.
    • (2004) Circ Res , vol.95 , pp. 971-980
    • Alcendor, R.R.1    Kirshenbaum, L.A.2    Imai, S.3
  • 52
    • 70349208608 scopus 로고    scopus 로고
    • Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice
    • Sundaresan NR, Gupta M, Kim G, et al. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest 2009;119:2758-2771.
    • (2009) J Clin Invest , vol.119 , pp. 2758-2771
    • Sundaresan, N.R.1    Gupta, M.2    Kim, G.3
  • 53
    • 84869201195 scopus 로고    scopus 로고
    • The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun
    • Sundaresan NR, Vasudevan P, Zhong L, et al. The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun. Nat Med 2012;18:1643-1650.
    • (2012) Nat Med , vol.18 , pp. 1643-1650
    • Sundaresan, N.R.1    Vasudevan, P.2    Zhong, L.3
  • 54
    • 41449083867 scopus 로고    scopus 로고
    • Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice
    • Vakhrusheva O, Smolka C, Gajawada P, et al. Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ Res 2008;102:703-710.
    • (2008) Circ Res , vol.102 , pp. 703-710
    • Vakhrusheva, O.1    Smolka, C.2    Gajawada, P.3
  • 55
    • 79960620082 scopus 로고    scopus 로고
    • The deacetylase SIRT1 promotes membrane localization and activation of Akt and PDK1 during tumorigenesis and cardiac hypertrophy
    • Sundaresan NR, Pillai VB, Wolfgeher D, et al. The deacetylase SIRT1 promotes membrane localization and activation of Akt and PDK1 during tumorigenesis and cardiac hypertrophy. Sci Signal 2011;4:ra46.
    • (2011) Sci Signal , vol.4 , pp. ra46
    • Sundaresan, N.R.1    Pillai, V.B.2    Wolfgeher, D.3
  • 56
    • 80455128956 scopus 로고    scopus 로고
    • PPARalpha-Sirt1 complex mediates cardiac hypertrophy and failure through suppression of the ERR transcriptional pathway
    • Oka S, Alcendor R, Zhai P, et al. PPARalpha-Sirt1 complex mediates cardiac hypertrophy and failure through suppression of the ERR transcriptional pathway. Cell Metab 2011;14:598-611.
    • (2011) Cell Metab , vol.14 , pp. 598-611
    • Oka, S.1    Alcendor, R.2    Zhai, P.3
  • 57
    • 84887207559 scopus 로고    scopus 로고
    • Extracellular matrix secretion by cardiac fibroblasts: Role of microRNA-29b and microRNA-30c
    • Abonnenc M, Nabeebaccus AA, Mayr U, et al. Extracellular matrix secretion by cardiac fibroblasts: role of microRNA-29b and microRNA-30c. Circ Res 2013;113:1138-1147.
    • (2013) Circ Res , vol.113 , pp. 1138-1147
    • Abonnenc, M.1    Nabeebaccus, A.A.2    Mayr, U.3
  • 58
    • 72449139586 scopus 로고    scopus 로고
    • Abrogation of TGFbeta1-induced fibroblast-myofibroblast differentiation by histone deacetylase inhibition
    • Guo W, Shan B, Klingsberg RC, et al. Abrogation of TGFbeta1-induced fibroblast-myofibroblast differentiation by histone deacetylase inhibition. Am J Physiol Lung Cell Mol Physiol 2009;297:L864-L870.
    • (2009) Am J Physiol Lung Cell Mol Physiol , vol.297 , pp. L864-L870
    • Guo, W.1    Shan, B.2    Klingsberg, R.C.3
  • 59
    • 77957752356 scopus 로고    scopus 로고
    • HDAC-mediated control of ERK- and PI3K-dependent TGF-beta-induced extracellular matrix-regulating genes
    • Barter MJ, Pybus L, Litherland GJ, et al. HDAC-mediated control of ERK- and PI3K-dependent TGF-beta-induced extracellular matrix-regulating genes. Matrix Biol 2010;29:602-612.
    • (2010) Matrix Biol , vol.29 , pp. 602-612
    • Barter, M.J.1    Pybus, L.2    Litherland, G.J.3
  • 60
    • 0346363757 scopus 로고    scopus 로고
    • Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex
    • Peinado H, Ballestar E, Esteller M, et al. Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol Cell Biol 2004;24:306-319.
    • (2004) Mol Cell Biol , vol.24 , pp. 306-319
    • Peinado, H.1    Ballestar, E.2    Esteller, M.3
  • 61
    • 84899061619 scopus 로고    scopus 로고
    • Targeting cardiac fibroblasts to treat fibrosis of the heart: Focus on HDACs
    • Schuetze KB, McKinsey TA, Long CS. Targeting cardiac fibroblasts to treat fibrosis of the heart: focus on HDACs. J Mol Cell Cardiol 2014;70:100-107.
    • (2014) J Mol Cell Cardiol , vol.70 , pp. 100-107
    • Schuetze, K.B.1    McKinsey, T.A.2    Long, C.S.3
  • 62
    • 42149107512 scopus 로고    scopus 로고
    • Role of smooth muscle cells in the initiation and early progression of atherosclerosis
    • Doran AC, Meller N, McNamara CA. Role of smooth muscle cells in the initiation and early progression of atherosclerosis. Arterioscler Thromb Vasc Biol 2008;28:812-819.
    • (2008) Arterioscler Thromb Vasc Biol , vol.28 , pp. 812-819
    • Doran, A.C.1    Meller, N.2    McNamara, C.A.3
  • 63
    • 79953749086 scopus 로고    scopus 로고
    • Epigenetic regulation of vascular smooth muscle cell proliferation and neointima formation by histone deacetylase inhibition
    • Findeisen HM, Gizard F, Zhao Y, et al. Epigenetic regulation of vascular smooth muscle cell proliferation and neointima formation by histone deacetylase inhibition. Arterioscler Thromb Vasc Biol 2011;31:851-860.
    • (2011) Arterioscler Thromb Vasc Biol , vol.31 , pp. 851-860
    • Findeisen, H.M.1    Gizard, F.2    Zhao, Y.3
  • 64
    • 84863556840 scopus 로고    scopus 로고
    • Trichostatin A prevents neointimal hyperplasia via activation of Kruppel like factor 4
    • Kee HJ, Kwon JS, Shin S, et al. Trichostatin A prevents neointimal hyperplasia via activation of Kruppel like factor 4. Vascul Pharmacol 2011;55:127-134.
    • (2011) Vascul Pharmacol , vol.55 , pp. 127-134
    • Kee, H.J.1    Kwon, J.S.2    Shin, S.3
  • 65
    • 72049083765 scopus 로고    scopus 로고
    • Trichostatin A enhances proliferation and migration of vascular smooth muscle cells by downregulating thioredoxin 1
    • Song S, Kang SW, Choi C. Trichostatin A enhances proliferation and migration of vascular smooth muscle cells by downregulating thioredoxin 1. Cardiovasc Res 2010;85:241-249.
    • (2010) Cardiovasc Res , vol.85 , pp. 241-249
    • Song, S.1    Kang, S.W.2    Choi, C.3
  • 66
    • 59149095347 scopus 로고    scopus 로고
    • HDAC2 deacetylates class II transactivator and suppresses its activity in macrophages and smooth muscle cells
    • Kong X, Fang M, Li P, et al. HDAC2 deacetylates class II transactivator and suppresses its activity in macrophages and smooth muscle cells. J Mol Cell Cardiol 2009;46:292-299.
    • (2009) J Mol Cell Cardiol , vol.46 , pp. 292-299
    • Kong, X.1    Fang, M.2    Li, P.3
  • 67
    • 84903163178 scopus 로고    scopus 로고
    • Transcriptional regulation of endothelial arginase 2 by histone deacetylase 2
    • Pandey D, Sikka G, Bergman Y, et al. Transcriptional regulation of endothelial arginase 2 by histone deacetylase 2. Arterioscler Thromb Vasc Biol 2014;34:1556-1566.
    • (2014) Arterioscler Thromb Vasc Biol , vol.34 , pp. 1556-1566
    • Pandey, D.1    Sikka, G.2    Bergman, Y.3
  • 68
    • 74549187447 scopus 로고    scopus 로고
    • Histone deacetylase 3 is critical in endothelial survival and atherosclerosis development in response to disturbed flow
    • Zampetaki A, Zeng L, Margariti A, et al. Histone deacetylase 3 is critical in endothelial survival and atherosclerosis development in response to disturbed flow. Circulation 2010;121:132-142.
    • (2010) Circulation , vol.121 , pp. 132-142
    • Zampetaki, A.1    Zeng, L.2    Margariti, A.3
  • 69
    • 84887089734 scopus 로고    scopus 로고
    • Histone deacetylase 3 unconventional splicing mediates endothelial-to-mesenchymal transition through transforming growth factor beta2
    • Zeng L, Wang G, Ummarino D, et al. Histone deacetylase 3 unconventional splicing mediates endothelial-to-mesenchymal transition through transforming growth factor beta2. J Biol Chem 2013;288:31853-31866.
    • (2013) J Biol Chem , vol.288 , pp. 31853-31866
    • Zeng, L.1    Wang, G.2    Ummarino, D.3
  • 70
    • 83755181625 scopus 로고    scopus 로고
    • Galectin-9 protein expression in endothelial cells is positively regulated by histone deacetylase 3
    • Alam S, Li H, Margariti A, et al. Galectin-9 protein expression in endothelial cells is positively regulated by histone deacetylase 3. J Biol Chem 2011;286:44211-44217.
    • (2011) J Biol Chem , vol.286 , pp. 44211-44217
    • Alam, S.1    Li, H.2    Margariti, A.3
  • 71
    • 84908568669 scopus 로고    scopus 로고
    • Unspliced X-box-binding Protein 1 (XBP1) Protects Endothelial Cells from Oxidative Stress through Interaction with Histone Deacetylase 3
    • Martin D, Li Y, Yang J, et al. Unspliced X-box-binding Protein 1 (XBP1) Protects Endothelial Cells from Oxidative Stress through Interaction with Histone Deacetylase 3. J Biol Chem 2014;289:30625-30634.
    • (2014) J Biol Chem , vol.289 , pp. 30625-30634
    • Martin, D.1    Li, Y.2    Yang, J.3
  • 72
    • 77958002714 scopus 로고    scopus 로고
    • Histone deacetylase 3 antagonizes aspirin-stimulated endothelial nitric oxide production by reversing aspirin-induced lysine acetylation of endothelial nitric oxide synthase
    • Jung SB, Kim CS, Naqvi A, et al. Histone deacetylase 3 antagonizes aspirin-stimulated endothelial nitric oxide production by reversing aspirin-induced lysine acetylation of endothelial nitric oxide synthase. Circ Res 2010;107:877-887.
    • (2010) Circ Res , vol.107 , pp. 877-887
    • Jung, S.B.1    Kim, C.S.2    Naqvi, A.3
  • 73
    • 84916940981 scopus 로고    scopus 로고
    • Targeting macrophage Histone deacetylase 3 stabilizes atherosclerotic lesions
    • Hoeksema MA, Gijbels MJ, Van den Bossche J, et al. Targeting macrophage Histone deacetylase 3 stabilizes atherosclerotic lesions. EMBO Mol Med 2014;6:1124-1132.
    • (2014) EMBO Mol Med , vol.6 , pp. 1124-1132
    • Hoeksema, M.A.1    Gijbels, M.J.2    Van Den Bossche, J.3
  • 74
    • 70349682421 scopus 로고    scopus 로고
    • Multi-ethnic genetic association study of carotid intima-media thickness using a targeted cardiovascular SNP microarray
    • Lanktree MB, Hegele RA, Yusuf S, et al. Multi-ethnic genetic association study of carotid intima-media thickness using a targeted cardiovascular SNP microarray. Stroke 2009;40:3173-3179.
    • (2009) Stroke , vol.40 , pp. 3173-3179
    • Lanktree, M.B.1    Hegele, R.A.2    Yusuf, S.3
  • 75
    • 77950986508 scopus 로고    scopus 로고
    • Fluid shear stress stimulates phosphorylation-dependent nuclear export of HDAC5 and mediates expression of KLF2 and eNOS
    • Wang W, Ha CH, Jhun BS, et al. Fluid shear stress stimulates phosphorylation-dependent nuclear export of HDAC5 and mediates expression of KLF2 and eNOS. Blood 2010;115:2971-2979.
    • (2010) Blood , vol.115 , pp. 2971-2979
    • Wang, W.1    Ha, C.H.2    Jhun, B.S.3
  • 76
    • 36049028271 scopus 로고    scopus 로고
    • Angiotensin II stimulates protein kinase D-dependent histone deacetylase 5 phosphorylation and nuclear export leading to vascular smooth muscle cell hypertrophy
    • Xu X, Ha CH, Wong C, et al. Angiotensin II stimulates protein kinase D-dependent histone deacetylase 5 phosphorylation and nuclear export leading to vascular smooth muscle cell hypertrophy. Arterioscler Thromb Vasc Biol 2007;27:2355-2362.
    • (2007) Arterioscler Thromb Vasc Biol , vol.27 , pp. 2355-2362
    • Xu, X.1    Ha, C.H.2    Wong, C.3
  • 77
    • 77951276571 scopus 로고    scopus 로고
    • Histone deacetylase 7 controls endothelial cell growth through modulation of beta-catenin
    • Margariti A, Zampetaki A, Xiao Q, et al. Histone deacetylase 7 controls endothelial cell growth through modulation of beta-catenin. Circ Res 2010;106:1202-1211.
    • (2010) Circ Res , vol.106 , pp. 1202-1211
    • Margariti, A.1    Zampetaki, A.2    Xiao, Q.3
  • 78
    • 84883336983 scopus 로고    scopus 로고
    • Histone deacetylase 7 promotes Toll-like receptor 4-dependent proinflammatory gene expression in macrophages
    • Shakespear MR, Hohenhaus DM, Kelly GM, et al. Histone deacetylase 7 promotes Toll-like receptor 4-dependent proinflammatory gene expression in macrophages. J Biol Chem 2013;288:25362-25374.
    • (2013) J Biol Chem , vol.288 , pp. 25362-25374
    • Shakespear, M.R.1    Hohenhaus, D.M.2    Kelly, G.M.3
  • 79
    • 84863393715 scopus 로고    scopus 로고
    • Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke
    • International Stroke Genetics C, Wellcome Trust Case Control C, Bellenguez C, et al. Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke. Nat Genet 2012;44:328-333.
    • (2012) Nat Genet , vol.44 , pp. 328-333
    • International Stroke Genetics C, Wellcome Trust Case Control C,1    Bellenguez, C.2
  • 80
    • 84876830806 scopus 로고    scopus 로고
    • Evidence HDAC9 genetic variant associated with ischemic stroke increases risk via promoting carotid atherosclerosis
    • Markus HS, Makela KM, Bevan S, et al. Evidence HDAC9 genetic variant associated with ischemic stroke increases risk via promoting carotid atherosclerosis. Stroke 2013;44:1220-1225.
    • (2013) Stroke , vol.44 , pp. 1220-1225
    • Markus, H.S.1    Makela, K.M.2    Bevan, S.3
  • 81
    • 84906938566 scopus 로고    scopus 로고
    • Histone deacetylase 9 represses cholesterol efflux and alternatively activated macrophages in atherosclerosis development
    • Cao Q, Rong S, Repa JJ, et al. Histone deacetylase 9 represses cholesterol efflux and alternatively activated macrophages in atherosclerosis development. Arterioscler Thromb Vasc Biol 2014;34:1871-1879.
    • (2014) Arterioscler Thromb Vasc Biol , vol.34 , pp. 1871-1879
    • Cao, Q.1    Rong, S.2    Repa, J.J.3
  • 82
    • 35549008884 scopus 로고    scopus 로고
    • SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase
    • Mattagajasingh I, Kim CS, Naqvi A, et al. SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc Natl Acad Sci USA 2007;104:14855-14860.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 14855-14860
    • Mattagajasingh, I.1    Kim, C.S.2    Naqvi, A.3
  • 83
    • 3242719545 scopus 로고    scopus 로고
    • Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase
    • Yeung F, Hoberg JE, Ramsey CS, et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 2004;23:2369-2380.
    • (2004) EMBO J , vol.23 , pp. 2369-2380
    • Yeung, F.1    Hoberg, J.E.2    Ramsey, C.S.3
  • 84
    • 84893135642 scopus 로고    scopus 로고
    • Aldose reductase drives hyperacetylation of Egr-1 in hyperglycemia and consequent upregulation of proinflammatory and prothrombotic signals
    • Vedantham S, Thiagarajan D, Ananthakrishnan R, et al. Aldose reductase drives hyperacetylation of Egr-1 in hyperglycemia and consequent upregulation of proinflammatory and prothrombotic signals. Diabetes 2014;63:761-774.
    • (2014) Diabetes , vol.63 , pp. 761-774
    • Vedantham, S.1    Thiagarajan, D.2    Ananthakrishnan, R.3
  • 85
    • 34948883324 scopus 로고    scopus 로고
    • SIRT1 deacetylates and positively regulates the nuclear receptor LXR
    • Li X, Zhang S, Blander G, et al. SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol Cell 2007;28:91-106.
    • (2007) Mol Cell , vol.28 , pp. 91-106
    • Li, X.1    Zhang, S.2    Blander, G.3
  • 86
    • 78751516833 scopus 로고    scopus 로고
    • Sirt1 inhibition promotes in vivo arterial thrombosis and tissue factor expression in stimulated cells
    • Breitenstein A, Stein S, Holy EW, et al. Sirt1 inhibition promotes in vivo arterial thrombosis and tissue factor expression in stimulated cells. Cardiovasc Res 2011;89:464-472.
    • (2011) Cardiovasc Res , vol.89 , pp. 464-472
    • Breitenstein, A.1    Stein, S.2    Holy, E.W.3
  • 87
    • 79959567900 scopus 로고    scopus 로고
    • Reduced mitochondrial function in obesity-Associated fatty liver: SIRT3 takes on the fat
    • Choudhury M, Jonscher KR, Friedman JE. Reduced mitochondrial function in obesity-Associated fatty liver: SIRT3 takes on the fat. Aging (Albany NY) 2011;3:175-178.
    • (2011) Aging (Albany NY) , vol.3 , pp. 175-178
    • Choudhury, M.1    Jonscher, K.R.2    Friedman, J.E.3
  • 88
    • 84890845988 scopus 로고    scopus 로고
    • Deletion of Sirt3 does not affect atherosclerosis but accelerates weight gain and impairs rapid metabolic adaptation in LDL receptor knockout mice: Implications for cardiovascular risk factor development
    • Winnik S, Gaul DS, Preitner F, et al. Deletion of Sirt3 does not affect atherosclerosis but accelerates weight gain and impairs rapid metabolic adaptation in LDL receptor knockout mice: implications for cardiovascular risk factor development. Basic Res Cardiol 2014;109:399.
    • (2014) Basic Res Cardiol , vol.109 , pp. 399
    • Winnik, S.1    Gaul, D.S.2    Preitner, F.3
  • 89
    • 84904113231 scopus 로고    scopus 로고
    • Circulating levels of sirtuin 4, a potential marker of oxidative metabolism, related to coronary artery disease in obese patients suffering from NAFLD, with normal or slightly increased liver enzymes
    • Tarantino G, Finelli C, Scopacasa F, et al. Circulating levels of sirtuin 4, a potential marker of oxidative metabolism, related to coronary artery disease in obese patients suffering from NAFLD, with normal or slightly increased liver enzymes. Oxid Med Cell Longev 2014;2014:920676.
    • (2014) Oxid Med Cell Longev , vol.2014 , pp. 920676
    • Tarantino, G.1    Finelli, C.2    Scopacasa, F.3
  • 90
    • 79959326172 scopus 로고    scopus 로고
    • MiR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling
    • Davalos A, Goedeke L, Smibert P, et al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci USA 2011;108:9232-9237.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 9232-9237
    • Davalos, A.1    Goedeke, L.2    Smibert, P.3
  • 91
    • 41249090658 scopus 로고    scopus 로고
    • National US estimates of recombinant tissue plasminogen activator use: ICD-9 codes substantially underestimate
    • Kleindorfer D, Lindsell CJ, Brass L, et al. National US estimates of recombinant tissue plasminogen activator use: ICD-9 codes substantially underestimate. Stroke 2008;39:924-928.
    • (2008) Stroke , vol.39 , pp. 924-928
    • Kleindorfer, D.1    Lindsell, C.J.2    Brass, L.3
  • 92
    • 53249130741 scopus 로고    scopus 로고
    • Therapeutic application of histone deacetylase inhibitors for central nervous system disorders
    • Kazantsev AG, Thompson LM. Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat Rev Drug Discov 2008;7:854-868.
    • (2008) Nat Rev Drug Discov , vol.7 , pp. 854-868
    • Kazantsev, A.G.1    Thompson, L.M.2
  • 93
    • 68749117698 scopus 로고    scopus 로고
    • Targeting histone deacetylases as a multifaceted approach to treat the diverse outcomes of stroke
    • Langley B, Brochier C, Rivieccio MA. Targeting histone deacetylases as a multifaceted approach to treat the diverse outcomes of stroke. Stroke 2009;40:2899-2905.
    • (2009) Stroke , vol.40 , pp. 2899-2905
    • Langley, B.1    Brochier, C.2    Rivieccio, M.A.3
  • 94
    • 34248530339 scopus 로고    scopus 로고
    • Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: Multiple mechanisms of action
    • Kim HJ, Rowe M, Ren M, et al. Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. J Pharmacol Exp Ther 2007;321:892-901.
    • (2007) J Pharmacol Exp Ther , vol.321 , pp. 892-901
    • Kim, H.J.1    Rowe, M.2    Ren, M.3
  • 95
    • 33751120697 scopus 로고    scopus 로고
    • Pharmacological inhibition of histone deacetylases by suberoylanilide hydroxamic acid specifically alters gene expression and reduces ischemic injury in the mouse brain
    • Faraco G, Pancani T, Formentini L, et al. Pharmacological inhibition of histone deacetylases by suberoylanilide hydroxamic acid specifically alters gene expression and reduces ischemic injury in the mouse brain. Mol Pharmacol 2006;70:1876-1884.
    • (2006) Mol Pharmacol , vol.70 , pp. 1876-1884
    • Faraco, G.1    Pancani, T.2    Formentini, L.3
  • 96
    • 3042651448 scopus 로고    scopus 로고
    • Valproic acid reduces brain damage induced by transient focal cerebral ischemia in rats: Potential roles of histone deacetylase inhibition and heat shock protein induction
    • Ren M, Leng Y, Jeong M, et al. Valproic acid reduces brain damage induced by transient focal cerebral ischemia in rats: potential roles of histone deacetylase inhibition and heat shock protein induction. J Neurochem 2004;89:1358-1367.
    • (2004) J Neurochem , vol.89 , pp. 1358-1367
    • Ren, M.1    Leng, Y.2    Jeong, M.3
  • 97
    • 3242875556 scopus 로고    scopus 로고
    • Histone deacetylase 1 is required to repress Notch target gene expression during zebrafish neurogenesis and to maintain the production of motoneurones in response to hedgehog signalling
    • Cunliffe VT. Histone deacetylase 1 is required to repress Notch target gene expression during zebrafish neurogenesis and to maintain the production of motoneurones in response to hedgehog signalling. Development 2004;131:2983-2995.
    • (2004) Development , vol.131 , pp. 2983-2995
    • Cunliffe, V.T.1
  • 98
    • 17944383136 scopus 로고    scopus 로고
    • Regulation of neuronal traits by a novel transcriptional complex
    • Ballas N, Battaglioli E, Atouf F, et al. Regulation of neuronal traits by a novel transcriptional complex. Neuron 2001;31:353-365.
    • (2001) Neuron , vol.31 , pp. 353-365
    • Ballas, N.1    Battaglioli, E.2    Atouf, F.3
  • 99
    • 11844279705 scopus 로고    scopus 로고
    • DNA methyltransferase 3b regulates nerve growth factor-induced differentiation of PC12 cells by recruiting histone deacetylase 2
    • Bai S, Ghoshal K, Datta J, et al. DNA methyltransferase 3b regulates nerve growth factor-induced differentiation of PC12 cells by recruiting histone deacetylase 2. Mol Cell Biol 2005;25:751-766.
    • (2005) Mol Cell Biol , vol.25 , pp. 751-766
    • Bai, S.1    Ghoshal, K.2    Datta, J.3
  • 100
    • 84871124635 scopus 로고    scopus 로고
    • Neuron-restrictive silencer factor (NRSF) represses cocaine- and amphetamine-regulated transcript (CART) transcription and antagonizes cAMP-response element-binding protein signaling through a dual NRSE mechanism
    • Zhang J, Wang S, Yuan L, et al. Neuron-restrictive silencer factor (NRSF) represses cocaine- and amphetamine-regulated transcript (CART) transcription and antagonizes cAMP-response element-binding protein signaling through a dual NRSE mechanism. J Biol Chem 2012;287:42574-42587.
    • (2012) J Biol Chem , vol.287 , pp. 42574-42587
    • Zhang, J.1    Wang, S.2    Yuan, L.3
  • 101
    • 84907486324 scopus 로고    scopus 로고
    • Interaction of nNOS with PSD-95 negatively controls regenerative repair after stroke
    • Luo CX, Lin YH, Qian XD, et al. Interaction of nNOS with PSD-95 negatively controls regenerative repair after stroke. J Neurosci 2014;34:13535-13548.
    • (2014) J Neurosci , vol.34 , pp. 13535-13548
    • Luo, C.X.1    Lin, Y.H.2    Qian, X.D.3
  • 102
    • 15044348382 scopus 로고    scopus 로고
    • HDAC-3 participates in the repression of e2f-dependent gene transcription in primary differentiated neurons
    • Panteleeva I, Rouaux C, Larmet Y, et al. HDAC-3 participates in the repression of e2f-dependent gene transcription in primary differentiated neurons. Ann N Y Acad Sci 2004;1030:656-660.
    • (2004) Ann N Y Acad Sci , vol.1030 , pp. 656-660
    • Panteleeva, I.1    Rouaux, C.2    Larmet, Y.3
  • 103
    • 33644830913 scopus 로고    scopus 로고
    • Differential contributions of Caenorhabditis elegans histone deacetylases to huntingtin polyglutamine toxicity
    • Bates EA, Victor M, Jones AK, et al. Differential contributions of Caenorhabditis elegans histone deacetylases to huntingtin polyglutamine toxicity. J Neurosci 2006;26(10):2830-2838.
    • (2006) J Neurosci , vol.26 , Issue.10 , pp. 2830-2838
    • Bates, E.A.1    Victor, M.2    Jones, A.K.3
  • 104
    • 84865590510 scopus 로고    scopus 로고
    • Expression patterns of histone deacetylases in experimental stroke and potential targets for neuroprotection
    • Chen YT, Zang XF, Pan J, et al. Expression patterns of histone deacetylases in experimental stroke and potential targets for neuroprotection. Clin Exp Pharmacol Physiol 2012;39:751-758.
    • (2012) Clin Exp Pharmacol Physiol , vol.39 , pp. 751-758
    • Chen, Y.T.1    Zang, X.F.2    Pan, J.3
  • 105
    • 84907211146 scopus 로고    scopus 로고
    • Aortic and carotid arterial stiffness and epigenetic regulator gene expression changes precede blood pressure rise in stroke-prone Dahl salt-sensitive hypertensive rats
    • Herrera VL, Decano JL, Giordano N, et al. Aortic and carotid arterial stiffness and epigenetic regulator gene expression changes precede blood pressure rise in stroke-prone Dahl salt-sensitive hypertensive rats. PLoS One 2014;9:e107888.
    • (2014) PLoS One , vol.9 , pp. e107888
    • Herrera, V.L.1    Decano, J.L.2    Giordano, N.3
  • 106
    • 46149115160 scopus 로고    scopus 로고
    • HDAC4 inhibits cell-cycle progression and protects neurons from cell death
    • Majdzadeh N, Wang L, Morrison BE, et al. HDAC4 inhibits cell-cycle progression and protects neurons from cell death. Dev Neurobiol 2008;68:1076-1092.
    • (2008) Dev Neurobiol , vol.68 , pp. 1076-1092
    • Majdzadeh, N.1    Wang, L.2    Morrison, B.E.3
  • 107
    • 33645357786 scopus 로고    scopus 로고
    • Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action
    • Tsankova NM, Berton O, Renthal W, et al. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 2006;9:519-525.
    • (2006) Nat Neurosci , vol.9 , pp. 519-525
    • Tsankova, N.M.1    Berton, O.2    Renthal, W.3
  • 108
    • 84887959502 scopus 로고    scopus 로고
    • Injury-induced HDAC5 nuclear export is essential for axon regeneration
    • Cho Y, Sloutsky R, Naegle KM, et al. Injury-induced HDAC5 nuclear export is essential for axon regeneration. Cell 2013;155:894-908.
    • (2013) Cell , vol.155 , pp. 894-908
    • Cho, Y.1    Sloutsky, R.2    Naegle, K.M.3
  • 109
    • 84864147535 scopus 로고    scopus 로고
    • HDAC5 is a novel injury-regulated tubulin deacetylase controlling axon regeneration
    • Cho Y, Cavalli V. HDAC5 is a novel injury-regulated tubulin deacetylase controlling axon regeneration. EMBO J 2012;31:3063-3078.
    • (2012) EMBO J , vol.31 , pp. 3063-3078
    • Cho, Y.1    Cavalli, V.2
  • 110
    • 84877015491 scopus 로고    scopus 로고
    • HDAC4/5-HMGB1 signalling mediated by NADPH oxidase activity contributes to cerebral ischaemia/reperfusion injury
    • He M, Zhang B, Wei X, et al. HDAC4/5-HMGB1 signalling mediated by NADPH oxidase activity contributes to cerebral ischaemia/reperfusion injury. J Cell Mol Med 2013;17:531-542.
    • (2013) J Cell Mol Med , vol.17 , pp. 531-542
    • He, M.1    Zhang, B.2    Wei, X.3
  • 111
    • 0037161744 scopus 로고    scopus 로고
    • HDAC6 is a microtubuleassociated deacetylase
    • Hubbert C, Guardiola A, Shao R, et al. HDAC6 is a microtubuleassociated deacetylase. Nature 2002;417:455-458.
    • (2002) Nature , vol.417 , pp. 455-458
    • Hubbert, C.1    Guardiola, A.2    Shao, R.3
  • 112
    • 28844475400 scopus 로고    scopus 로고
    • HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin
    • Iwata A, Riley BE, Johnston JA, et al. HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J Biol Chem 2005;280:40282-40292.
    • (2005) J Biol Chem , vol.280 , pp. 40282-40292
    • Iwata, A.1    Riley, B.E.2    Johnston, J.A.3
  • 113
    • 34250183177 scopus 로고    scopus 로고
    • HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS
    • Pandey UB, Nie Z, Batlevi Y, et al. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 2007;447:859-863.
    • (2007) Nature , vol.447 , pp. 859-863
    • Pandey, U.B.1    Nie, Z.2    Batlevi, Y.3
  • 114
    • 34047175919 scopus 로고    scopus 로고
    • Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington's disease by increasing tubulin acetylation
    • Dompierre JP, Godin JD, Charrin BC, et al. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington's disease by increasing tubulin acetylation. J Neurosci 2007;27:3571-3583.
    • (2007) J Neurosci , vol.27 , pp. 3571-3583
    • Dompierre, J.P.1    Godin, J.D.2    Charrin, B.C.3
  • 115
    • 84886702007 scopus 로고    scopus 로고
    • Boosting regulatory T cells limits neuroinflammation in permanent cortical stroke
    • Liesz A, Zhou W, Na SY, et al. Boosting regulatory T cells limits neuroinflammation in permanent cortical stroke. J Neurosci 2013;33:17350-17362.
    • (2013) J Neurosci , vol.33 , pp. 17350-17362
    • Liesz, A.1    Zhou, W.2    Na, S.Y.3
  • 116
    • 0033623756 scopus 로고    scopus 로고
    • Delayed treatment with nicotinamide (Vitamin B (3)) improves neurological outcome and reduces infarct volume after transient focal cerebral ischemia in Wistar rats
    • Mokudai T, Ayoub IA, Sakakibara Y, et al. Delayed treatment with nicotinamide (Vitamin B (3)) improves neurological outcome and reduces infarct volume after transient focal cerebral ischemia in Wistar rats. Stroke 2000;31:1679-1685.
    • (2000) Stroke , vol.31 , pp. 1679-1685
    • Mokudai, T.1    Ayoub, I.A.2    Sakakibara, Y.3
  • 117
    • 84856222460 scopus 로고    scopus 로고
    • Nicotinamide inhibits nuclear factor-kappa B translocation after transient focal cerebral ischemia
    • Chen TY, Lin MH, Lee WT, et al. Nicotinamide inhibits nuclear factor-kappa B translocation after transient focal cerebral ischemia. Crit Care Med 2012;40:532-537.
    • (2012) Crit Care Med , vol.40 , pp. 532-537
    • Chen, T.Y.1    Lin, M.H.2    Lee, W.T.3
  • 119
    • 84922480609 scopus 로고    scopus 로고
    • Silent information regulator 2 homolog 1 counters cerebral hypoperfusion injury by deacetylating endothelial nitric oxide synthase
    • Hattori Y, Okamoto Y, Maki T, et al. Silent information regulator 2 homolog 1 counters cerebral hypoperfusion injury by deacetylating endothelial nitric oxide synthase. Stroke 2014;45:3403-3411.
    • (2014) Stroke , vol.45 , pp. 3403-3411
    • Hattori, Y.1    Okamoto, Y.2    Maki, T.3
  • 120
    • 84906898008 scopus 로고    scopus 로고
    • A critical role for interferon regulatory factor 9 in cerebral ischemic stroke
    • Chen HZ, Guo S, Li ZZ, et al. A critical role for interferon regulatory factor 9 in cerebral ischemic stroke. J Neurosci 2014;34:11897-11912.
    • (2014) J Neurosci , vol.34 , pp. 11897-11912
    • Chen, H.Z.1    Guo, S.2    Li, Z.Z.3
  • 121
    • 84880790329 scopus 로고    scopus 로고
    • Silent information regulator 1 protects the brain against cerebral ischemic damage
    • Hernandez-Jimenez M, Hurtado O, Cuartero MI, et al. Silent information regulator 1 protects the brain against cerebral ischemic damage. Stroke 2013;44:2333-2337.
    • (2013) Stroke , vol.44 , pp. 2333-2337
    • Hernandez-Jimenez, M.1    Hurtado, O.2    Cuartero, M.I.3
  • 122
    • 84870999850 scopus 로고    scopus 로고
    • The NAD-dependent deacetylase SIRT2 is required for programmed necrosis
    • Narayan N, Lee IH, Borenstein R, et al. The NAD-dependent deacetylase SIRT2 is required for programmed necrosis. Nature 2012;492:199-204.
    • (2012) Nature , vol.492 , pp. 199-204
    • Narayan, N.1    Lee, I.H.2    Borenstein, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.