-
1
-
-
33749134033
-
A dynamic model for replication protein A (RPA) function in DNA processing pathways
-
Fanning E, Klimovich V, Nager AR. 2006. A dynamic model for replication protein A (RPA) function in DNA processing pathways. Nucleic Acids Res 34: 4126-37.
-
(2006)
Nucleic Acids Res
, vol.34
, pp. 4126-4137
-
-
Fanning, E.1
Klimovich, V.2
Nager, A.R.3
-
2
-
-
0030908093
-
Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism
-
Wold MS. 1997. Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu Rev Biochem 66: 61-92.
-
(1997)
Annu Rev Biochem
, vol.66
, pp. 61-92
-
-
Wold, M.S.1
-
3
-
-
0023992803
-
Purification and characterization of replication protein A, a cellular protein required for in vitro replication of simian virus 40 DNA
-
Wold MS, Kelly T. 1988. Purification and characterization of replication protein A, a cellular protein required for in vitro replication of simian virus 40 DNA. Proc Natl Acad Sci USA 85: 2523-7.
-
(1988)
Proc Natl Acad Sci USA
, vol.85
, pp. 2523-2527
-
-
Wold, M.S.1
Kelly, T.2
-
4
-
-
0025950546
-
Replication factor-A from Saccharomyces cerevisiae is encoded by three essential genes coordinately expressed at S phase
-
Brill SJ, Stillman B. 1991. Replication factor-A from Saccharomyces cerevisiae is encoded by three essential genes coordinately expressed at S phase. Genes Dev 5: 1589-600.
-
(1991)
Genes Dev
, vol.5
, pp. 1589-1600
-
-
Brill, S.J.1
Stillman, B.2
-
5
-
-
0037567268
-
Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes
-
Zou L, Elledge SJ. 2003. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300: 1542-8.
-
(2003)
Science
, vol.300
, pp. 1542-1548
-
-
Zou, L.1
Elledge, S.J.2
-
6
-
-
84867693856
-
Structure and conformational change of a replication protein A heterotrimer bound to ssDNA
-
Fan J, Pavletich NP. 2012. Structure and conformational change of a replication protein A heterotrimer bound to ssDNA. Genes Dev 26: 2337-47.
-
(2012)
Genes Dev
, vol.26
, pp. 2337-2347
-
-
Fan, J.1
Pavletich, N.P.2
-
7
-
-
0033575671
-
The crystal structure of the complex of replication protein A subunits RPA32 and RPA14 reveals a mechanism for single-stranded DNA binding
-
Bochkarev A, Bochkareva E, Frappier L, Edwards AM. 1999. The crystal structure of the complex of replication protein A subunits RPA32 and RPA14 reveals a mechanism for single-stranded DNA binding. EMBO J 18: 4498-504.
-
(1999)
EMBO J
, vol.18
, pp. 4498-4504
-
-
Bochkarev, A.1
Bochkareva, E.2
Frappier, L.3
Edwards, A.M.4
-
8
-
-
0031030449
-
Structure of the single-stranded-DNA-binding domain of replication protein A bound to DNA
-
Bochkarev A, Pfuetzner RA, Edwards AM, Frappier L. 1997. Structure of the single-stranded-DNA-binding domain of replication protein A bound to DNA. Nature 385: 176-81.
-
(1997)
Nature
, vol.385
, pp. 176-181
-
-
Bochkarev, A.1
Pfuetzner, R.A.2
Edwards, A.M.3
Frappier, L.4
-
9
-
-
0032512745
-
The RPA32 subunit of human replication protein A contains a single-stranded DNA-binding domain
-
Bochkareva E, Frappier L, Edwards AM, Bochkarev A. 1998. The RPA32 subunit of human replication protein A contains a single-stranded DNA-binding domain. J Biol Chem 273: 3932-6.
-
(1998)
J Biol Chem
, vol.273
, pp. 3932-3936
-
-
Bochkareva, E.1
Frappier, L.2
Edwards, A.M.3
Bochkarev, A.4
-
10
-
-
0035965188
-
Functional analysis of the four DNA binding domains of replication protein A. The role of RPA2 in ssDNA binding
-
Bastin-Shanower SA, Brill SJ. 2001. Functional analysis of the four DNA binding domains of replication protein A. The role of RPA2 in ssDNA binding. J Biol Chem 276: 36446-53.
-
(2001)
J Biol Chem
, vol.276
, pp. 36446-36453
-
-
Bastin-Shanower, S.A.1
Brill, S.J.2
-
11
-
-
0031753251
-
Identification and characterization of the fourth single-stranded-DNA binding domain of replication protein A
-
Brill SJ, Bastin-Shanower S. 1998. Identification and characterization of the fourth single-stranded-DNA binding domain of replication protein A. Mol Cell Biol 18: 7225-34.
-
(1998)
Mol Cell Biol
, vol.18
, pp. 7225-7234
-
-
Brill, S.J.1
Bastin-Shanower, S.2
-
12
-
-
84866381501
-
Single-stranded DNA curtains for real-time single-molecule visualization of protein-nucleic acid interactions
-
Gibb B, Silverstein TD, Finkelstein IJ, Greene EC. 2012. Single-stranded DNA curtains for real-time single-molecule visualization of protein-nucleic acid interactions. Anal Chem 84: 7607-12.
-
(2012)
Anal Chem
, vol.84
, pp. 7607-7612
-
-
Gibb, B.1
Silverstein, T.D.2
Finkelstein, I.J.3
Greene, E.C.4
-
13
-
-
84896873779
-
Concentration-dependent exchange of replication protein A on single-stranded DNA revealed by single-molecule imaging
-
Gibb B, Ye LF, Gergoudis SC, Kwon Y, et al. 2014. Concentration-dependent exchange of replication protein A on single-stranded DNA revealed by single-molecule imaging. PLoS One 9: e87922.
-
(2014)
PLoS One
, vol.9
, pp. e87922
-
-
Gibb, B.1
Ye, L.F.2
Gergoudis, S.C.3
Kwon, Y.4
-
14
-
-
3442896884
-
Replication protein A phosphorylation and the cellular response to DNA damage
-
Binz SK, Sheehan AM, Wold MS. 2004. Replication protein A phosphorylation and the cellular response to DNA damage. DNA Repair 3: 1015-24.
-
(2004)
DNA Repair
, vol.3
, pp. 1015-1024
-
-
Binz, S.K.1
Sheehan, A.M.2
Wold, M.S.3
-
15
-
-
84889563685
-
ATR prohibits replication catastrophe by preventing global exhaustion of RPA
-
Toledo LI, Altmeyer M, Rask MB, Lukas C, et al. 2013. ATR prohibits replication catastrophe by preventing global exhaustion of RPA. Cell 155: 1088-103.
-
(2013)
Cell
, vol.155
, pp. 1088-1103
-
-
Toledo, L.I.1
Altmeyer, M.2
Rask, M.B.3
Lukas, C.4
-
16
-
-
77955475870
-
Regulation of DNA repair through deSUMOylation and SUMOylation of replication protein A complex
-
Dou H, Huang C, Singh M, Carpenter PB, et al. 2010. Regulation of DNA repair through deSUMOylation and SUMOylation of replication protein A complex. Mol Cell 39: 333-45.
-
(2010)
Mol Cell
, vol.39
, pp. 333-345
-
-
Dou, H.1
Huang, C.2
Singh, M.3
Carpenter, P.B.4
-
17
-
-
7244220162
-
DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1
-
Ira G, Pellicioli A, Balijja A, Wang X, et al. 2004. DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1. Nature 431: 1011-7.
-
(2004)
Nature
, vol.431
, pp. 1011-1017
-
-
Ira, G.1
Pellicioli, A.2
Balijja, A.3
Wang, X.4
-
19
-
-
53649104599
-
Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing
-
Mimitou EP, Symington LS. 2008. Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature 455: 770-4.
-
(2008)
Nature
, vol.455
, pp. 770-774
-
-
Mimitou, E.P.1
Symington, L.S.2
-
20
-
-
80755187806
-
Double-strand break end resection and repair pathway choice
-
Symington LS, Gautier J. 2011. Double-strand break end resection and repair pathway choice. Annu Rev Genet 45: 247-71.
-
(2011)
Annu Rev Genet
, vol.45
, pp. 247-271
-
-
Symington, L.S.1
Gautier, J.2
-
21
-
-
39549114009
-
Differential regulation of the cellular response to DNA double-strand breaks in G1
-
Barlow JH, Lisby M, Rothstein R. 2008. Differential regulation of the cellular response to DNA double-strand breaks in G1. Mol Cell 30: 73-85.
-
(2008)
Mol Cell
, vol.30
, pp. 73-85
-
-
Barlow, J.H.1
Lisby, M.2
Rothstein, R.3
-
22
-
-
30344463835
-
ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks
-
Jazayeri A, Falck J, Lukas C, Bartek J, et al. 2006. ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat Cell Biol 8: 37-45.
-
(2006)
Nat Cell Biol
, vol.8
, pp. 37-45
-
-
Jazayeri, A.1
Falck, J.2
Lukas, C.3
Bartek, J.4
-
23
-
-
0027231111
-
Substrate length requirements for efficient mitotic recombination in Saccharomyces cerevisiae
-
Jinks-Robertson S, Michelitch M, Ramcharan S. 1993. Substrate length requirements for efficient mitotic recombination in Saccharomyces cerevisiae. Mol Cell Biol 13: 3937-50.
-
(1993)
Mol Cell Biol
, vol.13
, pp. 3937-3950
-
-
Jinks-Robertson, S.1
Michelitch, M.2
Ramcharan, S.3
-
24
-
-
77957975815
-
Purified human BRCA2 stimulates RAD51-mediated recombination
-
Jensen RB, Carreira A, Kowalczykowski SC. 2010. Purified human BRCA2 stimulates RAD51-mediated recombination. Nature 467: 678-83.
-
(2010)
Nature
, vol.467
, pp. 678-683
-
-
Jensen, R.B.1
Carreira, A.2
Kowalczykowski, S.C.3
-
25
-
-
0032556870
-
Rad52 protein stimulates DNA strand exchange by Rad51 and replication protein A
-
New JH, Sugiyama T, Zaitseva E, Kowalczykowski SC. 1998. Rad52 protein stimulates DNA strand exchange by Rad51 and replication protein A. Nature 391: 407-10.
-
(1998)
Nature
, vol.391
, pp. 407-410
-
-
New, J.H.1
Sugiyama, T.2
Zaitseva, E.3
Kowalczykowski, S.C.4
-
26
-
-
0032556898
-
Stimulation by Rad52 of yeast Rad51-mediated recombination
-
Shinohara A, Ogawa T. 1998. Stimulation by Rad52 of yeast Rad51-mediated recombination. Nature 391: 404-7.
-
(1998)
Nature
, vol.391
, pp. 404-407
-
-
Shinohara, A.1
Ogawa, T.2
-
27
-
-
0030666945
-
Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase
-
Sung P. 1997. Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase. J Biol Chem 272: 28194-7.
-
(1997)
J Biol Chem
, vol.272
, pp. 28194-28197
-
-
Sung, P.1
-
28
-
-
14144253224
-
The BRCA2 homologue Brh2 nucleates RAD51 filament formation at a dsDNA-ssDNA junction
-
Yang H, Li Q, Fan J, Holloman WK, et al. 2005. The BRCA2 homologue Brh2 nucleates RAD51 filament formation at a dsDNA-ssDNA junction. Nature 433: 653-7.
-
(2005)
Nature
, vol.433
, pp. 653-657
-
-
Yang, H.1
Li, Q.2
Fan, J.3
Holloman, W.K.4
-
29
-
-
0029927124
-
Recombinational repair of gaps in DNA is asymmetric in Ustilago maydis and can be explained by a migrating D-loop model
-
Ferguson DO, Holloman WK. 1996. Recombinational repair of gaps in DNA is asymmetric in Ustilago maydis and can be explained by a migrating D-loop model. Proc Natl Acad Sci USA 93: 5419-24.
-
(1996)
Proc Natl Acad Sci USA
, vol.93
, pp. 5419-5424
-
-
Ferguson, D.O.1
Holloman, W.K.2
-
30
-
-
84906939632
-
Holliday junction processing enzymes as guardians of genome stability
-
Sarbajna S, West SC. 2014. Holliday junction processing enzymes as guardians of genome stability. Trends Biochem Sci 39: 409-19.
-
(2014)
Trends Biochem Sci
, vol.39
, pp. 409-419
-
-
Sarbajna, S.1
West, S.C.2
-
32
-
-
83255187901
-
Functional interplay of the Mre11 nuclease and Ku in the response to replication-associated DNA damage
-
Foster SS, Balestrini A, Petrini JH. 2011. Functional interplay of the Mre11 nuclease and Ku in the response to replication-associated DNA damage. Mol Cell Biol 31: 4379-89.
-
(2011)
Mol Cell Biol
, vol.31
, pp. 4379-4389
-
-
Foster, S.S.1
Balestrini, A.2
Petrini, J.H.3
-
33
-
-
46249131123
-
Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair
-
Bennardo N, Cheng A, Huang N, Stark JM. 2008. Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair. PLoS Genet 4: e1000110.
-
(2008)
PLoS Genet
, vol.4
, pp. e1000110
-
-
Bennardo, N.1
Cheng, A.2
Huang, N.3
Stark, J.M.4
-
34
-
-
84867386682
-
Classical and alternative end-joining pathways for repair of lymphocyte-specific and general DNA double-strand breaks
-
Boboila C, Alt FW, Schwer B. 2012. Classical and alternative end-joining pathways for repair of lymphocyte-specific and general DNA double-strand breaks. Adv Immunol 116: 1-49.
-
(2012)
Adv Immunol
, vol.116
, pp. 1-49
-
-
Boboila, C.1
Alt, F.W.2
Schwer, B.3
-
35
-
-
0242468933
-
Yeast Mre11 and Rad1 proteins define a Ku-independent mechanism to repair double-strand breaks lacking overlapping end sequences
-
Ma JL, Kim EM, Haber JE, Lee SE. 2003. Yeast Mre11 and Rad1 proteins define a Ku-independent mechanism to repair double-strand breaks lacking overlapping end sequences. Mol Cell Biol 23: 8820-8.
-
(2003)
Mol Cell Biol
, vol.23
, pp. 8820-8828
-
-
Ma, J.L.1
Kim, E.M.2
Haber, J.E.3
Lee, S.E.4
-
36
-
-
84877321963
-
Microhomology-mediated end joining and homologous recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells
-
Truong LN, Li Y, Shi LZ, Hwang PY, et al. 2013. Microhomology-mediated end joining and homologous recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells. Proc Natl Acad Sci USA 110: 7720-5.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 7720-7725
-
-
Truong, L.N.1
Li, Y.2
Shi, L.Z.3
Hwang, P.Y.4
-
37
-
-
11244280890
-
Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining
-
Audebert M, Salles B, Calsou P. 2004. Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining. J Biol Chem 279: 55117-26.
-
(2004)
J Biol Chem
, vol.279
, pp. 55117-55126
-
-
Audebert, M.1
Salles, B.2
Calsou, P.3
-
38
-
-
45549094090
-
Human DNA ligases I and III, but not ligase IV, are required for microhomology-mediated end joining of DNA double-strand breaks
-
Liang L, Deng L, Nguyen SC, Zhao X, et al. 2008. Human DNA ligases I and III, but not ligase IV, are required for microhomology-mediated end joining of DNA double-strand breaks. Nucleic Acids Res 36: 3297-310.
-
(2008)
Nucleic Acids Res
, vol.36
, pp. 3297-3310
-
-
Liang, L.1
Deng, L.2
Nguyen, S.C.3
Zhao, X.4
-
39
-
-
79959814259
-
DNA ligase III promotes alternative nonhomologous end-joining during chromosomal translocation formation
-
Simsek D, Brunet E, Wong SY, Katyal S, et al. 2011. DNA ligase III promotes alternative nonhomologous end-joining during chromosomal translocation formation. PLoS Genet 7: e1002080.
-
(2011)
PLoS Genet
, vol.7
, pp. e1002080
-
-
Simsek, D.1
Brunet, E.2
Wong, S.Y.3
Katyal, S.4
-
40
-
-
33845657443
-
PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways
-
Wang M, Wu W, Wu W, Rosidi B, et al. 2006. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways. Nucleic Acids Res 34: 6170-82.
-
(2006)
Nucleic Acids Res
, vol.34
, pp. 6170-6182
-
-
Wang, M.1
Wu, W.2
Wu, W.3
Rosidi, B.4
-
41
-
-
34548401682
-
Saccharomyces cerevisiae Sae2- and Tel1-dependent single-strand DNA formation at DNA break promotes microhomology-mediated end joining
-
Lee K, Lee SE. 2007. Saccharomyces cerevisiae Sae2- and Tel1-dependent single-strand DNA formation at DNA break promotes microhomology-mediated end joining. Genetics 176: 2003-14.
-
(2007)
Genetics
, vol.176
, pp. 2003-2014
-
-
Lee, K.1
Lee, S.E.2
-
42
-
-
67649757162
-
Chromosomal translocations induced at specified loci in human stem cells
-
Brunet E, Simsek D, Tomishima M, DeKelver R, et al. 2009. Chromosomal translocations induced at specified loci in human stem cells. Proc Natl Acad Sci USA 106: 10620-5.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, pp. 10620-10625
-
-
Brunet, E.1
Simsek, D.2
Tomishima, M.3
DeKelver, R.4
-
43
-
-
77950462986
-
Alternative end-joining is suppressed by the canonical NHEJ component Xrcc4-ligase IV during chromosomal translocation formation
-
Simsek D, Jasin M. 2010. Alternative end-joining is suppressed by the canonical NHEJ component Xrcc4-ligase IV during chromosomal translocation formation. Nat Struct Mol Biol 17: 410-6.
-
(2010)
Nat Struct Mol Biol
, vol.17
, pp. 410-416
-
-
Simsek, D.1
Jasin, M.2
-
45
-
-
72949119310
-
Complex landscapes of somatic rearrangement in human breast cancer genomes
-
Stephens PJ, McBride DJ, Lin ML, Varela I, et al. 2009. Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature 462: 1005-10.
-
(2009)
Nature
, vol.462
, pp. 1005-1010
-
-
Stephens, P.J.1
McBride, D.J.2
Lin, M.L.3
Varela, I.4
-
46
-
-
78650959663
-
Massive genomic rearrangement acquired in a single catastrophic event during cancer development
-
Stephens PJ, Greenman CD, Fu B, Yang F, et al. 2011. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144: 27-40.
-
(2011)
Cell
, vol.144
, pp. 27-40
-
-
Stephens, P.J.1
Greenman, C.D.2
Fu, B.3
Yang, F.4
-
47
-
-
77956325620
-
DNA end resection by Dna2-Sgs1-RPA and its stimulation by Top3-Rmi1 and Mre11-Rad50-Xrs2
-
Cejka P, Cannavo E, Polaczek P, Masuda-Sasa T, et al. 2010. DNA end resection by Dna2-Sgs1-RPA and its stimulation by Top3-Rmi1 and Mre11-Rad50-Xrs2. Nature 467: 112-6.
-
(2010)
Nature
, vol.467
, pp. 112-116
-
-
Cejka, P.1
Cannavo, E.2
Polaczek, P.3
Masuda-Sasa, T.4
-
48
-
-
77956302112
-
Mechanism of the ATP-dependent DNA end-resection machinery from Saccharomyces cerevisiae
-
Niu H, Chung WH, Zhu Z, Kwon Y, et al. 2010. Mechanism of the ATP-dependent DNA end-resection machinery from Saccharomyces cerevisiae. Nature 467: 108-11.
-
(2010)
Nature
, vol.467
, pp. 108-111
-
-
Niu, H.1
Chung, W.H.2
Zhu, Z.3
Kwon, Y.4
-
49
-
-
84876896603
-
Relationship of DNA degradation by Saccharomyces cerevisiae exonuclease 1 and its stimulation by RPA and Mre11-Rad50-Xrs2 to DNA end resection
-
Cannavo E, Cejka P, Kowalczykowski SC. 2013. Relationship of DNA degradation by Saccharomyces cerevisiae exonuclease 1 and its stimulation by RPA and Mre11-Rad50-Xrs2 to DNA end resection. Proc Natl Acad Sci USA 110: E1661-8.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. E1661-E1668
-
-
Cannavo, E.1
Cejka, P.2
Kowalczykowski, S.C.3
-
50
-
-
0027978039
-
Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast RAD51 protein
-
Sung P. 1994. Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast RAD51 protein. Science 265: 1241-3.
-
(1994)
Science
, vol.265
, pp. 1241-1243
-
-
Sung, P.1
-
51
-
-
0037199924
-
Rad52 protein associates with replication protein A (RPA)-single-stranded DNA to accelerate Rad51-mediated displacement of RPA and presynaptic complex formation
-
Sugiyama T, Kowalczykowski SC. 2002. Rad52 protein associates with replication protein A (RPA)-single-stranded DNA to accelerate Rad51-mediated displacement of RPA and presynaptic complex formation. J Biol Chem 277: 31663-72.
-
(2002)
J Biol Chem
, vol.277
, pp. 31663-31672
-
-
Sugiyama, T.1
Kowalczykowski, S.C.2
-
52
-
-
84919774962
-
Protein dynamics during presynaptic-complex assembly on individual single-stranded DNA molecules
-
Gibb B, Ye LF, Kwon Y, Niu H, et al. 2014. Protein dynamics during presynaptic-complex assembly on individual single-stranded DNA molecules. Nat Struct Mol Biol 21: 893-900.
-
(2014)
Nat Struct Mol Biol
, vol.21
, pp. 893-900
-
-
Gibb, B.1
Ye, L.F.2
Kwon, Y.3
Niu, H.4
-
53
-
-
0031835781
-
Studies of the interaction between Rad52 protein and the yeast single-stranded DNA binding protein RPA
-
Hays SL, Firmenich AA, Massey P, Banerjee R, et al. 1998. Studies of the interaction between Rad52 protein and the yeast single-stranded DNA binding protein RPA. Mol Cell Biol 18: 4400-6.
-
(1998)
Mol Cell Biol
, vol.18
, pp. 4400-4406
-
-
Hays, S.L.1
Firmenich, A.A.2
Massey, P.3
Banerjee, R.4
-
54
-
-
0027227980
-
Dominant negative alleles of RAD52 reveal a DNA repair/recombination complex including Rad51 and Rad52
-
Milne GT, Weaver DT. 1993. Dominant negative alleles of RAD52 reveal a DNA repair/recombination complex including Rad51 and Rad52. Genes Dev 7: 1755-65.
-
(1993)
Genes Dev
, vol.7
, pp. 1755-1765
-
-
Milne, G.T.1
Weaver, D.T.2
-
56
-
-
0031902872
-
Rad52 forms ring structures and co-operates with RPA in single-strand DNA annealing
-
Shinohara A, Shinohara M, Ohta T, Matsuda S, et al. 1998. Rad52 forms ring structures and co-operates with RPA in single-strand DNA annealing. Genes Cells 3: 145-56.
-
(1998)
Genes Cells
, vol.3
, pp. 145-156
-
-
Shinohara, A.1
Shinohara, M.2
Ohta, T.3
Matsuda, S.4
-
57
-
-
39549102855
-
Rad52 promotes postinvasion steps of meiotic double-strand-break repair
-
Lao JP, Oh SD, Shinohara M, Shinohara A, et al. 2008. Rad52 promotes postinvasion steps of meiotic double-strand-break repair. Mol Cell 29: 517-24.
-
(2008)
Mol Cell
, vol.29
, pp. 517-524
-
-
Lao, J.P.1
Oh, S.D.2
Shinohara, M.3
Shinohara, A.4
-
58
-
-
0026530911
-
Characterization of double-strand break-induced recombination: homology requirements and single-stranded DNA formation
-
Sugawara N, Haber JE. 1992. Characterization of double-strand break-induced recombination: homology requirements and single-stranded DNA formation. Mol Cell Biol 12: 563-75.
-
(1992)
Mol Cell Biol
, vol.12
, pp. 563-575
-
-
Sugawara, N.1
Haber, J.E.2
-
59
-
-
0032568595
-
DNA annealing by RAD52 protein is stimulated by specific interaction with the complex of replication protein A and single-stranded DNA
-
Sugiyama T, New JH, Kowalczykowski SC. 1998. DNA annealing by RAD52 protein is stimulated by specific interaction with the complex of replication protein A and single-stranded DNA. Proc Natl Acad Sci USA 95: 6049-54.
-
(1998)
Proc Natl Acad Sci USA
, vol.95
, pp. 6049-6054
-
-
Sugiyama, T.1
New, J.H.2
Kowalczykowski, S.C.3
-
60
-
-
0028072045
-
Replication factor A is required in vivo for DNA replication, repair, and recombination
-
Longhese MP, Plevani P, Lucchini G. 1994. Replication factor A is required in vivo for DNA replication, repair, and recombination. Mol Cell Biol 14: 7884-90.
-
(1994)
Mol Cell Biol
, vol.14
, pp. 7884-7890
-
-
Longhese, M.P.1
Plevani, P.2
Lucchini, G.3
-
61
-
-
0029597799
-
Mutations in the gene encoding the 34kDa subunit of yeast replication protein A cause defective S phase progression
-
Santocanale C, Neecke H, Longhese MP, Lucchini G, et al. 1995. Mutations in the gene encoding the 34kDa subunit of yeast replication protein A cause defective S phase progression. J Mol Biol 254: 595-607.
-
(1995)
J Mol Biol
, vol.254
, pp. 595-607
-
-
Santocanale, C.1
Neecke, H.2
Longhese, M.P.3
Lucchini, G.4
-
62
-
-
0031960691
-
Genetic analysis of yeast RPA1 reveals its multiple functions in DNA metabolism
-
Umezu K, Sugawara N, Chen C, Haber JE, et al. 1998. Genetic analysis of yeast RPA1 reveals its multiple functions in DNA metabolism. Genetics 148: 989-1005.
-
(1998)
Genetics
, vol.148
, pp. 989-1005
-
-
Umezu, K.1
Sugawara, N.2
Chen, C.3
Haber, J.E.4
-
63
-
-
19344366752
-
Role of Saccharomyces single-stranded DNA-binding protein RPA in the strand invasion step of double-strand break repair
-
Wang X, Haber JE. 2004. Role of Saccharomyces single-stranded DNA-binding protein RPA in the strand invasion step of double-strand break repair. PLoS Biol 2: E21.
-
(2004)
PLoS Biol
, vol.2
, pp. E21
-
-
Wang, X.1
Haber, J.E.2
-
64
-
-
0037931365
-
The recombination-deficient mutant RPA (rfa1-t11) is displaced slowly from single-stranded DNA by Rad51 protein
-
Kantake N, Sugiyama T, Kolodner RD, Kowalczykowski SC. 2003. The recombination-deficient mutant RPA (rfa1-t11) is displaced slowly from single-stranded DNA by Rad51 protein. J Biol Chem 278: 23410-7.
-
(2003)
J Biol Chem
, vol.278
, pp. 23410-23417
-
-
Kantake, N.1
Sugiyama, T.2
Kolodner, R.D.3
Kowalczykowski, S.C.4
-
65
-
-
84897968795
-
RPA antagonizes microhomology-mediated repair of DNA double-strand breaks
-
Deng SK, Gibb B, de Almeida MJ, Greene EC, et al. 2014. RPA antagonizes microhomology-mediated repair of DNA double-strand breaks. Nat Struct Mol Biol 21: 405-12.
-
(2014)
Nat Struct Mol Biol
, vol.21
, pp. 405-412
-
-
Deng, S.K.1
Gibb, B.2
de Almeida, M.J.3
Greene, E.C.4
-
66
-
-
0035989353
-
Replication protein A is required for meiotic recombination in Saccharomyces cerevisiae
-
Soustelle C, Vedel M, Kolodner R, Nicolas A. 2002. Replication protein A is required for meiotic recombination in Saccharomyces cerevisiae. Genetics 161: 535-47.
-
(2002)
Genetics
, vol.161
, pp. 535-547
-
-
Soustelle, C.1
Vedel, M.2
Kolodner, R.3
Nicolas, A.4
-
67
-
-
0028838087
-
A novel allele of Saccharomyces cerevisiae RFA1 that is deficient in recombination and repair and suppressible by RAD52
-
Firmenich AA, Elias-Arnanz M, Berg P. 1995. A novel allele of Saccharomyces cerevisiae RFA1 that is deficient in recombination and repair and suppressible by RAD52. Mol Cell Biol 15: 1620-31.
-
(1995)
Mol Cell Biol
, vol.15
, pp. 1620-1631
-
-
Firmenich, A.A.1
Elias-Arnanz, M.2
Berg, P.3
-
68
-
-
0028799703
-
A mutation in the gene encoding the Saccharomyces cerevisiae single-stranded DNA-binding protein Rfa1 stimulates a RAD52-independent pathway for direct-repeat recombination
-
Smith J, Rothstein R. 1995. A mutation in the gene encoding the Saccharomyces cerevisiae single-stranded DNA-binding protein Rfa1 stimulates a RAD52-independent pathway for direct-repeat recombination. Mol Cell Biol 15: 1632-41.
-
(1995)
Mol Cell Biol
, vol.15
, pp. 1632-1641
-
-
Smith, J.1
Rothstein, R.2
-
69
-
-
0032963978
-
An allele of RFA1 suppresses RAD52-dependent double-strand break repair in Saccharomyces cerevisiae
-
Smith J, Rothstein R. 1999. An allele of RFA1 suppresses RAD52-dependent double-strand break repair in Saccharomyces cerevisiae. Genetics 151: 447-58.
-
(1999)
Genetics
, vol.151
, pp. 447-458
-
-
Smith, J.1
Rothstein, R.2
-
70
-
-
84870720807
-
Microhomology directs diverse DNA break repair pathways and chromosomal translocations
-
Villarreal DD, Lee K, Deem A, Shim EY, et al. 2012. Microhomology directs diverse DNA break repair pathways and chromosomal translocations. PLoS Genet 8: e1003026.
-
(2012)
PLoS Genet
, vol.8
, pp. e1003026
-
-
Villarreal, D.D.1
Lee, K.2
Deem, A.3
Shim, E.Y.4
-
71
-
-
0032109778
-
Chromosomal rearrangements occur in S. cerevisiae rfa1 mutator mutants due to mutagenic lesions processed by double-strand-break repair
-
Chen C, Umezu K, Kolodner RD. 1998. Chromosomal rearrangements occur in S. cerevisiae rfa1 mutator mutants due to mutagenic lesions processed by double-strand-break repair. Mol Cell 2: 9-22.
-
(1998)
Mol Cell
, vol.2
, pp. 9-22
-
-
Chen, C.1
Umezu, K.2
Kolodner, R.D.3
-
72
-
-
0032860479
-
Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants
-
Chen C, Kolodner RD. 1999. Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nat Genet 23: 81-5.
-
(1999)
Nat Genet
, vol.23
, pp. 81-85
-
-
Chen, C.1
Kolodner, R.D.2
-
73
-
-
22844436867
-
Mutation in Rpa1 results in defective DNA double-strand break repair, chromosomal instability and cancer in mice
-
Wang Y, Putnam CD, Kane MF, Zhang W, et al. 2005. Mutation in Rpa1 results in defective DNA double-strand break repair, chromosomal instability and cancer in mice. Nat Genet 37: 750-5.
-
(2005)
Nat Genet
, vol.37
, pp. 750-755
-
-
Wang, Y.1
Putnam, C.D.2
Kane, M.F.3
Zhang, W.4
-
74
-
-
12844278880
-
Rejoining of DNA double-strand breaks as a function of overhang length
-
Daley JM, Wilson TE. 2005. Rejoining of DNA double-strand breaks as a function of overhang length. Mol Cell Bbiol 25: 896-906.
-
(2005)
Mol Cell Bbiol
, vol.25
, pp. 896-906
-
-
Daley, J.M.1
Wilson, T.E.2
-
75
-
-
34547132093
-
Microhomology-mediated end joining in fission yeast is repressed by pku70 and relies on genes involved in homologous recombination
-
Decottignies A. 2007. Microhomology-mediated end joining in fission yeast is repressed by pku70 and relies on genes involved in homologous recombination. Genetics 176: 1403-15.
-
(2007)
Genetics
, vol.176
, pp. 1403-1415
-
-
Decottignies, A.1
-
76
-
-
77955435598
-
Functional characterization of a cancer causing mutation in human replication protein A
-
Hass CS, Gakhar L, Wold MS. 2010. Functional characterization of a cancer causing mutation in human replication protein A. Mol Cancer Res 8: 1017-26.
-
(2010)
Mol Cancer Res
, vol.8
, pp. 1017-1026
-
-
Hass, C.S.1
Gakhar, L.2
Wold, M.S.3
-
77
-
-
0025941532
-
Heteroduplex formation and mismatch repair of the "stuck" mutation during mating-type switching in Saccharomyces cerevisiae
-
Ray BL, White CI, Haber JE. 1991. Heteroduplex formation and mismatch repair of the "stuck" mutation during mating-type switching in Saccharomyces cerevisiae. Mol Cell Biol 11: 5372-80.
-
(1991)
Mol Cell Biol
, vol.11
, pp. 5372-5380
-
-
Ray, B.L.1
White, C.I.2
Haber, J.E.3
-
78
-
-
46949098616
-
Break dosage, cell cycle stage and DNA replication influence DNA double strand break response
-
Zierhut C, Diffley JF. 2008. Break dosage, cell cycle stage and DNA replication influence DNA double strand break response. EMBO J 27: 1875-85.
-
(2008)
EMBO J
, vol.27
, pp. 1875-1885
-
-
Zierhut, C.1
Diffley, J.F.2
-
79
-
-
84878183628
-
RPA coordinates DNA end resection and prevents formation of DNA hairpins
-
Chen H, Lisby M, Symington LS. 2013. RPA coordinates DNA end resection and prevents formation of DNA hairpins. Mol Cell 50: 589-600.
-
(2013)
Mol Cell
, vol.50
, pp. 589-600
-
-
Chen, H.1
Lisby, M.2
Symington, L.S.3
-
80
-
-
0038239288
-
Bimodal interaction between replication-protein A and Dna2 is critical for Dna2 function both in vivo and in vitro
-
Bae KH, Kim HS, Bae SH, Kang HY, et al. 2003. Bimodal interaction between replication-protein A and Dna2 is critical for Dna2 function both in vivo and in vitro. Nucleic Acids Res 31: 3006-15.
-
(2003)
Nucleic Acids Res
, vol.31
, pp. 3006-3015
-
-
Bae, K.H.1
Kim, H.S.2
Bae, S.H.3
Kang, H.Y.4
-
81
-
-
4544281398
-
Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins
-
Lisby M, Barlow JH, Burgess RC, Rothstein R. 2004. Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 118: 699-713.
-
(2004)
Cell
, vol.118
, pp. 699-713
-
-
Lisby, M.1
Barlow, J.H.2
Burgess, R.C.3
Rothstein, R.4
-
82
-
-
0032403121
-
Interaction of human rad51 recombination protein with single-stranded DNA binding protein, RPA
-
Golub EI, Gupta RC, Haaf T, Wold MS, et al. 1998. Interaction of human rad51 recombination protein with single-stranded DNA binding protein, RPA. Nucleic Acids Res 26: 5388-93.
-
(1998)
Nucleic Acids Res
, vol.26
, pp. 5388-5393
-
-
Golub, E.I.1
Gupta, R.C.2
Haaf, T.3
Wold, M.S.4
-
83
-
-
79955522790
-
Processing of joint molecule intermediates by structure-selective endonucleases during homologous recombination in eukaryotes
-
Schwartz EK, Heyer WD. 2011. Processing of joint molecule intermediates by structure-selective endonucleases during homologous recombination in eukaryotes. Chromosoma 120: 109-27.
-
(2011)
Chromosoma
, vol.120
, pp. 109-127
-
-
Schwartz, E.K.1
Heyer, W.D.2
-
84
-
-
0037169325
-
The Mre11 complex is required for repair of hairpin-capped double-strand breaks and prevention of chromosome rearrangements
-
Lobachev KS, Gordenin DA, Resnick MA. 2002. The Mre11 complex is required for repair of hairpin-capped double-strand breaks and prevention of chromosome rearrangements. Cell 108: 183-93.
-
(2002)
Cell
, vol.108
, pp. 183-193
-
-
Lobachev, K.S.1
Gordenin, D.A.2
Resnick, M.A.3
-
85
-
-
0035929667
-
DNA structure-specific nuclease activities in the Saccharomyces cerevisiae Rad50 * Mre11 complex
-
Trujillo KM, Sung P. 2001. DNA structure-specific nuclease activities in the Saccharomyces cerevisiae Rad50*Mre11 complex. J Biol Chem 276: 35458-64.
-
(2001)
J Biol Chem
, vol.276
, pp. 35458-35464
-
-
Trujillo, K.M.1
Sung, P.2
-
86
-
-
84908045717
-
Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks
-
Cannavo E, Cejka P. 2014. Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks. Nature 514: 122-5.
-
(2014)
Nature
, vol.514
, pp. 122-125
-
-
Cannavo, E.1
Cejka, P.2
-
87
-
-
35848930133
-
The structure-specific endonuclease Mus81 contributes to replication restart by generating double-strand DNA breaks
-
Hanada K, Budzowska M, Davies SL, van Drunen E, et al. 2007. The structure-specific endonuclease Mus81 contributes to replication restart by generating double-strand DNA breaks. Nat Struct Mol Biol 14: 1096-104.
-
(2007)
Nat Struct Mol Biol
, vol.14
, pp. 1096-1104
-
-
Hanada, K.1
Budzowska, M.2
Davies, S.L.3
van Drunen, E.4
-
88
-
-
84880440332
-
ATR phosphorylates SMARCAL1 to prevent replication fork collapse
-
Couch FB, Bansbach CE, Driscoll R, Luzwick JW, et al. 2013. ATR phosphorylates SMARCAL1 to prevent replication fork collapse. Genes Dev 27: 1610-23.
-
(2013)
Genes Dev
, vol.27
, pp. 1610-1623
-
-
Couch, F.B.1
Bansbach, C.E.2
Driscoll, R.3
Luzwick, J.W.4
-
89
-
-
84885899930
-
RNF4 and PLK1 are required for replication fork collapse in ATR-deficient cells
-
Ragland RL, Patel S, Rivard RS, Smith K, et al. 2013. RNF4 and PLK1 are required for replication fork collapse in ATR-deficient cells. Genes Dev 27: 2259-73.
-
(2013)
Genes Dev
, vol.27
, pp. 2259-2273
-
-
Ragland, R.L.1
Patel, S.2
Rivard, R.S.3
Smith, K.4
-
90
-
-
79551691855
-
Replication protein A safeguards genome integrity by controlling NER incision events
-
Overmeer RM, Moser J, Volker M, Kool H, et al. 2011. Replication protein A safeguards genome integrity by controlling NER incision events. J Cell Biol 192: 401-15.
-
(2011)
J Cell Biol
, vol.192
, pp. 401-415
-
-
Overmeer, R.M.1
Moser, J.2
Volker, M.3
Kool, H.4
-
91
-
-
84898981921
-
Persistently stalled replication forks inhibit nucleotide excision repair in trans by sequestering Replication protein A
-
Tsaalbi-Shtylik A, Moser J, Mullenders LH, Jansen JG, et al. 2014. Persistently stalled replication forks inhibit nucleotide excision repair in trans by sequestering Replication protein A. Nucleic Acids Res 42: 4406-13.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 4406-4413
-
-
Tsaalbi-Shtylik, A.1
Moser, J.2
Mullenders, L.H.3
Jansen, J.G.4
-
92
-
-
7544247595
-
Telomerase- and recombination-independent immortalization of budding yeast
-
Maringele L, Lydall D. 2004. Telomerase- and recombination-independent immortalization of budding yeast. Genes Dev 18: 2663-75.
-
(2004)
Genes Dev
, vol.18
, pp. 2663-2675
-
-
Maringele, L.1
Lydall, D.2
-
93
-
-
22344455087
-
A mechanism of palindromic gene amplification in Saccharomyces cerevisiae
-
Rattray AJ, Shafer BK, Neelam B, Strathern JN. 2005. A mechanism of palindromic gene amplification in Saccharomyces cerevisiae. Genes Dev 19: 1390-9.
-
(2005)
Genes Dev
, vol.19
, pp. 1390-1399
-
-
Rattray, A.J.1
Shafer, B.K.2
Neelam, B.3
Strathern, J.N.4
-
94
-
-
0035022013
-
Fidelity of mitotic double-strand-break repair in Saccharomyces cerevisiae: a role for SAE2/COM1
-
Rattray AJ, McGill CB, Shafer BK, Strathern JN. 2001. Fidelity of mitotic double-strand-break repair in Saccharomyces cerevisiae: a role for SAE2/COM1. Genetics 158: 109-22.
-
(2001)
Genetics
, vol.158
, pp. 109-122
-
-
Rattray, A.J.1
McGill, C.B.2
Shafer, B.K.3
Strathern, J.N.4
-
95
-
-
48249141027
-
Replication stalling at unstable inverted repeats: interplay between DNA hairpins and fork stabilizing proteins
-
Voineagu I, Narayanan V, Lobachev KS, Mirkin SM. 2008. Replication stalling at unstable inverted repeats: interplay between DNA hairpins and fork stabilizing proteins. Proc Natl Acad Sci USA 105: 9936-41.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 9936-9941
-
-
Voineagu, I.1
Narayanan, V.2
Lobachev, K.S.3
Mirkin, S.M.4
-
96
-
-
0032488872
-
Expansion and length-dependent fragility of CTG repeats in yeast
-
Freudenreich CH, Kantrow SM, Zakian VA. 1998. Expansion and length-dependent fragility of CTG repeats in yeast. Science 279: 853-6.
-
(1998)
Science
, vol.279
, pp. 853-856
-
-
Freudenreich, C.H.1
Kantrow, S.M.2
Zakian, V.A.3
-
97
-
-
84878122437
-
Pif1 family helicases suppress genome instability at G-quadruplex motifs
-
Paeschke K, Bochman ML, Garcia PD, Cejka P, et al. 2013. Pif1 family helicases suppress genome instability at G-quadruplex motifs. Nature 497: 458-62.
-
(2013)
Nature
, vol.497
, pp. 458-462
-
-
Paeschke, K.1
Bochman, M.L.2
Garcia, P.D.3
Cejka, P.4
-
98
-
-
84870660365
-
Stimulation of gross chromosomal rearrangements by the human CEB1 and CEB25 minisatellites in Saccharomyces cerevisiae depends on G-quadruplexes or Cdc13
-
Piazza A, Serero A, Boule JB, Legoix-Ne P, et al. 2012. Stimulation of gross chromosomal rearrangements by the human CEB1 and CEB25 minisatellites in Saccharomyces cerevisiae depends on G-quadruplexes or Cdc13. PLoS Genet 8: e1003033.
-
(2012)
PLoS Genet
, vol.8
, pp. e1003033
-
-
Piazza, A.1
Serero, A.2
Boule, J.B.3
Legoix-Ne, P.4
-
99
-
-
67149126812
-
The yeast Pif1 helicase prevents genomic instability caused by G-quadruplex-forming CEB1 sequences in vivo
-
Ribeyre C, Lopes J, Boule JB, Piazza A, et al. 2009. The yeast Pif1 helicase prevents genomic instability caused by G-quadruplex-forming CEB1 sequences in vivo. PLoS Genet 5: e1000475.
-
(2009)
PLoS Genet
, vol.5
, pp. e1000475
-
-
Ribeyre, C.1
Lopes, J.2
Boule, J.B.3
Piazza, A.4
-
100
-
-
84892776464
-
Genome-wide screen reveals replication pathway for quasi-palindrome fragility dependent on homologous recombination
-
Zhang Y, Saini N, Sheng Z, Lobachev KS. 2013. Genome-wide screen reveals replication pathway for quasi-palindrome fragility dependent on homologous recombination. PLoS Genet 9: e1003979.
-
(2013)
PLoS Genet
, vol.9
, pp. e1003979
-
-
Zhang, Y.1
Saini, N.2
Sheng, Z.3
Lobachev, K.S.4
-
101
-
-
84868100119
-
Genome-wide screen identifies pathways that govern GAA/TTC repeat fragility and expansions in dividing and nondividing yeast cells
-
Zhang Y, Shishkin AA, Nishida Y, Marcinkowski-Desmond D, et al. 2012. Genome-wide screen identifies pathways that govern GAA/TTC repeat fragility and expansions in dividing and nondividing yeast cells. Mol Cell 48: 254-65.
-
(2012)
Mol Cell
, vol.48
, pp. 254-265
-
-
Zhang, Y.1
Shishkin, A.A.2
Nishida, Y.3
Marcinkowski-Desmond, D.4
|