메뉴 건너뛰기




Volumn 37, Issue 3, 2015, Pages 305-313

Replication protein A prevents promiscuous annealing between short sequence homologies: Implications for genome integrity

Author keywords

Chromosome rearrangements; DNA replication; End joining; Homologous recombination; Mre11; Rad51; RPA; Sae2

Indexed keywords

DNA BINDING PROTEIN; NUCLEASE; REPLICATION FACTOR A;

EID: 84925635331     PISSN: 02659247     EISSN: 15211878     Source Type: Journal    
DOI: 10.1002/bies.201400161     Document Type: Article
Times cited : (31)

References (101)
  • 1
    • 33749134033 scopus 로고    scopus 로고
    • A dynamic model for replication protein A (RPA) function in DNA processing pathways
    • Fanning E, Klimovich V, Nager AR. 2006. A dynamic model for replication protein A (RPA) function in DNA processing pathways. Nucleic Acids Res 34: 4126-37.
    • (2006) Nucleic Acids Res , vol.34 , pp. 4126-4137
    • Fanning, E.1    Klimovich, V.2    Nager, A.R.3
  • 2
    • 0030908093 scopus 로고    scopus 로고
    • Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism
    • Wold MS. 1997. Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu Rev Biochem 66: 61-92.
    • (1997) Annu Rev Biochem , vol.66 , pp. 61-92
    • Wold, M.S.1
  • 3
    • 0023992803 scopus 로고
    • Purification and characterization of replication protein A, a cellular protein required for in vitro replication of simian virus 40 DNA
    • Wold MS, Kelly T. 1988. Purification and characterization of replication protein A, a cellular protein required for in vitro replication of simian virus 40 DNA. Proc Natl Acad Sci USA 85: 2523-7.
    • (1988) Proc Natl Acad Sci USA , vol.85 , pp. 2523-2527
    • Wold, M.S.1    Kelly, T.2
  • 4
    • 0025950546 scopus 로고
    • Replication factor-A from Saccharomyces cerevisiae is encoded by three essential genes coordinately expressed at S phase
    • Brill SJ, Stillman B. 1991. Replication factor-A from Saccharomyces cerevisiae is encoded by three essential genes coordinately expressed at S phase. Genes Dev 5: 1589-600.
    • (1991) Genes Dev , vol.5 , pp. 1589-1600
    • Brill, S.J.1    Stillman, B.2
  • 5
    • 0037567268 scopus 로고    scopus 로고
    • Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes
    • Zou L, Elledge SJ. 2003. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300: 1542-8.
    • (2003) Science , vol.300 , pp. 1542-1548
    • Zou, L.1    Elledge, S.J.2
  • 6
    • 84867693856 scopus 로고    scopus 로고
    • Structure and conformational change of a replication protein A heterotrimer bound to ssDNA
    • Fan J, Pavletich NP. 2012. Structure and conformational change of a replication protein A heterotrimer bound to ssDNA. Genes Dev 26: 2337-47.
    • (2012) Genes Dev , vol.26 , pp. 2337-2347
    • Fan, J.1    Pavletich, N.P.2
  • 7
    • 0033575671 scopus 로고    scopus 로고
    • The crystal structure of the complex of replication protein A subunits RPA32 and RPA14 reveals a mechanism for single-stranded DNA binding
    • Bochkarev A, Bochkareva E, Frappier L, Edwards AM. 1999. The crystal structure of the complex of replication protein A subunits RPA32 and RPA14 reveals a mechanism for single-stranded DNA binding. EMBO J 18: 4498-504.
    • (1999) EMBO J , vol.18 , pp. 4498-4504
    • Bochkarev, A.1    Bochkareva, E.2    Frappier, L.3    Edwards, A.M.4
  • 8
    • 0031030449 scopus 로고    scopus 로고
    • Structure of the single-stranded-DNA-binding domain of replication protein A bound to DNA
    • Bochkarev A, Pfuetzner RA, Edwards AM, Frappier L. 1997. Structure of the single-stranded-DNA-binding domain of replication protein A bound to DNA. Nature 385: 176-81.
    • (1997) Nature , vol.385 , pp. 176-181
    • Bochkarev, A.1    Pfuetzner, R.A.2    Edwards, A.M.3    Frappier, L.4
  • 9
    • 0032512745 scopus 로고    scopus 로고
    • The RPA32 subunit of human replication protein A contains a single-stranded DNA-binding domain
    • Bochkareva E, Frappier L, Edwards AM, Bochkarev A. 1998. The RPA32 subunit of human replication protein A contains a single-stranded DNA-binding domain. J Biol Chem 273: 3932-6.
    • (1998) J Biol Chem , vol.273 , pp. 3932-3936
    • Bochkareva, E.1    Frappier, L.2    Edwards, A.M.3    Bochkarev, A.4
  • 10
    • 0035965188 scopus 로고    scopus 로고
    • Functional analysis of the four DNA binding domains of replication protein A. The role of RPA2 in ssDNA binding
    • Bastin-Shanower SA, Brill SJ. 2001. Functional analysis of the four DNA binding domains of replication protein A. The role of RPA2 in ssDNA binding. J Biol Chem 276: 36446-53.
    • (2001) J Biol Chem , vol.276 , pp. 36446-36453
    • Bastin-Shanower, S.A.1    Brill, S.J.2
  • 11
    • 0031753251 scopus 로고    scopus 로고
    • Identification and characterization of the fourth single-stranded-DNA binding domain of replication protein A
    • Brill SJ, Bastin-Shanower S. 1998. Identification and characterization of the fourth single-stranded-DNA binding domain of replication protein A. Mol Cell Biol 18: 7225-34.
    • (1998) Mol Cell Biol , vol.18 , pp. 7225-7234
    • Brill, S.J.1    Bastin-Shanower, S.2
  • 12
    • 84866381501 scopus 로고    scopus 로고
    • Single-stranded DNA curtains for real-time single-molecule visualization of protein-nucleic acid interactions
    • Gibb B, Silverstein TD, Finkelstein IJ, Greene EC. 2012. Single-stranded DNA curtains for real-time single-molecule visualization of protein-nucleic acid interactions. Anal Chem 84: 7607-12.
    • (2012) Anal Chem , vol.84 , pp. 7607-7612
    • Gibb, B.1    Silverstein, T.D.2    Finkelstein, I.J.3    Greene, E.C.4
  • 13
    • 84896873779 scopus 로고    scopus 로고
    • Concentration-dependent exchange of replication protein A on single-stranded DNA revealed by single-molecule imaging
    • Gibb B, Ye LF, Gergoudis SC, Kwon Y, et al. 2014. Concentration-dependent exchange of replication protein A on single-stranded DNA revealed by single-molecule imaging. PLoS One 9: e87922.
    • (2014) PLoS One , vol.9 , pp. e87922
    • Gibb, B.1    Ye, L.F.2    Gergoudis, S.C.3    Kwon, Y.4
  • 14
    • 3442896884 scopus 로고    scopus 로고
    • Replication protein A phosphorylation and the cellular response to DNA damage
    • Binz SK, Sheehan AM, Wold MS. 2004. Replication protein A phosphorylation and the cellular response to DNA damage. DNA Repair 3: 1015-24.
    • (2004) DNA Repair , vol.3 , pp. 1015-1024
    • Binz, S.K.1    Sheehan, A.M.2    Wold, M.S.3
  • 15
    • 84889563685 scopus 로고    scopus 로고
    • ATR prohibits replication catastrophe by preventing global exhaustion of RPA
    • Toledo LI, Altmeyer M, Rask MB, Lukas C, et al. 2013. ATR prohibits replication catastrophe by preventing global exhaustion of RPA. Cell 155: 1088-103.
    • (2013) Cell , vol.155 , pp. 1088-1103
    • Toledo, L.I.1    Altmeyer, M.2    Rask, M.B.3    Lukas, C.4
  • 16
    • 77955475870 scopus 로고    scopus 로고
    • Regulation of DNA repair through deSUMOylation and SUMOylation of replication protein A complex
    • Dou H, Huang C, Singh M, Carpenter PB, et al. 2010. Regulation of DNA repair through deSUMOylation and SUMOylation of replication protein A complex. Mol Cell 39: 333-45.
    • (2010) Mol Cell , vol.39 , pp. 333-345
    • Dou, H.1    Huang, C.2    Singh, M.3    Carpenter, P.B.4
  • 17
    • 7244220162 scopus 로고    scopus 로고
    • DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1
    • Ira G, Pellicioli A, Balijja A, Wang X, et al. 2004. DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1. Nature 431: 1011-7.
    • (2004) Nature , vol.431 , pp. 1011-1017
    • Ira, G.1    Pellicioli, A.2    Balijja, A.3    Wang, X.4
  • 18
    • 10344263324 scopus 로고    scopus 로고
    • Recombination proteins in yeast
    • Krogh BO, Symington LS. 2004. Recombination proteins in yeast. Annu Rev Genet 38: 233-71.
    • (2004) Annu Rev Genet , vol.38 , pp. 233-271
    • Krogh, B.O.1    Symington, L.S.2
  • 19
    • 53649104599 scopus 로고    scopus 로고
    • Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing
    • Mimitou EP, Symington LS. 2008. Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature 455: 770-4.
    • (2008) Nature , vol.455 , pp. 770-774
    • Mimitou, E.P.1    Symington, L.S.2
  • 20
    • 80755187806 scopus 로고    scopus 로고
    • Double-strand break end resection and repair pathway choice
    • Symington LS, Gautier J. 2011. Double-strand break end resection and repair pathway choice. Annu Rev Genet 45: 247-71.
    • (2011) Annu Rev Genet , vol.45 , pp. 247-271
    • Symington, L.S.1    Gautier, J.2
  • 21
    • 39549114009 scopus 로고    scopus 로고
    • Differential regulation of the cellular response to DNA double-strand breaks in G1
    • Barlow JH, Lisby M, Rothstein R. 2008. Differential regulation of the cellular response to DNA double-strand breaks in G1. Mol Cell 30: 73-85.
    • (2008) Mol Cell , vol.30 , pp. 73-85
    • Barlow, J.H.1    Lisby, M.2    Rothstein, R.3
  • 22
    • 30344463835 scopus 로고    scopus 로고
    • ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks
    • Jazayeri A, Falck J, Lukas C, Bartek J, et al. 2006. ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat Cell Biol 8: 37-45.
    • (2006) Nat Cell Biol , vol.8 , pp. 37-45
    • Jazayeri, A.1    Falck, J.2    Lukas, C.3    Bartek, J.4
  • 23
    • 0027231111 scopus 로고
    • Substrate length requirements for efficient mitotic recombination in Saccharomyces cerevisiae
    • Jinks-Robertson S, Michelitch M, Ramcharan S. 1993. Substrate length requirements for efficient mitotic recombination in Saccharomyces cerevisiae. Mol Cell Biol 13: 3937-50.
    • (1993) Mol Cell Biol , vol.13 , pp. 3937-3950
    • Jinks-Robertson, S.1    Michelitch, M.2    Ramcharan, S.3
  • 24
    • 77957975815 scopus 로고    scopus 로고
    • Purified human BRCA2 stimulates RAD51-mediated recombination
    • Jensen RB, Carreira A, Kowalczykowski SC. 2010. Purified human BRCA2 stimulates RAD51-mediated recombination. Nature 467: 678-83.
    • (2010) Nature , vol.467 , pp. 678-683
    • Jensen, R.B.1    Carreira, A.2    Kowalczykowski, S.C.3
  • 25
    • 0032556870 scopus 로고    scopus 로고
    • Rad52 protein stimulates DNA strand exchange by Rad51 and replication protein A
    • New JH, Sugiyama T, Zaitseva E, Kowalczykowski SC. 1998. Rad52 protein stimulates DNA strand exchange by Rad51 and replication protein A. Nature 391: 407-10.
    • (1998) Nature , vol.391 , pp. 407-410
    • New, J.H.1    Sugiyama, T.2    Zaitseva, E.3    Kowalczykowski, S.C.4
  • 26
    • 0032556898 scopus 로고    scopus 로고
    • Stimulation by Rad52 of yeast Rad51-mediated recombination
    • Shinohara A, Ogawa T. 1998. Stimulation by Rad52 of yeast Rad51-mediated recombination. Nature 391: 404-7.
    • (1998) Nature , vol.391 , pp. 404-407
    • Shinohara, A.1    Ogawa, T.2
  • 27
    • 0030666945 scopus 로고    scopus 로고
    • Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase
    • Sung P. 1997. Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase. J Biol Chem 272: 28194-7.
    • (1997) J Biol Chem , vol.272 , pp. 28194-28197
    • Sung, P.1
  • 28
    • 14144253224 scopus 로고    scopus 로고
    • The BRCA2 homologue Brh2 nucleates RAD51 filament formation at a dsDNA-ssDNA junction
    • Yang H, Li Q, Fan J, Holloman WK, et al. 2005. The BRCA2 homologue Brh2 nucleates RAD51 filament formation at a dsDNA-ssDNA junction. Nature 433: 653-7.
    • (2005) Nature , vol.433 , pp. 653-657
    • Yang, H.1    Li, Q.2    Fan, J.3    Holloman, W.K.4
  • 29
    • 0029927124 scopus 로고    scopus 로고
    • Recombinational repair of gaps in DNA is asymmetric in Ustilago maydis and can be explained by a migrating D-loop model
    • Ferguson DO, Holloman WK. 1996. Recombinational repair of gaps in DNA is asymmetric in Ustilago maydis and can be explained by a migrating D-loop model. Proc Natl Acad Sci USA 93: 5419-24.
    • (1996) Proc Natl Acad Sci USA , vol.93 , pp. 5419-5424
    • Ferguson, D.O.1    Holloman, W.K.2
  • 30
    • 84906939632 scopus 로고    scopus 로고
    • Holliday junction processing enzymes as guardians of genome stability
    • Sarbajna S, West SC. 2014. Holliday junction processing enzymes as guardians of genome stability. Trends Biochem Sci 39: 409-19.
    • (2014) Trends Biochem Sci , vol.39 , pp. 409-419
    • Sarbajna, S.1    West, S.C.2
  • 32
    • 83255187901 scopus 로고    scopus 로고
    • Functional interplay of the Mre11 nuclease and Ku in the response to replication-associated DNA damage
    • Foster SS, Balestrini A, Petrini JH. 2011. Functional interplay of the Mre11 nuclease and Ku in the response to replication-associated DNA damage. Mol Cell Biol 31: 4379-89.
    • (2011) Mol Cell Biol , vol.31 , pp. 4379-4389
    • Foster, S.S.1    Balestrini, A.2    Petrini, J.H.3
  • 33
    • 46249131123 scopus 로고    scopus 로고
    • Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair
    • Bennardo N, Cheng A, Huang N, Stark JM. 2008. Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair. PLoS Genet 4: e1000110.
    • (2008) PLoS Genet , vol.4 , pp. e1000110
    • Bennardo, N.1    Cheng, A.2    Huang, N.3    Stark, J.M.4
  • 34
    • 84867386682 scopus 로고    scopus 로고
    • Classical and alternative end-joining pathways for repair of lymphocyte-specific and general DNA double-strand breaks
    • Boboila C, Alt FW, Schwer B. 2012. Classical and alternative end-joining pathways for repair of lymphocyte-specific and general DNA double-strand breaks. Adv Immunol 116: 1-49.
    • (2012) Adv Immunol , vol.116 , pp. 1-49
    • Boboila, C.1    Alt, F.W.2    Schwer, B.3
  • 35
    • 0242468933 scopus 로고    scopus 로고
    • Yeast Mre11 and Rad1 proteins define a Ku-independent mechanism to repair double-strand breaks lacking overlapping end sequences
    • Ma JL, Kim EM, Haber JE, Lee SE. 2003. Yeast Mre11 and Rad1 proteins define a Ku-independent mechanism to repair double-strand breaks lacking overlapping end sequences. Mol Cell Biol 23: 8820-8.
    • (2003) Mol Cell Biol , vol.23 , pp. 8820-8828
    • Ma, J.L.1    Kim, E.M.2    Haber, J.E.3    Lee, S.E.4
  • 36
    • 84877321963 scopus 로고    scopus 로고
    • Microhomology-mediated end joining and homologous recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells
    • Truong LN, Li Y, Shi LZ, Hwang PY, et al. 2013. Microhomology-mediated end joining and homologous recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells. Proc Natl Acad Sci USA 110: 7720-5.
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. 7720-7725
    • Truong, L.N.1    Li, Y.2    Shi, L.Z.3    Hwang, P.Y.4
  • 37
    • 11244280890 scopus 로고    scopus 로고
    • Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining
    • Audebert M, Salles B, Calsou P. 2004. Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining. J Biol Chem 279: 55117-26.
    • (2004) J Biol Chem , vol.279 , pp. 55117-55126
    • Audebert, M.1    Salles, B.2    Calsou, P.3
  • 38
    • 45549094090 scopus 로고    scopus 로고
    • Human DNA ligases I and III, but not ligase IV, are required for microhomology-mediated end joining of DNA double-strand breaks
    • Liang L, Deng L, Nguyen SC, Zhao X, et al. 2008. Human DNA ligases I and III, but not ligase IV, are required for microhomology-mediated end joining of DNA double-strand breaks. Nucleic Acids Res 36: 3297-310.
    • (2008) Nucleic Acids Res , vol.36 , pp. 3297-3310
    • Liang, L.1    Deng, L.2    Nguyen, S.C.3    Zhao, X.4
  • 39
    • 79959814259 scopus 로고    scopus 로고
    • DNA ligase III promotes alternative nonhomologous end-joining during chromosomal translocation formation
    • Simsek D, Brunet E, Wong SY, Katyal S, et al. 2011. DNA ligase III promotes alternative nonhomologous end-joining during chromosomal translocation formation. PLoS Genet 7: e1002080.
    • (2011) PLoS Genet , vol.7 , pp. e1002080
    • Simsek, D.1    Brunet, E.2    Wong, S.Y.3    Katyal, S.4
  • 40
    • 33845657443 scopus 로고    scopus 로고
    • PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways
    • Wang M, Wu W, Wu W, Rosidi B, et al. 2006. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways. Nucleic Acids Res 34: 6170-82.
    • (2006) Nucleic Acids Res , vol.34 , pp. 6170-6182
    • Wang, M.1    Wu, W.2    Wu, W.3    Rosidi, B.4
  • 41
    • 34548401682 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae Sae2- and Tel1-dependent single-strand DNA formation at DNA break promotes microhomology-mediated end joining
    • Lee K, Lee SE. 2007. Saccharomyces cerevisiae Sae2- and Tel1-dependent single-strand DNA formation at DNA break promotes microhomology-mediated end joining. Genetics 176: 2003-14.
    • (2007) Genetics , vol.176 , pp. 2003-2014
    • Lee, K.1    Lee, S.E.2
  • 42
    • 67649757162 scopus 로고    scopus 로고
    • Chromosomal translocations induced at specified loci in human stem cells
    • Brunet E, Simsek D, Tomishima M, DeKelver R, et al. 2009. Chromosomal translocations induced at specified loci in human stem cells. Proc Natl Acad Sci USA 106: 10620-5.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 10620-10625
    • Brunet, E.1    Simsek, D.2    Tomishima, M.3    DeKelver, R.4
  • 43
    • 77950462986 scopus 로고    scopus 로고
    • Alternative end-joining is suppressed by the canonical NHEJ component Xrcc4-ligase IV during chromosomal translocation formation
    • Simsek D, Jasin M. 2010. Alternative end-joining is suppressed by the canonical NHEJ component Xrcc4-ligase IV during chromosomal translocation formation. Nat Struct Mol Biol 17: 410-6.
    • (2010) Nat Struct Mol Biol , vol.17 , pp. 410-416
    • Simsek, D.1    Jasin, M.2
  • 45
    • 72949119310 scopus 로고    scopus 로고
    • Complex landscapes of somatic rearrangement in human breast cancer genomes
    • Stephens PJ, McBride DJ, Lin ML, Varela I, et al. 2009. Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature 462: 1005-10.
    • (2009) Nature , vol.462 , pp. 1005-1010
    • Stephens, P.J.1    McBride, D.J.2    Lin, M.L.3    Varela, I.4
  • 46
    • 78650959663 scopus 로고    scopus 로고
    • Massive genomic rearrangement acquired in a single catastrophic event during cancer development
    • Stephens PJ, Greenman CD, Fu B, Yang F, et al. 2011. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144: 27-40.
    • (2011) Cell , vol.144 , pp. 27-40
    • Stephens, P.J.1    Greenman, C.D.2    Fu, B.3    Yang, F.4
  • 47
    • 77956325620 scopus 로고    scopus 로고
    • DNA end resection by Dna2-Sgs1-RPA and its stimulation by Top3-Rmi1 and Mre11-Rad50-Xrs2
    • Cejka P, Cannavo E, Polaczek P, Masuda-Sasa T, et al. 2010. DNA end resection by Dna2-Sgs1-RPA and its stimulation by Top3-Rmi1 and Mre11-Rad50-Xrs2. Nature 467: 112-6.
    • (2010) Nature , vol.467 , pp. 112-116
    • Cejka, P.1    Cannavo, E.2    Polaczek, P.3    Masuda-Sasa, T.4
  • 48
    • 77956302112 scopus 로고    scopus 로고
    • Mechanism of the ATP-dependent DNA end-resection machinery from Saccharomyces cerevisiae
    • Niu H, Chung WH, Zhu Z, Kwon Y, et al. 2010. Mechanism of the ATP-dependent DNA end-resection machinery from Saccharomyces cerevisiae. Nature 467: 108-11.
    • (2010) Nature , vol.467 , pp. 108-111
    • Niu, H.1    Chung, W.H.2    Zhu, Z.3    Kwon, Y.4
  • 49
    • 84876896603 scopus 로고    scopus 로고
    • Relationship of DNA degradation by Saccharomyces cerevisiae exonuclease 1 and its stimulation by RPA and Mre11-Rad50-Xrs2 to DNA end resection
    • Cannavo E, Cejka P, Kowalczykowski SC. 2013. Relationship of DNA degradation by Saccharomyces cerevisiae exonuclease 1 and its stimulation by RPA and Mre11-Rad50-Xrs2 to DNA end resection. Proc Natl Acad Sci USA 110: E1661-8.
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. E1661-E1668
    • Cannavo, E.1    Cejka, P.2    Kowalczykowski, S.C.3
  • 50
    • 0027978039 scopus 로고
    • Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast RAD51 protein
    • Sung P. 1994. Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast RAD51 protein. Science 265: 1241-3.
    • (1994) Science , vol.265 , pp. 1241-1243
    • Sung, P.1
  • 51
    • 0037199924 scopus 로고    scopus 로고
    • Rad52 protein associates with replication protein A (RPA)-single-stranded DNA to accelerate Rad51-mediated displacement of RPA and presynaptic complex formation
    • Sugiyama T, Kowalczykowski SC. 2002. Rad52 protein associates with replication protein A (RPA)-single-stranded DNA to accelerate Rad51-mediated displacement of RPA and presynaptic complex formation. J Biol Chem 277: 31663-72.
    • (2002) J Biol Chem , vol.277 , pp. 31663-31672
    • Sugiyama, T.1    Kowalczykowski, S.C.2
  • 52
    • 84919774962 scopus 로고    scopus 로고
    • Protein dynamics during presynaptic-complex assembly on individual single-stranded DNA molecules
    • Gibb B, Ye LF, Kwon Y, Niu H, et al. 2014. Protein dynamics during presynaptic-complex assembly on individual single-stranded DNA molecules. Nat Struct Mol Biol 21: 893-900.
    • (2014) Nat Struct Mol Biol , vol.21 , pp. 893-900
    • Gibb, B.1    Ye, L.F.2    Kwon, Y.3    Niu, H.4
  • 53
    • 0031835781 scopus 로고    scopus 로고
    • Studies of the interaction between Rad52 protein and the yeast single-stranded DNA binding protein RPA
    • Hays SL, Firmenich AA, Massey P, Banerjee R, et al. 1998. Studies of the interaction between Rad52 protein and the yeast single-stranded DNA binding protein RPA. Mol Cell Biol 18: 4400-6.
    • (1998) Mol Cell Biol , vol.18 , pp. 4400-4406
    • Hays, S.L.1    Firmenich, A.A.2    Massey, P.3    Banerjee, R.4
  • 54
    • 0027227980 scopus 로고
    • Dominant negative alleles of RAD52 reveal a DNA repair/recombination complex including Rad51 and Rad52
    • Milne GT, Weaver DT. 1993. Dominant negative alleles of RAD52 reveal a DNA repair/recombination complex including Rad51 and Rad52. Genes Dev 7: 1755-65.
    • (1993) Genes Dev , vol.7 , pp. 1755-1765
    • Milne, G.T.1    Weaver, D.T.2
  • 56
    • 0031902872 scopus 로고    scopus 로고
    • Rad52 forms ring structures and co-operates with RPA in single-strand DNA annealing
    • Shinohara A, Shinohara M, Ohta T, Matsuda S, et al. 1998. Rad52 forms ring structures and co-operates with RPA in single-strand DNA annealing. Genes Cells 3: 145-56.
    • (1998) Genes Cells , vol.3 , pp. 145-156
    • Shinohara, A.1    Shinohara, M.2    Ohta, T.3    Matsuda, S.4
  • 57
    • 39549102855 scopus 로고    scopus 로고
    • Rad52 promotes postinvasion steps of meiotic double-strand-break repair
    • Lao JP, Oh SD, Shinohara M, Shinohara A, et al. 2008. Rad52 promotes postinvasion steps of meiotic double-strand-break repair. Mol Cell 29: 517-24.
    • (2008) Mol Cell , vol.29 , pp. 517-524
    • Lao, J.P.1    Oh, S.D.2    Shinohara, M.3    Shinohara, A.4
  • 58
    • 0026530911 scopus 로고
    • Characterization of double-strand break-induced recombination: homology requirements and single-stranded DNA formation
    • Sugawara N, Haber JE. 1992. Characterization of double-strand break-induced recombination: homology requirements and single-stranded DNA formation. Mol Cell Biol 12: 563-75.
    • (1992) Mol Cell Biol , vol.12 , pp. 563-575
    • Sugawara, N.1    Haber, J.E.2
  • 59
    • 0032568595 scopus 로고    scopus 로고
    • DNA annealing by RAD52 protein is stimulated by specific interaction with the complex of replication protein A and single-stranded DNA
    • Sugiyama T, New JH, Kowalczykowski SC. 1998. DNA annealing by RAD52 protein is stimulated by specific interaction with the complex of replication protein A and single-stranded DNA. Proc Natl Acad Sci USA 95: 6049-54.
    • (1998) Proc Natl Acad Sci USA , vol.95 , pp. 6049-6054
    • Sugiyama, T.1    New, J.H.2    Kowalczykowski, S.C.3
  • 60
    • 0028072045 scopus 로고
    • Replication factor A is required in vivo for DNA replication, repair, and recombination
    • Longhese MP, Plevani P, Lucchini G. 1994. Replication factor A is required in vivo for DNA replication, repair, and recombination. Mol Cell Biol 14: 7884-90.
    • (1994) Mol Cell Biol , vol.14 , pp. 7884-7890
    • Longhese, M.P.1    Plevani, P.2    Lucchini, G.3
  • 61
    • 0029597799 scopus 로고
    • Mutations in the gene encoding the 34kDa subunit of yeast replication protein A cause defective S phase progression
    • Santocanale C, Neecke H, Longhese MP, Lucchini G, et al. 1995. Mutations in the gene encoding the 34kDa subunit of yeast replication protein A cause defective S phase progression. J Mol Biol 254: 595-607.
    • (1995) J Mol Biol , vol.254 , pp. 595-607
    • Santocanale, C.1    Neecke, H.2    Longhese, M.P.3    Lucchini, G.4
  • 62
    • 0031960691 scopus 로고    scopus 로고
    • Genetic analysis of yeast RPA1 reveals its multiple functions in DNA metabolism
    • Umezu K, Sugawara N, Chen C, Haber JE, et al. 1998. Genetic analysis of yeast RPA1 reveals its multiple functions in DNA metabolism. Genetics 148: 989-1005.
    • (1998) Genetics , vol.148 , pp. 989-1005
    • Umezu, K.1    Sugawara, N.2    Chen, C.3    Haber, J.E.4
  • 63
    • 19344366752 scopus 로고    scopus 로고
    • Role of Saccharomyces single-stranded DNA-binding protein RPA in the strand invasion step of double-strand break repair
    • Wang X, Haber JE. 2004. Role of Saccharomyces single-stranded DNA-binding protein RPA in the strand invasion step of double-strand break repair. PLoS Biol 2: E21.
    • (2004) PLoS Biol , vol.2 , pp. E21
    • Wang, X.1    Haber, J.E.2
  • 64
    • 0037931365 scopus 로고    scopus 로고
    • The recombination-deficient mutant RPA (rfa1-t11) is displaced slowly from single-stranded DNA by Rad51 protein
    • Kantake N, Sugiyama T, Kolodner RD, Kowalczykowski SC. 2003. The recombination-deficient mutant RPA (rfa1-t11) is displaced slowly from single-stranded DNA by Rad51 protein. J Biol Chem 278: 23410-7.
    • (2003) J Biol Chem , vol.278 , pp. 23410-23417
    • Kantake, N.1    Sugiyama, T.2    Kolodner, R.D.3    Kowalczykowski, S.C.4
  • 65
    • 84897968795 scopus 로고    scopus 로고
    • RPA antagonizes microhomology-mediated repair of DNA double-strand breaks
    • Deng SK, Gibb B, de Almeida MJ, Greene EC, et al. 2014. RPA antagonizes microhomology-mediated repair of DNA double-strand breaks. Nat Struct Mol Biol 21: 405-12.
    • (2014) Nat Struct Mol Biol , vol.21 , pp. 405-412
    • Deng, S.K.1    Gibb, B.2    de Almeida, M.J.3    Greene, E.C.4
  • 66
    • 0035989353 scopus 로고    scopus 로고
    • Replication protein A is required for meiotic recombination in Saccharomyces cerevisiae
    • Soustelle C, Vedel M, Kolodner R, Nicolas A. 2002. Replication protein A is required for meiotic recombination in Saccharomyces cerevisiae. Genetics 161: 535-47.
    • (2002) Genetics , vol.161 , pp. 535-547
    • Soustelle, C.1    Vedel, M.2    Kolodner, R.3    Nicolas, A.4
  • 67
    • 0028838087 scopus 로고
    • A novel allele of Saccharomyces cerevisiae RFA1 that is deficient in recombination and repair and suppressible by RAD52
    • Firmenich AA, Elias-Arnanz M, Berg P. 1995. A novel allele of Saccharomyces cerevisiae RFA1 that is deficient in recombination and repair and suppressible by RAD52. Mol Cell Biol 15: 1620-31.
    • (1995) Mol Cell Biol , vol.15 , pp. 1620-1631
    • Firmenich, A.A.1    Elias-Arnanz, M.2    Berg, P.3
  • 68
    • 0028799703 scopus 로고
    • A mutation in the gene encoding the Saccharomyces cerevisiae single-stranded DNA-binding protein Rfa1 stimulates a RAD52-independent pathway for direct-repeat recombination
    • Smith J, Rothstein R. 1995. A mutation in the gene encoding the Saccharomyces cerevisiae single-stranded DNA-binding protein Rfa1 stimulates a RAD52-independent pathway for direct-repeat recombination. Mol Cell Biol 15: 1632-41.
    • (1995) Mol Cell Biol , vol.15 , pp. 1632-1641
    • Smith, J.1    Rothstein, R.2
  • 69
    • 0032963978 scopus 로고    scopus 로고
    • An allele of RFA1 suppresses RAD52-dependent double-strand break repair in Saccharomyces cerevisiae
    • Smith J, Rothstein R. 1999. An allele of RFA1 suppresses RAD52-dependent double-strand break repair in Saccharomyces cerevisiae. Genetics 151: 447-58.
    • (1999) Genetics , vol.151 , pp. 447-458
    • Smith, J.1    Rothstein, R.2
  • 70
    • 84870720807 scopus 로고    scopus 로고
    • Microhomology directs diverse DNA break repair pathways and chromosomal translocations
    • Villarreal DD, Lee K, Deem A, Shim EY, et al. 2012. Microhomology directs diverse DNA break repair pathways and chromosomal translocations. PLoS Genet 8: e1003026.
    • (2012) PLoS Genet , vol.8 , pp. e1003026
    • Villarreal, D.D.1    Lee, K.2    Deem, A.3    Shim, E.Y.4
  • 71
    • 0032109778 scopus 로고    scopus 로고
    • Chromosomal rearrangements occur in S. cerevisiae rfa1 mutator mutants due to mutagenic lesions processed by double-strand-break repair
    • Chen C, Umezu K, Kolodner RD. 1998. Chromosomal rearrangements occur in S. cerevisiae rfa1 mutator mutants due to mutagenic lesions processed by double-strand-break repair. Mol Cell 2: 9-22.
    • (1998) Mol Cell , vol.2 , pp. 9-22
    • Chen, C.1    Umezu, K.2    Kolodner, R.D.3
  • 72
    • 0032860479 scopus 로고    scopus 로고
    • Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants
    • Chen C, Kolodner RD. 1999. Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nat Genet 23: 81-5.
    • (1999) Nat Genet , vol.23 , pp. 81-85
    • Chen, C.1    Kolodner, R.D.2
  • 73
    • 22844436867 scopus 로고    scopus 로고
    • Mutation in Rpa1 results in defective DNA double-strand break repair, chromosomal instability and cancer in mice
    • Wang Y, Putnam CD, Kane MF, Zhang W, et al. 2005. Mutation in Rpa1 results in defective DNA double-strand break repair, chromosomal instability and cancer in mice. Nat Genet 37: 750-5.
    • (2005) Nat Genet , vol.37 , pp. 750-755
    • Wang, Y.1    Putnam, C.D.2    Kane, M.F.3    Zhang, W.4
  • 74
    • 12844278880 scopus 로고    scopus 로고
    • Rejoining of DNA double-strand breaks as a function of overhang length
    • Daley JM, Wilson TE. 2005. Rejoining of DNA double-strand breaks as a function of overhang length. Mol Cell Bbiol 25: 896-906.
    • (2005) Mol Cell Bbiol , vol.25 , pp. 896-906
    • Daley, J.M.1    Wilson, T.E.2
  • 75
    • 34547132093 scopus 로고    scopus 로고
    • Microhomology-mediated end joining in fission yeast is repressed by pku70 and relies on genes involved in homologous recombination
    • Decottignies A. 2007. Microhomology-mediated end joining in fission yeast is repressed by pku70 and relies on genes involved in homologous recombination. Genetics 176: 1403-15.
    • (2007) Genetics , vol.176 , pp. 1403-1415
    • Decottignies, A.1
  • 76
    • 77955435598 scopus 로고    scopus 로고
    • Functional characterization of a cancer causing mutation in human replication protein A
    • Hass CS, Gakhar L, Wold MS. 2010. Functional characterization of a cancer causing mutation in human replication protein A. Mol Cancer Res 8: 1017-26.
    • (2010) Mol Cancer Res , vol.8 , pp. 1017-1026
    • Hass, C.S.1    Gakhar, L.2    Wold, M.S.3
  • 77
    • 0025941532 scopus 로고
    • Heteroduplex formation and mismatch repair of the "stuck" mutation during mating-type switching in Saccharomyces cerevisiae
    • Ray BL, White CI, Haber JE. 1991. Heteroduplex formation and mismatch repair of the "stuck" mutation during mating-type switching in Saccharomyces cerevisiae. Mol Cell Biol 11: 5372-80.
    • (1991) Mol Cell Biol , vol.11 , pp. 5372-5380
    • Ray, B.L.1    White, C.I.2    Haber, J.E.3
  • 78
    • 46949098616 scopus 로고    scopus 로고
    • Break dosage, cell cycle stage and DNA replication influence DNA double strand break response
    • Zierhut C, Diffley JF. 2008. Break dosage, cell cycle stage and DNA replication influence DNA double strand break response. EMBO J 27: 1875-85.
    • (2008) EMBO J , vol.27 , pp. 1875-1885
    • Zierhut, C.1    Diffley, J.F.2
  • 79
    • 84878183628 scopus 로고    scopus 로고
    • RPA coordinates DNA end resection and prevents formation of DNA hairpins
    • Chen H, Lisby M, Symington LS. 2013. RPA coordinates DNA end resection and prevents formation of DNA hairpins. Mol Cell 50: 589-600.
    • (2013) Mol Cell , vol.50 , pp. 589-600
    • Chen, H.1    Lisby, M.2    Symington, L.S.3
  • 80
    • 0038239288 scopus 로고    scopus 로고
    • Bimodal interaction between replication-protein A and Dna2 is critical for Dna2 function both in vivo and in vitro
    • Bae KH, Kim HS, Bae SH, Kang HY, et al. 2003. Bimodal interaction between replication-protein A and Dna2 is critical for Dna2 function both in vivo and in vitro. Nucleic Acids Res 31: 3006-15.
    • (2003) Nucleic Acids Res , vol.31 , pp. 3006-3015
    • Bae, K.H.1    Kim, H.S.2    Bae, S.H.3    Kang, H.Y.4
  • 81
    • 4544281398 scopus 로고    scopus 로고
    • Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins
    • Lisby M, Barlow JH, Burgess RC, Rothstein R. 2004. Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 118: 699-713.
    • (2004) Cell , vol.118 , pp. 699-713
    • Lisby, M.1    Barlow, J.H.2    Burgess, R.C.3    Rothstein, R.4
  • 82
    • 0032403121 scopus 로고    scopus 로고
    • Interaction of human rad51 recombination protein with single-stranded DNA binding protein, RPA
    • Golub EI, Gupta RC, Haaf T, Wold MS, et al. 1998. Interaction of human rad51 recombination protein with single-stranded DNA binding protein, RPA. Nucleic Acids Res 26: 5388-93.
    • (1998) Nucleic Acids Res , vol.26 , pp. 5388-5393
    • Golub, E.I.1    Gupta, R.C.2    Haaf, T.3    Wold, M.S.4
  • 83
    • 79955522790 scopus 로고    scopus 로고
    • Processing of joint molecule intermediates by structure-selective endonucleases during homologous recombination in eukaryotes
    • Schwartz EK, Heyer WD. 2011. Processing of joint molecule intermediates by structure-selective endonucleases during homologous recombination in eukaryotes. Chromosoma 120: 109-27.
    • (2011) Chromosoma , vol.120 , pp. 109-127
    • Schwartz, E.K.1    Heyer, W.D.2
  • 84
    • 0037169325 scopus 로고    scopus 로고
    • The Mre11 complex is required for repair of hairpin-capped double-strand breaks and prevention of chromosome rearrangements
    • Lobachev KS, Gordenin DA, Resnick MA. 2002. The Mre11 complex is required for repair of hairpin-capped double-strand breaks and prevention of chromosome rearrangements. Cell 108: 183-93.
    • (2002) Cell , vol.108 , pp. 183-193
    • Lobachev, K.S.1    Gordenin, D.A.2    Resnick, M.A.3
  • 85
    • 0035929667 scopus 로고    scopus 로고
    • DNA structure-specific nuclease activities in the Saccharomyces cerevisiae Rad50 * Mre11 complex
    • Trujillo KM, Sung P. 2001. DNA structure-specific nuclease activities in the Saccharomyces cerevisiae Rad50*Mre11 complex. J Biol Chem 276: 35458-64.
    • (2001) J Biol Chem , vol.276 , pp. 35458-35464
    • Trujillo, K.M.1    Sung, P.2
  • 86
    • 84908045717 scopus 로고    scopus 로고
    • Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks
    • Cannavo E, Cejka P. 2014. Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks. Nature 514: 122-5.
    • (2014) Nature , vol.514 , pp. 122-125
    • Cannavo, E.1    Cejka, P.2
  • 87
    • 35848930133 scopus 로고    scopus 로고
    • The structure-specific endonuclease Mus81 contributes to replication restart by generating double-strand DNA breaks
    • Hanada K, Budzowska M, Davies SL, van Drunen E, et al. 2007. The structure-specific endonuclease Mus81 contributes to replication restart by generating double-strand DNA breaks. Nat Struct Mol Biol 14: 1096-104.
    • (2007) Nat Struct Mol Biol , vol.14 , pp. 1096-1104
    • Hanada, K.1    Budzowska, M.2    Davies, S.L.3    van Drunen, E.4
  • 88
    • 84880440332 scopus 로고    scopus 로고
    • ATR phosphorylates SMARCAL1 to prevent replication fork collapse
    • Couch FB, Bansbach CE, Driscoll R, Luzwick JW, et al. 2013. ATR phosphorylates SMARCAL1 to prevent replication fork collapse. Genes Dev 27: 1610-23.
    • (2013) Genes Dev , vol.27 , pp. 1610-1623
    • Couch, F.B.1    Bansbach, C.E.2    Driscoll, R.3    Luzwick, J.W.4
  • 89
    • 84885899930 scopus 로고    scopus 로고
    • RNF4 and PLK1 are required for replication fork collapse in ATR-deficient cells
    • Ragland RL, Patel S, Rivard RS, Smith K, et al. 2013. RNF4 and PLK1 are required for replication fork collapse in ATR-deficient cells. Genes Dev 27: 2259-73.
    • (2013) Genes Dev , vol.27 , pp. 2259-2273
    • Ragland, R.L.1    Patel, S.2    Rivard, R.S.3    Smith, K.4
  • 90
    • 79551691855 scopus 로고    scopus 로고
    • Replication protein A safeguards genome integrity by controlling NER incision events
    • Overmeer RM, Moser J, Volker M, Kool H, et al. 2011. Replication protein A safeguards genome integrity by controlling NER incision events. J Cell Biol 192: 401-15.
    • (2011) J Cell Biol , vol.192 , pp. 401-415
    • Overmeer, R.M.1    Moser, J.2    Volker, M.3    Kool, H.4
  • 91
    • 84898981921 scopus 로고    scopus 로고
    • Persistently stalled replication forks inhibit nucleotide excision repair in trans by sequestering Replication protein A
    • Tsaalbi-Shtylik A, Moser J, Mullenders LH, Jansen JG, et al. 2014. Persistently stalled replication forks inhibit nucleotide excision repair in trans by sequestering Replication protein A. Nucleic Acids Res 42: 4406-13.
    • (2014) Nucleic Acids Res , vol.42 , pp. 4406-4413
    • Tsaalbi-Shtylik, A.1    Moser, J.2    Mullenders, L.H.3    Jansen, J.G.4
  • 92
    • 7544247595 scopus 로고    scopus 로고
    • Telomerase- and recombination-independent immortalization of budding yeast
    • Maringele L, Lydall D. 2004. Telomerase- and recombination-independent immortalization of budding yeast. Genes Dev 18: 2663-75.
    • (2004) Genes Dev , vol.18 , pp. 2663-2675
    • Maringele, L.1    Lydall, D.2
  • 93
    • 22344455087 scopus 로고    scopus 로고
    • A mechanism of palindromic gene amplification in Saccharomyces cerevisiae
    • Rattray AJ, Shafer BK, Neelam B, Strathern JN. 2005. A mechanism of palindromic gene amplification in Saccharomyces cerevisiae. Genes Dev 19: 1390-9.
    • (2005) Genes Dev , vol.19 , pp. 1390-1399
    • Rattray, A.J.1    Shafer, B.K.2    Neelam, B.3    Strathern, J.N.4
  • 94
    • 0035022013 scopus 로고    scopus 로고
    • Fidelity of mitotic double-strand-break repair in Saccharomyces cerevisiae: a role for SAE2/COM1
    • Rattray AJ, McGill CB, Shafer BK, Strathern JN. 2001. Fidelity of mitotic double-strand-break repair in Saccharomyces cerevisiae: a role for SAE2/COM1. Genetics 158: 109-22.
    • (2001) Genetics , vol.158 , pp. 109-122
    • Rattray, A.J.1    McGill, C.B.2    Shafer, B.K.3    Strathern, J.N.4
  • 95
    • 48249141027 scopus 로고    scopus 로고
    • Replication stalling at unstable inverted repeats: interplay between DNA hairpins and fork stabilizing proteins
    • Voineagu I, Narayanan V, Lobachev KS, Mirkin SM. 2008. Replication stalling at unstable inverted repeats: interplay between DNA hairpins and fork stabilizing proteins. Proc Natl Acad Sci USA 105: 9936-41.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 9936-9941
    • Voineagu, I.1    Narayanan, V.2    Lobachev, K.S.3    Mirkin, S.M.4
  • 96
    • 0032488872 scopus 로고    scopus 로고
    • Expansion and length-dependent fragility of CTG repeats in yeast
    • Freudenreich CH, Kantrow SM, Zakian VA. 1998. Expansion and length-dependent fragility of CTG repeats in yeast. Science 279: 853-6.
    • (1998) Science , vol.279 , pp. 853-856
    • Freudenreich, C.H.1    Kantrow, S.M.2    Zakian, V.A.3
  • 97
    • 84878122437 scopus 로고    scopus 로고
    • Pif1 family helicases suppress genome instability at G-quadruplex motifs
    • Paeschke K, Bochman ML, Garcia PD, Cejka P, et al. 2013. Pif1 family helicases suppress genome instability at G-quadruplex motifs. Nature 497: 458-62.
    • (2013) Nature , vol.497 , pp. 458-462
    • Paeschke, K.1    Bochman, M.L.2    Garcia, P.D.3    Cejka, P.4
  • 98
    • 84870660365 scopus 로고    scopus 로고
    • Stimulation of gross chromosomal rearrangements by the human CEB1 and CEB25 minisatellites in Saccharomyces cerevisiae depends on G-quadruplexes or Cdc13
    • Piazza A, Serero A, Boule JB, Legoix-Ne P, et al. 2012. Stimulation of gross chromosomal rearrangements by the human CEB1 and CEB25 minisatellites in Saccharomyces cerevisiae depends on G-quadruplexes or Cdc13. PLoS Genet 8: e1003033.
    • (2012) PLoS Genet , vol.8 , pp. e1003033
    • Piazza, A.1    Serero, A.2    Boule, J.B.3    Legoix-Ne, P.4
  • 99
    • 67149126812 scopus 로고    scopus 로고
    • The yeast Pif1 helicase prevents genomic instability caused by G-quadruplex-forming CEB1 sequences in vivo
    • Ribeyre C, Lopes J, Boule JB, Piazza A, et al. 2009. The yeast Pif1 helicase prevents genomic instability caused by G-quadruplex-forming CEB1 sequences in vivo. PLoS Genet 5: e1000475.
    • (2009) PLoS Genet , vol.5 , pp. e1000475
    • Ribeyre, C.1    Lopes, J.2    Boule, J.B.3    Piazza, A.4
  • 100
    • 84892776464 scopus 로고    scopus 로고
    • Genome-wide screen reveals replication pathway for quasi-palindrome fragility dependent on homologous recombination
    • Zhang Y, Saini N, Sheng Z, Lobachev KS. 2013. Genome-wide screen reveals replication pathway for quasi-palindrome fragility dependent on homologous recombination. PLoS Genet 9: e1003979.
    • (2013) PLoS Genet , vol.9 , pp. e1003979
    • Zhang, Y.1    Saini, N.2    Sheng, Z.3    Lobachev, K.S.4
  • 101
    • 84868100119 scopus 로고    scopus 로고
    • Genome-wide screen identifies pathways that govern GAA/TTC repeat fragility and expansions in dividing and nondividing yeast cells
    • Zhang Y, Shishkin AA, Nishida Y, Marcinkowski-Desmond D, et al. 2012. Genome-wide screen identifies pathways that govern GAA/TTC repeat fragility and expansions in dividing and nondividing yeast cells. Mol Cell 48: 254-65.
    • (2012) Mol Cell , vol.48 , pp. 254-265
    • Zhang, Y.1    Shishkin, A.A.2    Nishida, Y.3    Marcinkowski-Desmond, D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.