메뉴 건너뛰기




Volumn 40, Issue 4, 2015, Pages 233-242

SUMO-mediated regulation of DNA damage repair and responses

Author keywords

[No Author keywords available]

Indexed keywords

SUMO PROTEIN; SUMO 1 PROTEIN;

EID: 84925297959     PISSN: 09680004     EISSN: 13624326     Source Type: Journal    
DOI: 10.1016/j.tibs.2015.02.006     Document Type: Review
Times cited : (122)

References (120)
  • 1
    • 33749346301 scopus 로고    scopus 로고
    • Modification of proteins by ubiquitin and ubiquitin-like proteins
    • Kerscher O., et al. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu. Rev. Cell Dev. Biol. 2006, 22:159-180.
    • (2006) Annu. Rev. Cell Dev. Biol. , vol.22 , pp. 159-180
    • Kerscher, O.1
  • 2
  • 3
    • 15944406765 scopus 로고    scopus 로고
    • SUMO: a history of modification
    • Hay R.T. SUMO: a history of modification. Mol. Cell 2005, 18:1-12.
    • (2005) Mol. Cell , vol.18 , pp. 1-12
    • Hay, R.T.1
  • 4
    • 3943099375 scopus 로고    scopus 로고
    • Protein modification by SUMO
    • Johnson E.S. Protein modification by SUMO. Annu. Rev. Biochem. 2004, 73:355-382.
    • (2004) Annu. Rev. Biochem. , vol.73 , pp. 355-382
    • Johnson, E.S.1
  • 5
    • 84862783021 scopus 로고    scopus 로고
    • Extensive DNA damage-induced sumoylation contributes to replication and repair and acts in addition to the Mec1 checkpoint
    • Cremona C.A., et al. Extensive DNA damage-induced sumoylation contributes to replication and repair and acts in addition to the Mec1 checkpoint. Mol. Cell 2012, 45:422-432.
    • (2012) Mol. Cell , vol.45 , pp. 422-432
    • Cremona, C.A.1
  • 6
    • 84869091913 scopus 로고    scopus 로고
    • Protein group modification and synergy in the SUMO pathway as exemplified in DNA repair
    • Psakhye I., et al. Protein group modification and synergy in the SUMO pathway as exemplified in DNA repair. Cell 2012, 151:807-820.
    • (2012) Cell , vol.151 , pp. 807-820
    • Psakhye, I.1
  • 7
    • 78049235116 scopus 로고    scopus 로고
    • Proteomic analyses identify a diverse array of nuclear processes affected by small ubiquitin-like modifier conjugation in Arabidopsis
    • Miller M.J., et al. Proteomic analyses identify a diverse array of nuclear processes affected by small ubiquitin-like modifier conjugation in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:16512-16517.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 16512-16517
    • Miller, M.J.1
  • 8
    • 78049234670 scopus 로고    scopus 로고
    • Proteome-wide screens for small ubiquitin-like modifier (SUMO) substrates identify Arabidopsis proteins implicated in diverse biological processes
    • Elrouby N., et al. Proteome-wide screens for small ubiquitin-like modifier (SUMO) substrates identify Arabidopsis proteins implicated in diverse biological processes. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:17415-17420.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 17415-17420
    • Elrouby, N.1
  • 9
    • 84904095240 scopus 로고    scopus 로고
    • Identification of small ubiquitin-like modifier substrates with diverse functions using the Xenopus egg extract system
    • Ma L., et al. Identification of small ubiquitin-like modifier substrates with diverse functions using the Xenopus egg extract system. Mol. Cell. Proteomics 2014, 13:1659-1675.
    • (2014) Mol. Cell. Proteomics , vol.13 , pp. 1659-1675
    • Ma, L.1
  • 10
    • 84925341263 scopus 로고    scopus 로고
    • Large-scale analysis of lysine SUMOylation by SUMO remnant immunoaffinity profiling
    • Lamoliatte F., et al. Large-scale analysis of lysine SUMOylation by SUMO remnant immunoaffinity profiling. Nat. Commun. 2014, 5:5409.
    • (2014) Nat. Commun. , vol.5 , pp. 5409
    • Lamoliatte, F.1
  • 11
    • 84899759007 scopus 로고    scopus 로고
    • Proteome-wide identification of SUMO2 modification sites
    • Tammsalu T., et al. Proteome-wide identification of SUMO2 modification sites. Sci. Signal. 2014, 7:rs2.
    • (2014) Sci. Signal. , vol.7 , pp. rs2
    • Tammsalu, T.1
  • 12
    • 79959381925 scopus 로고    scopus 로고
    • Comparative proteomic analysis identifies a role for SUMO in protein quality control
    • Tatham M.H., et al. Comparative proteomic analysis identifies a role for SUMO in protein quality control. Sci. Signal. 2011, 4:rs4.
    • (2011) Sci. Signal. , vol.4 , pp. rs4
    • Tatham, M.H.1
  • 13
    • 84922792707 scopus 로고    scopus 로고
    • Identification of SUMO-2/3 modified proteins associated with mitotic chromosomes
    • Cubenas-Potts C., et al. Identification of SUMO-2/3 modified proteins associated with mitotic chromosomes. Proteomics 2014, 15:763-772.
    • (2014) Proteomics , vol.15 , pp. 763-772
    • Cubenas-Potts, C.1
  • 14
    • 84925775745 scopus 로고    scopus 로고
    • Uncovering global SUMOylation signaling networks in a site-specific manner
    • Hendriks I.A., et al. Uncovering global SUMOylation signaling networks in a site-specific manner. Nat. Struct. Mol. Biol. 2014, 21:927-936.
    • (2014) Nat. Struct. Mol. Biol. , vol.21 , pp. 927-936
    • Hendriks, I.A.1
  • 15
    • 84896387847 scopus 로고    scopus 로고
    • Uncovering SUMOylation dynamics during cell-cycle progression reveals FoxM1 as a key mitotic SUMO target protein
    • Schimmel J., et al. Uncovering SUMOylation dynamics during cell-cycle progression reveals FoxM1 as a key mitotic SUMO target protein. Mol. Cell 2014, 53:1053-1066.
    • (2014) Mol. Cell , vol.53 , pp. 1053-1066
    • Schimmel, J.1
  • 16
    • 77955999636 scopus 로고    scopus 로고
    • Site-specific identification of SUMO-2 targets in cells reveals an inverted SUMOylation motif and a hydrophobic cluster SUMOylation motif
    • Matic I., et al. Site-specific identification of SUMO-2 targets in cells reveals an inverted SUMOylation motif and a hydrophobic cluster SUMOylation motif. Mol. Cell 2010, 39:641-652.
    • (2010) Mol. Cell , vol.39 , pp. 641-652
    • Matic, I.1
  • 17
    • 84876164814 scopus 로고    scopus 로고
    • Detecting endogenous SUMO targets in mammalian cells and tissues
    • Becker J., et al. Detecting endogenous SUMO targets in mammalian cells and tissues. Nat. Struct. Mol. Biol. 2013, 20:525-531.
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 525-531
    • Becker, J.1
  • 18
    • 80052765356 scopus 로고    scopus 로고
    • SUMOylation and de-SUMOylation in response to DNA damage
    • Dou H., et al. SUMOylation and de-SUMOylation in response to DNA damage. FEBS Lett. 2011, 585:2891-2896.
    • (2011) FEBS Lett. , vol.585 , pp. 2891-2896
    • Dou, H.1
  • 19
    • 63649144413 scopus 로고    scopus 로고
    • Principles of ubiquitin and SUMO modifications in DNA repair
    • Bergink S., et al. Principles of ubiquitin and SUMO modifications in DNA repair. Nature 2009, 458:461-467.
    • (2009) Nature , vol.458 , pp. 461-467
    • Bergink, S.1
  • 20
    • 34547499407 scopus 로고    scopus 로고
    • Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases
    • Smolka M.B., et al. Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:10364-10369.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 10364-10369
    • Smolka, M.B.1
  • 21
    • 34249947699 scopus 로고    scopus 로고
    • ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage
    • Matsuoka S., et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 2007, 316:1160-1166.
    • (2007) Science , vol.316 , pp. 1160-1166
    • Matsuoka, S.1
  • 22
    • 77951219621 scopus 로고    scopus 로고
    • A proteome-wide analysis of kinase-substrate network in the DNA damage response
    • Chen S.H., et al. A proteome-wide analysis of kinase-substrate network in the DNA damage response. J. Biol. Chem. 2010, 285:12803-12812.
    • (2010) J. Biol. Chem. , vol.285 , pp. 12803-12812
    • Chen, S.H.1
  • 23
    • 82455179484 scopus 로고    scopus 로고
    • Systematic and quantitative assessment of the ubiquitin-modified proteome
    • Kim W., et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol. Cell 2011, 44:325-340.
    • (2011) Mol. Cell , vol.44 , pp. 325-340
    • Kim, W.1
  • 24
    • 80052476537 scopus 로고    scopus 로고
    • Shared and unique properties of ubiquitin and SUMO interaction networks in DNA repair
    • van Wijk S.J., et al. Shared and unique properties of ubiquitin and SUMO interaction networks in DNA repair. Genes Dev. 2011, 25:1763-1769.
    • (2011) Genes Dev. , vol.25 , pp. 1763-1769
    • van Wijk, S.J.1
  • 25
    • 84874771475 scopus 로고    scopus 로고
    • Profiling of ubiquitin-like modifications reveals features of mitotic control
    • Merbl Y., et al. Profiling of ubiquitin-like modifications reveals features of mitotic control. Cell 2013, 152:1160-1172.
    • (2013) Cell , vol.152 , pp. 1160-1172
    • Merbl, Y.1
  • 26
    • 84878825857 scopus 로고    scopus 로고
    • A method for systematic mapping of protein lysine methylation identifies functions for HP1beta in DNA damage response
    • Liu H., et al. A method for systematic mapping of protein lysine methylation identifies functions for HP1beta in DNA damage response. Mol. Cell 2013, 50:723-735.
    • (2013) Mol. Cell , vol.50 , pp. 723-735
    • Liu, H.1
  • 27
    • 84898745559 scopus 로고    scopus 로고
    • Two-way communications between ubiquitin-like modifiers and DNA
    • Ulrich H.D. Two-way communications between ubiquitin-like modifiers and DNA. Nat. Struct. Mol. Biol. 2014, 21:317-324.
    • (2014) Nat. Struct. Mol. Biol. , vol.21 , pp. 317-324
    • Ulrich, H.D.1
  • 28
    • 84888617317 scopus 로고    scopus 로고
    • Control of nuclear activities by substrate-selective and protein-group SUMOylation
    • Jentsch S., et al. Control of nuclear activities by substrate-selective and protein-group SUMOylation. Annu. Rev. Genet. 2013, 47:167-186.
    • (2013) Annu. Rev. Genet. , vol.47 , pp. 167-186
    • Jentsch, S.1
  • 29
    • 84876886904 scopus 로고    scopus 로고
    • Regulation of DNA damage responses by ubiquitin and SUMO
    • Jackson S.P., et al. Regulation of DNA damage responses by ubiquitin and SUMO. Mol. Cell 2013, 49:795-807.
    • (2013) Mol. Cell , vol.49 , pp. 795-807
    • Jackson, S.P.1
  • 30
    • 51949083815 scopus 로고    scopus 로고
    • SUMO modification of PCNA is controlled by DNA
    • Parker J.L., et al. SUMO modification of PCNA is controlled by DNA. EMBO J. 2008, 27:2422-2431.
    • (2008) EMBO J. , vol.27 , pp. 2422-2431
    • Parker, J.L.1
  • 31
    • 84869219917 scopus 로고    scopus 로고
    • The human cytomegalovirus DNA polymerase processivity factor UL44 is modified by SUMO in a DNA-dependent manner
    • Sinigalia E., et al. The human cytomegalovirus DNA polymerase processivity factor UL44 is modified by SUMO in a DNA-dependent manner. PLoS ONE 2012, 7:e49630.
    • (2012) PLoS ONE , vol.7 , pp. e49630
    • Sinigalia, E.1
  • 32
    • 84920415516 scopus 로고    scopus 로고
    • Ubiquitin-SUMO circuitry controls activated Fanconi Anemia ID complex dosage in response to DNA damage
    • Gibbs-Seymour I., et al. Ubiquitin-SUMO circuitry controls activated Fanconi Anemia ID complex dosage in response to DNA damage. Mol. Cell 2015, 57:150-164.
    • (2015) Mol. Cell , vol.57 , pp. 150-164
    • Gibbs-Seymour, I.1
  • 33
    • 84903128501 scopus 로고    scopus 로고
    • Sumoylation of the Rad1 nuclease promotes DNA repair and regulates its DNA association
    • Sarangi P., et al. Sumoylation of the Rad1 nuclease promotes DNA repair and regulates its DNA association. Nucleic Acids Res. 2014, 42:6393-6404.
    • (2014) Nucleic Acids Res. , vol.42 , pp. 6393-6404
    • Sarangi, P.1
  • 34
    • 84898619525 scopus 로고    scopus 로고
    • Regulation of Ku-DNA association by Yku70 C-terminal tail and SUMO modification
    • Hang L.E., et al. Regulation of Ku-DNA association by Yku70 C-terminal tail and SUMO modification. J. Biol. Chem. 2014, 289:10308-10317.
    • (2014) J. Biol. Chem. , vol.289 , pp. 10308-10317
    • Hang, L.E.1
  • 35
    • 84900335623 scopus 로고    scopus 로고
    • SUMO-modification and elimination of the active DNA demethylation enzyme TDG in cultured human cells
    • Moriyama T., et al. SUMO-modification and elimination of the active DNA demethylation enzyme TDG in cultured human cells. Biochem. Biophys. Res. Commun. 2014, 447:419-424.
    • (2014) Biochem. Biophys. Res. Commun. , vol.447 , pp. 419-424
    • Moriyama, T.1
  • 36
    • 33750499289 scopus 로고    scopus 로고
    • Control of Rad52 recombination activity by double-strand break-induced SUMO modification
    • Sacher M., et al. Control of Rad52 recombination activity by double-strand break-induced SUMO modification. Nat. Cell Biol. 2006, 8:1284-1290.
    • (2006) Nat. Cell Biol. , vol.8 , pp. 1284-1290
    • Sacher, M.1
  • 37
    • 79961029209 scopus 로고    scopus 로고
    • SUMOylation regulates telomere length homeostasis by targeting Cdc13
    • Hang L.E., et al. SUMOylation regulates telomere length homeostasis by targeting Cdc13. Nat. Struct. Mol. Biol. 2011, 18:920-926.
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 920-926
    • Hang, L.E.1
  • 38
    • 0242509262 scopus 로고    scopus 로고
    • SUMO-2/3 regulates Topoisomerase II in mitosis
    • Azuma Y., et al. SUMO-2/3 regulates Topoisomerase II in mitosis. J. Cell Biol. 2003, 163:477-487.
    • (2003) J. Cell Biol. , vol.163 , pp. 477-487
    • Azuma, Y.1
  • 39
    • 34548790663 scopus 로고    scopus 로고
    • Ubiquitylation-independent sumoylation of Xeroderma pigmentosum group C protein is required for efficient nucleotide excision repair
    • Wang Q.E., et al. Ubiquitylation-independent sumoylation of Xeroderma pigmentosum group C protein is required for efficient nucleotide excision repair. Nucleic Acids Res. 2007, 35:5338-5350.
    • (2007) Nucleic Acids Res. , vol.35 , pp. 5338-5350
    • Wang, Q.E.1
  • 40
    • 0037079237 scopus 로고    scopus 로고
    • SUMO-1 conjugation to intact DNA Topoisomerase I amplifies cleavable complex formation induced by camptothecin
    • Horie K., et al. SUMO-1 conjugation to intact DNA Topoisomerase I amplifies cleavable complex formation induced by camptothecin. Oncogene 2002, 21:7913-7922.
    • (2002) Oncogene , vol.21 , pp. 7913-7922
    • Horie, K.1
  • 41
    • 35048872745 scopus 로고    scopus 로고
    • Topoisomerase I-dependent viability loss in Saccharomyces cerevisiae mutants defective in both SUMO conjugation and DNA repair
    • Chen X.L., et al. Topoisomerase I-dependent viability loss in Saccharomyces cerevisiae mutants defective in both SUMO conjugation and DNA repair. Genetics 2007, 177:17-30.
    • (2007) Genetics , vol.177 , pp. 17-30
    • Chen, X.L.1
  • 42
    • 82555179149 scopus 로고    scopus 로고
    • A role for SUMO in nucleotide excision repair
    • Silver H.R., et al. A role for SUMO in nucleotide excision repair. DNA Repair 2011, 10:1243-1251.
    • (2011) DNA Repair , vol.10 , pp. 1243-1251
    • Silver, H.R.1
  • 43
    • 43849092514 scopus 로고    scopus 로고
    • Rad52 sumoylation and its involvement in the efficient induction of homologous recombination
    • Ohuchi T., et al. Rad52 sumoylation and its involvement in the efficient induction of homologous recombination. DNA Repair 2008, 7:879-889.
    • (2008) DNA Repair , vol.7 , pp. 879-889
    • Ohuchi, T.1
  • 44
    • 77955813573 scopus 로고    scopus 로고
    • Rad52 SUMOylation affects the efficiency of the DNA repair
    • Altmannova V., et al. Rad52 SUMOylation affects the efficiency of the DNA repair. Nucleic Acids Res. 2010, 38:4708-4721.
    • (2010) Nucleic Acids Res. , vol.38 , pp. 4708-4721
    • Altmannova, V.1
  • 45
    • 16344394253 scopus 로고    scopus 로고
    • Structure of an XPF endonuclease with and without DNA suggests a model for substrate recognition
    • Newman M., et al. Structure of an XPF endonuclease with and without DNA suggests a model for substrate recognition. EMBO J. 2005, 24:895-905.
    • (2005) EMBO J. , vol.24 , pp. 895-905
    • Newman, M.1
  • 46
    • 0035833552 scopus 로고    scopus 로고
    • Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair
    • Walker J.R., et al. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature 2001, 412:607-614.
    • (2001) Nature , vol.412 , pp. 607-614
    • Walker, J.R.1
  • 47
    • 33846010517 scopus 로고    scopus 로고
    • Structural model of full-length human Ku70-Ku80 heterodimer and its recognition of DNA and DNA-PKcs
    • Rivera-Calzada A., et al. Structural model of full-length human Ku70-Ku80 heterodimer and its recognition of DNA and DNA-PKcs. EMBO Rep. 2007, 8:56-62.
    • (2007) EMBO Rep. , vol.8 , pp. 56-62
    • Rivera-Calzada, A.1
  • 48
    • 79960539404 scopus 로고    scopus 로고
    • Structure of the FANCI-FANCD2 complex: insights into the Fanconi anemia DNA repair pathway
    • Joo W., et al. Structure of the FANCI-FANCD2 complex: insights into the Fanconi anemia DNA repair pathway. Science 2011, 333:312-316.
    • (2011) Science , vol.333 , pp. 312-316
    • Joo, W.1
  • 49
    • 72449175818 scopus 로고    scopus 로고
    • Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks
    • Galanty Y., et al. Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks. Nature 2009, 462:935-939.
    • (2009) Nature , vol.462 , pp. 935-939
    • Galanty, Y.1
  • 50
    • 72449163470 scopus 로고    scopus 로고
    • The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress
    • Morris J.R., et al. The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress. Nature 2009, 462:886-890.
    • (2009) Nature , vol.462 , pp. 886-890
    • Morris, J.R.1
  • 51
    • 65649101212 scopus 로고    scopus 로고
    • Crosstalk between sumoylation and acetylation regulates p53-dependent chromatin transcription and DNA binding
    • Wu S.Y., et al. Crosstalk between sumoylation and acetylation regulates p53-dependent chromatin transcription and DNA binding. EMBO J. 2009, 28:1246-1259.
    • (2009) EMBO J. , vol.28 , pp. 1246-1259
    • Wu, S.Y.1
  • 52
    • 84924402458 scopus 로고    scopus 로고
    • Sumoylation influences DNA break repair partly by increasing the solubility of a conserved end resection protein
    • Sarangi P., et al. Sumoylation influences DNA break repair partly by increasing the solubility of a conserved end resection protein. PLOS Genet. 2014, 11:e1004899.
    • (2014) PLOS Genet. , vol.11 , pp. e1004899
    • Sarangi, P.1
  • 53
    • 84905409125 scopus 로고    scopus 로고
    • Tpz1TPP1 SUMOylation reveals evolutionary conservation of SUMO-dependent Stn1 telomere association
    • Garg M., et al. Tpz1TPP1 SUMOylation reveals evolutionary conservation of SUMO-dependent Stn1 telomere association. EMBO Rep. 2014, 15:871-877.
    • (2014) EMBO Rep. , vol.15 , pp. 871-877
    • Garg, M.1
  • 54
    • 84899052640 scopus 로고    scopus 로고
    • SUMOylation regulates telomere length by targeting the shelterin subunit Tpz1(Tpp1) to modulate shelterin-Stn1 interaction in fission yeast
    • Miyagawa K., et al. SUMOylation regulates telomere length by targeting the shelterin subunit Tpz1(Tpp1) to modulate shelterin-Stn1 interaction in fission yeast. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:5950-5955.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 5950-5955
    • Miyagawa, K.1
  • 55
    • 34447129654 scopus 로고    scopus 로고
    • The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere-binding proteins
    • Potts P.R., et al. The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere-binding proteins. Nat. Struct. Mol. Biol. 2007, 14:581-590.
    • (2007) Nat. Struct. Mol. Biol. , vol.14 , pp. 581-590
    • Potts, P.R.1
  • 56
    • 79960004074 scopus 로고    scopus 로고
    • The PIAS homologue Siz2 regulates perinuclear telomere position and telomerase activity in budding yeast
    • Ferreira H.C., et al. The PIAS homologue Siz2 regulates perinuclear telomere position and telomerase activity in budding yeast. Nat. Cell Biol. 2011, 13:867-874.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 867-874
    • Ferreira, H.C.1
  • 57
    • 84923281715 scopus 로고    scopus 로고
    • Dynamic SUMO modification regulates mitotic chromosome assembly and cell cycle progression in Caenorhabditis elegans
    • Pelisch F., et al. Dynamic SUMO modification regulates mitotic chromosome assembly and cell cycle progression in Caenorhabditis elegans. Nat. Commun. 2014, 5:5485.
    • (2014) Nat. Commun. , vol.5 , pp. 5485
    • Pelisch, F.1
  • 58
    • 0041816064 scopus 로고    scopus 로고
    • The phosphorylation domain of the 32-kDa subunit of replication protein A (RPA) modulates RPA-DNA interactions. Evidence for an intersubunit interaction
    • Binz S.K., et al. The phosphorylation domain of the 32-kDa subunit of replication protein A (RPA) modulates RPA-DNA interactions. Evidence for an intersubunit interaction. J. Biol. Chem. 2003, 278:35584-35591.
    • (2003) J. Biol. Chem. , vol.278 , pp. 35584-35591
    • Binz, S.K.1
  • 59
    • 10944262393 scopus 로고    scopus 로고
    • DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain
    • Unal E., et al. DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol. Cell 2004, 16:991-1002.
    • (2004) Mol. Cell , vol.16 , pp. 991-1002
    • Unal, E.1
  • 60
    • 27444444448 scopus 로고    scopus 로고
    • Slx4 becomes phosphorylated after DNA damage in a Mec1/Tel1-dependent manner and is required for repair of DNA alkylation damage
    • Flott S., et al. Slx4 becomes phosphorylated after DNA damage in a Mec1/Tel1-dependent manner and is required for repair of DNA alkylation damage. Biochem. J. 2005, 391:325-333.
    • (2005) Biochem. J. , vol.391 , pp. 325-333
    • Flott, S.1
  • 61
    • 33750990221 scopus 로고    scopus 로고
    • Phosphorylation of Rad55 on serines 2, 8, and 14 is required for efficient homologous recombination in the recovery of stalled replication forks
    • Herzberg K., et al. Phosphorylation of Rad55 on serines 2, 8, and 14 is required for efficient homologous recombination in the recovery of stalled replication forks. Mol. Cell. Biol. 2006, 26:8396-8409.
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 8396-8409
    • Herzberg, K.1
  • 62
    • 80052492286 scopus 로고    scopus 로고
    • Cell cycle regulation of DNA double-strand break end resection by Cdk1-dependent Dna2 phosphorylation
    • Chen X., et al. Cell cycle regulation of DNA double-strand break end resection by Cdk1-dependent Dna2 phosphorylation. Nat. Struct. Mol. Biol. 2011, 18:1015-1019.
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 1015-1019
    • Chen, X.1
  • 63
    • 84885968281 scopus 로고    scopus 로고
    • Temporal regulation of the Mus81-Mms4 endonuclease ensures cell survival under conditions of DNA damage
    • Saugar I., et al. Temporal regulation of the Mus81-Mms4 endonuclease ensures cell survival under conditions of DNA damage. Nucleic Acids Res. 2013, 41:8943-8958.
    • (2013) Nucleic Acids Res. , vol.41 , pp. 8943-8958
    • Saugar, I.1
  • 64
    • 84876407519 scopus 로고    scopus 로고
    • Premature Cdk1/Cdc5/Mus81 pathway activation induces aberrant replication and deleterious crossover
    • Szakal B., et al. Premature Cdk1/Cdc5/Mus81 pathway activation induces aberrant replication and deleterious crossover. EMBO J. 2013, 32:1155-1167.
    • (2013) EMBO J. , vol.32 , pp. 1155-1167
    • Szakal, B.1
  • 65
    • 84871559319 scopus 로고    scopus 로고
    • The RING finger protein RNF8 ubiquitinates Nbs1 to promote DNA double-strand break repair by homologous recombination
    • Lu C.S., et al. The RING finger protein RNF8 ubiquitinates Nbs1 to promote DNA double-strand break repair by homologous recombination. J. Biol. Chem. 2012, 287:43984-43994.
    • (2012) J. Biol. Chem. , vol.287 , pp. 43984-43994
    • Lu, C.S.1
  • 66
    • 84879463452 scopus 로고    scopus 로고
    • Ubiquitin-dependent recruitment of the Bloom syndrome helicase upon replication stress is required to suppress homologous recombination
    • Tikoo S., et al. Ubiquitin-dependent recruitment of the Bloom syndrome helicase upon replication stress is required to suppress homologous recombination. EMBO J. 2013, 32:1778-1792.
    • (2013) EMBO J. , vol.32 , pp. 1778-1792
    • Tikoo, S.1
  • 67
    • 84862777619 scopus 로고    scopus 로고
    • The E3 ligase RNF8 regulates KU80 removal and NHEJ repair
    • Feng L., et al. The E3 ligase RNF8 regulates KU80 removal and NHEJ repair. Nat. Struct. Mol. Biol. 2012, 19:201-206.
    • (2012) Nat. Struct. Mol. Biol. , vol.19 , pp. 201-206
    • Feng, L.1
  • 68
    • 34247110291 scopus 로고    scopus 로고
    • Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair
    • Smogorzewska A., et al. Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair. Cell 2007, 129:289-301.
    • (2007) Cell , vol.129 , pp. 289-301
    • Smogorzewska, A.1
  • 69
    • 84878944582 scopus 로고    scopus 로고
    • Sumoylation: a regulatory protein modification in health and disease
    • Flotho A., et al. Sumoylation: a regulatory protein modification in health and disease. Annu. Rev. Biochem. 2013, 82:357-385.
    • (2013) Annu. Rev. Biochem. , vol.82 , pp. 357-385
    • Flotho, A.1
  • 70
    • 84877585813 scopus 로고    scopus 로고
    • Role of Cdc48/p97 as a SUMO-targeted segregase curbing Rad51-Rad52 interaction
    • Bergink S., et al. Role of Cdc48/p97 as a SUMO-targeted segregase curbing Rad51-Rad52 interaction. Nat. Cell Biol. 2013, 15:526-532.
    • (2013) Nat. Cell Biol. , vol.15 , pp. 526-532
    • Bergink, S.1
  • 71
    • 33750447586 scopus 로고    scopus 로고
    • The mechanisms of PML-nuclear body formation
    • Shen T.H., et al. The mechanisms of PML-nuclear body formation. Mol. Cell 2006, 24:331-339.
    • (2006) Mol. Cell , vol.24 , pp. 331-339
    • Shen, T.H.1
  • 72
    • 84903778881 scopus 로고    scopus 로고
    • SUMOylation of ATRIP potentiates DNA damage signaling by boosting multiple protein interactions in the ATR pathway
    • Wu C.S., et al. SUMOylation of ATRIP potentiates DNA damage signaling by boosting multiple protein interactions in the ATR pathway. Genes Dev. 2014, 28:1472-1484.
    • (2014) Genes Dev. , vol.28 , pp. 1472-1484
    • Wu, C.S.1
  • 73
    • 84920408083 scopus 로고    scopus 로고
    • The SLX4 complex is a SUMO E3 ligase that impacts on replication stress outcome and genome stability
    • Guervilly J.H., et al. The SLX4 complex is a SUMO E3 ligase that impacts on replication stress outcome and genome stability. Mol. Cell 2015, 57:123-137.
    • (2015) Mol. Cell , vol.57 , pp. 123-137
    • Guervilly, J.H.1
  • 74
    • 84920442558 scopus 로고    scopus 로고
    • Noncovalent interactions with SUMO and ubiquitin orchestrate distinct functions of the SLX4 complex in genome maintenance
    • Ouyang J., et al. Noncovalent interactions with SUMO and ubiquitin orchestrate distinct functions of the SLX4 complex in genome maintenance. Mol. Cell 2015, 57:108-122.
    • (2015) Mol. Cell , vol.57 , pp. 108-122
    • Ouyang, J.1
  • 75
    • 36448975490 scopus 로고    scopus 로고
    • Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies
    • Bernardi R., et al. Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat. Rev. Mol. Cell. Biol. 2007, 8:1006-1016.
    • (2007) Nat. Rev. Mol. Cell. Biol. , vol.8 , pp. 1006-1016
    • Bernardi, R.1
  • 76
    • 22944474665 scopus 로고    scopus 로고
    • SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase
    • Pfander B., et al. SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 2005, 436:428-433.
    • (2005) Nature , vol.436 , pp. 428-433
    • Pfander, B.1
  • 77
    • 21244449061 scopus 로고    scopus 로고
    • Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p
    • Papouli E., et al. Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol. Cell 2005, 19:123-133.
    • (2005) Mol. Cell , vol.19 , pp. 123-133
    • Papouli, E.1
  • 78
    • 36348964395 scopus 로고    scopus 로고
    • The yeast Hex3.Slx8 heterodimer is a ubiquitin ligase stimulated by substrate sumoylation
    • Xie Y., et al. The yeast Hex3.Slx8 heterodimer is a ubiquitin ligase stimulated by substrate sumoylation. J. Biol. Chem. 2007, 282:34176-34184.
    • (2007) J. Biol. Chem. , vol.282 , pp. 34176-34184
    • Xie, Y.1
  • 79
    • 5144219680 scopus 로고    scopus 로고
    • Identification of a SUMO-binding motif that recognizes SUMO-modified proteins
    • Song J., et al. Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:14373-14378.
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 14373-14378
    • Song, J.1
  • 80
    • 84867199883 scopus 로고    scopus 로고
    • Dual roles of the SUMO-interacting motif in the regulation of Srs2 sumoylation
    • Kolesar P., et al. Dual roles of the SUMO-interacting motif in the regulation of Srs2 sumoylation. Nucleic Acids Res. 2012, 40:7831-7843.
    • (2012) Nucleic Acids Res. , vol.40 , pp. 7831-7843
    • Kolesar, P.1
  • 81
    • 79960261026 scopus 로고    scopus 로고
    • Sumoylation inhibits alpha-synuclein aggregation and toxicity
    • Krumova P., et al. Sumoylation inhibits alpha-synuclein aggregation and toxicity. J. Cell Biol. 2011, 194:49-60.
    • (2011) J. Cell Biol. , vol.194 , pp. 49-60
    • Krumova, P.1
  • 82
    • 77649186048 scopus 로고    scopus 로고
    • SUMOylation attenuates the aggregation propensity and cellular toxicity of the polyglutamine expanded Ataxin-7
    • Janer A., et al. SUMOylation attenuates the aggregation propensity and cellular toxicity of the polyglutamine expanded Ataxin-7. Hum. Mol. Genet. 2010, 19:181-195.
    • (2010) Hum. Mol. Genet. , vol.19 , pp. 181-195
    • Janer, A.1
  • 83
    • 84907965952 scopus 로고    scopus 로고
    • A versatile scaffold contributes to damage survival via sumoylation and nuclease interactions
    • Sarangi P., et al. A versatile scaffold contributes to damage survival via sumoylation and nuclease interactions. Cell Rep. 2014, 9:143-152.
    • (2014) Cell Rep. , vol.9 , pp. 143-152
    • Sarangi, P.1
  • 84
    • 33747882922 scopus 로고    scopus 로고
    • PCNA controls establishment of sister chromatid cohesion during S phase
    • Moldovan G.L., et al. PCNA controls establishment of sister chromatid cohesion during S phase. Mol. Cell 2006, 23:723-732.
    • (2006) Mol. Cell , vol.23 , pp. 723-732
    • Moldovan, G.L.1
  • 85
    • 78649336706 scopus 로고    scopus 로고
    • The DNA damage response: making it safe to play with knives
    • Ciccia A., et al. The DNA damage response: making it safe to play with knives. Mol. Cell 2010, 40:179-204.
    • (2010) Mol. Cell , vol.40 , pp. 179-204
    • Ciccia, A.1
  • 86
    • 77953915005 scopus 로고    scopus 로고
    • Ubiquitin signalling in DNA replication and repair
    • Ulrich H.D., et al. Ubiquitin signalling in DNA replication and repair. Nat. Rev. Mol. Cell Biol. 2010, 11:479-489.
    • (2010) Nat. Rev. Mol. Cell Biol. , vol.11 , pp. 479-489
    • Ulrich, H.D.1
  • 87
    • 79952235291 scopus 로고    scopus 로고
    • Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications
    • Polo S.E., et al. Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev. 2011, 25:409-433.
    • (2011) Genes Dev. , vol.25 , pp. 409-433
    • Polo, S.E.1
  • 88
    • 0037086643 scopus 로고    scopus 로고
    • Modification of the human Thymine-DNA Glycosylase by ubiquitin-like proteins facilitates enzymatic turnover
    • Hardeland U., et al. Modification of the human Thymine-DNA Glycosylase by ubiquitin-like proteins facilitates enzymatic turnover. EMBO J. 2002, 21:1456-1464.
    • (2002) EMBO J. , vol.21 , pp. 1456-1464
    • Hardeland, U.1
  • 89
    • 84878545614 scopus 로고    scopus 로고
    • Lif1 SUMOylation and its role in non-homologous end-joining
    • Vigasova D., et al. Lif1 SUMOylation and its role in non-homologous end-joining. Nucleic Acids Res. 2013, 41:5341-5353.
    • (2013) Nucleic Acids Res. , vol.41 , pp. 5341-5353
    • Vigasova, D.1
  • 90
    • 84922384292 scopus 로고    scopus 로고
    • SUMOylation regulates Polo-like Kinase 1-interacting Checkpoint Helicase (PICH) during mitosis
    • Sridharan V., et al. SUMOylation regulates Polo-like Kinase 1-interacting Checkpoint Helicase (PICH) during mitosis. J. Biol. Chem. 2015, 290:3269-3276.
    • (2015) J. Biol. Chem. , vol.290 , pp. 3269-3276
    • Sridharan, V.1
  • 91
    • 17144410054 scopus 로고    scopus 로고
    • Functionality of human Thymine DNA Glycosylase requires SUMO-regulated changes in protein conformation
    • Steinacher R., et al. Functionality of human Thymine DNA Glycosylase requires SUMO-regulated changes in protein conformation. Curr. Biol. 2005, 15:616-623.
    • (2005) Curr. Biol. , vol.15 , pp. 616-623
    • Steinacher, R.1
  • 92
    • 84864448524 scopus 로고    scopus 로고
    • Fluorescence-based incision assay for human XPF-ERCC1 activity identifies important elements of DNA junction recognition
    • Bowles M., et al. Fluorescence-based incision assay for human XPF-ERCC1 activity identifies important elements of DNA junction recognition. Nucleic Acids Res. 2012, 40:e101.
    • (2012) Nucleic Acids Res. , vol.40 , pp. e101
    • Bowles, M.1
  • 93
    • 84863846456 scopus 로고    scopus 로고
    • Sumoylation of MDC1 is important for proper DNA damage response
    • Luo K., et al. Sumoylation of MDC1 is important for proper DNA damage response. EMBO J. 2012, 31:3008-3019.
    • (2012) EMBO J. , vol.31 , pp. 3008-3019
    • Luo, K.1
  • 94
    • 84871785836 scopus 로고    scopus 로고
    • Structure-function analysis indicates that sumoylation modulates DNA-binding activity of STAT1
    • Gronholm J., et al. Structure-function analysis indicates that sumoylation modulates DNA-binding activity of STAT1. BMC Biochem. 2012, 13:20.
    • (2012) BMC Biochem. , vol.13 , pp. 20
    • Gronholm, J.1
  • 95
    • 84907664573 scopus 로고    scopus 로고
    • Nuclear mobility and activity of FOXA1 with androgen receptor are regulated by SUMOylation
    • Sutinen P., et al. Nuclear mobility and activity of FOXA1 with androgen receptor are regulated by SUMOylation. Mol. Endocrinol. 2014, 28:1719-1728.
    • (2014) Mol. Endocrinol. , vol.28 , pp. 1719-1728
    • Sutinen, P.1
  • 96
    • 84857176030 scopus 로고    scopus 로고
    • Sumoylation of transcription factor Gcn4 facilitates its Srb10-mediated clearance from promoters in yeast
    • Rosonina E., et al. Sumoylation of transcription factor Gcn4 facilitates its Srb10-mediated clearance from promoters in yeast. Genes Dev. 2012, 26:350-355.
    • (2012) Genes Dev. , vol.26 , pp. 350-355
    • Rosonina, E.1
  • 97
    • 33644761942 scopus 로고    scopus 로고
    • SIZ1/SIZ2 control of chromosome transmission fidelity is mediated by the sumoylation of Topoisomerase II
    • Takahashi Y., et al. SIZ1/SIZ2 control of chromosome transmission fidelity is mediated by the sumoylation of Topoisomerase II. Genetics 2006, 172:783-794.
    • (2006) Genetics , vol.172 , pp. 783-794
    • Takahashi, Y.1
  • 98
    • 0032504021 scopus 로고    scopus 로고
    • Structure determination of the small ubiquitin-related modifier SUMO-1
    • Bayer P., et al. Structure determination of the small ubiquitin-related modifier SUMO-1. J. Mol. Biol. 1998, 280:275-286.
    • (1998) J. Mol. Biol. , vol.280 , pp. 275-286
    • Bayer, P.1
  • 99
    • 77954147121 scopus 로고    scopus 로고
    • SUMO-1 possesses DNA binding activity
    • Eilebrecht S., et al. SUMO-1 possesses DNA binding activity. BMC Res. Notes 2010, 3:146.
    • (2010) BMC Res. Notes , vol.3 , pp. 146
    • Eilebrecht, S.1
  • 100
    • 80052697814 scopus 로고    scopus 로고
    • The ubiquitin- and SUMO-dependent signaling response to DNA double-strand breaks
    • Bekker-Jensen S., et al. The ubiquitin- and SUMO-dependent signaling response to DNA double-strand breaks. FEBS Lett. 2011, 585:2914-2919.
    • (2011) FEBS Lett. , vol.585 , pp. 2914-2919
    • Bekker-Jensen, S.1
  • 101
    • 84861941745 scopus 로고    scopus 로고
    • DNA damage-inducible SUMOylation of HERC2 promotes RNF8 binding via a novel SUMO-binding Zinc finger
    • Danielsen J.R., et al. DNA damage-inducible SUMOylation of HERC2 promotes RNF8 binding via a novel SUMO-binding Zinc finger. J. Cell Biol. 2012, 197:179-187.
    • (2012) J. Cell Biol. , vol.197 , pp. 179-187
    • Danielsen, J.R.1
  • 102
    • 84863198650 scopus 로고    scopus 로고
    • CBX4-mediated SUMO modification regulates BMI1 recruitment at sites of DNA damage
    • Ismail I.H., et al. CBX4-mediated SUMO modification regulates BMI1 recruitment at sites of DNA damage. Nucleic Acids Res. 2012, 40:5497-5510.
    • (2012) Nucleic Acids Res. , vol.40 , pp. 5497-5510
    • Ismail, I.H.1
  • 103
    • 84870760201 scopus 로고    scopus 로고
    • RNF4-dependent hybrid SUMO-ubiquitin chains are signals for RAP80 and thereby mediate the recruitment of BRCA1 to sites of DNA damage
    • Guzzo C.M., et al. RNF4-dependent hybrid SUMO-ubiquitin chains are signals for RAP80 and thereby mediate the recruitment of BRCA1 to sites of DNA damage. Sci. Signal. 2012, 5:ra88.
    • (2012) Sci. Signal. , vol.5 , pp. ra88
    • Guzzo, C.M.1
  • 104
    • 84864076551 scopus 로고    scopus 로고
    • Rap80 protein recruitment to DNA double-strand breaks requires binding to both small ubiquitin-like modifier (SUMO) and ubiquitin conjugates
    • Hu X., et al. Rap80 protein recruitment to DNA double-strand breaks requires binding to both small ubiquitin-like modifier (SUMO) and ubiquitin conjugates. J. Biol. Chem. 2012, 287:25510-25519.
    • (2012) J. Biol. Chem. , vol.287 , pp. 25510-25519
    • Hu, X.1
  • 105
    • 79251611165 scopus 로고    scopus 로고
    • Mutations of the SLX4 gene in Fanconi anemia
    • Kim Y., et al. Mutations of the SLX4 gene in Fanconi anemia. Nat. Genet. 2011, 43:142-146.
    • (2011) Nat. Genet. , vol.43 , pp. 142-146
    • Kim, Y.1
  • 106
    • 84903779008 scopus 로고    scopus 로고
    • Distinct functional roles for the two SLX4 ubiquitin-binding UBZ domains mutated in Fanconi anemia
    • Lachaud C., et al. Distinct functional roles for the two SLX4 ubiquitin-binding UBZ domains mutated in Fanconi anemia. J. Cell Sci. 2014, 127:2811-2817.
    • (2014) J. Cell Sci. , vol.127 , pp. 2811-2817
    • Lachaud, C.1
  • 107
    • 84885899930 scopus 로고    scopus 로고
    • RNF4 and PLK1 are required for replication fork collapse in ATR-deficient cells
    • Ragland R.L., et al. RNF4 and PLK1 are required for replication fork collapse in ATR-deficient cells. Genes Dev. 2013, 27:2259-2273.
    • (2013) Genes Dev. , vol.27 , pp. 2259-2273
    • Ragland, R.L.1
  • 108
    • 67649182975 scopus 로고    scopus 로고
    • Rpb1 sumoylation in response to UV radiation or transcriptional impairment in yeast
    • Chen X., et al. Rpb1 sumoylation in response to UV radiation or transcriptional impairment in yeast. PLoS ONE 2009, 4:e5267.
    • (2009) PLoS ONE , vol.4 , pp. e5267
    • Chen, X.1
  • 109
    • 84864950070 scopus 로고    scopus 로고
    • Sequential posttranslational modifications program FEN1 degradation during cell-cycle progression
    • Guo Z., et al. Sequential posttranslational modifications program FEN1 degradation during cell-cycle progression. Mol. Cell 2012, 47:444-456.
    • (2012) Mol. Cell , vol.47 , pp. 444-456
    • Guo, Z.1
  • 110
    • 77955475870 scopus 로고    scopus 로고
    • Regulation of DNA repair through deSUMOylation and SUMOylation of Replication Protein A complex
    • Dou H., et al. Regulation of DNA repair through deSUMOylation and SUMOylation of Replication Protein A complex. Mol. Cell 2010, 39:333-345.
    • (2010) Mol. Cell , vol.39 , pp. 333-345
    • Dou, H.1
  • 111
    • 33644540769 scopus 로고    scopus 로고
    • SUMO modification of human XRCC4 regulates its localization and function in DNA double-strand break repair
    • Yurchenko V., et al. SUMO modification of human XRCC4 regulates its localization and function in DNA double-strand break repair. Mol. Cell. Biol. 2006, 26:1786-1794.
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 1786-1794
    • Yurchenko, V.1
  • 112
    • 84859186894 scopus 로고    scopus 로고
    • SUMO modification of the neuroprotective protein TDP1 facilitates chromosomal single-strand break repair
    • Hudson J.J., et al. SUMO modification of the neuroprotective protein TDP1 facilitates chromosomal single-strand break repair. Nat. Commun. 2012, 3:733.
    • (2012) Nat. Commun. , vol.3 , pp. 733
    • Hudson, J.J.1
  • 113
    • 0036291014 scopus 로고    scopus 로고
    • The SUMO-1 isopeptidase Smt4 is linked to centromeric cohesion through SUMO-1 modification of DNA Topoisomerase II
    • Bachant J., et al. The SUMO-1 isopeptidase Smt4 is linked to centromeric cohesion through SUMO-1 modification of DNA Topoisomerase II. Mol. Cell 2002, 9:1169-1182.
    • (2002) Mol. Cell , vol.9 , pp. 1169-1182
    • Bachant, J.1
  • 114
    • 41149110693 scopus 로고    scopus 로고
    • In vivo modeling of polysumoylation uncovers targeting of Topoisomerase II to the nucleolus via optimal level of SUMO modification
    • Takahashi Y., et al. In vivo modeling of polysumoylation uncovers targeting of Topoisomerase II to the nucleolus via optimal level of SUMO modification. Chromosoma 2008, 117:189-198.
    • (2008) Chromosoma , vol.117 , pp. 189-198
    • Takahashi, Y.1
  • 115
    • 19744378341 scopus 로고    scopus 로고
    • Intra-nuclear trafficking of the BLM helicase to DNA damage-induced foci is regulated by SUMO modification
    • Eladad S., et al. Intra-nuclear trafficking of the BLM helicase to DNA damage-induced foci is regulated by SUMO modification. Hum. Mol. Genet. 2005, 14:1351-1365.
    • (2005) Hum. Mol. Genet. , vol.14 , pp. 1351-1365
    • Eladad, S.1
  • 116
    • 73949087271 scopus 로고    scopus 로고
    • SUMO modification regulates BLM and RAD51 interaction at damaged replication forks
    • Ouyang K.J., et al. SUMO modification regulates BLM and RAD51 interaction at damaged replication forks. PLoS Biol. 2009, 7:e1000252.
    • (2009) PLoS Biol. , vol.7 , pp. e1000252
    • Ouyang, K.J.1
  • 117
    • 34547591933 scopus 로고    scopus 로고
    • The Smc5-Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus
    • Torres-Rosell, et al. The Smc5-Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus. Nat. Cell Biol. 2007, 9:923-931.
    • (2007) Nat. Cell Biol. , vol.9 , pp. 923-931
    • Torres-Rosell1
  • 118
    • 20544440797 scopus 로고    scopus 로고
    • Crystal structure of Thymine DNA Glycosylase conjugated to SUMO-1
    • Baba D., et al. Crystal structure of Thymine DNA Glycosylase conjugated to SUMO-1. Nature 2005, 435:979-982.
    • (2005) Nature , vol.435 , pp. 979-982
    • Baba, D.1
  • 119
    • 33646174474 scopus 로고    scopus 로고
    • Crystal structure of SUMO-3-modified Thymine-DNA Glycosylase
    • Baba D., et al. Crystal structure of SUMO-3-modified Thymine-DNA Glycosylase. J. Mol. Biol. 2006, 359:137-147.
    • (2006) J. Mol. Biol. , vol.359 , pp. 137-147
    • Baba, D.1
  • 120
    • 79351468704 scopus 로고    scopus 로고
    • SUMO-1 regulates the conformational dynamics of Thymine-DNA Glycosylase regulatory domain and competes with its DNA binding activity
    • Smet-Nocca C., et al. SUMO-1 regulates the conformational dynamics of Thymine-DNA Glycosylase regulatory domain and competes with its DNA binding activity. BMC Biochem. 2011, 12:4.
    • (2011) BMC Biochem. , vol.12 , pp. 4
    • Smet-Nocca, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.