메뉴 건너뛰기




Volumn 38, Issue 3, 2008, Pages 397-415

Pareto-based multiobjective machine learning: An overview and case studies

Author keywords

Ensemble; Evolutionary multiobjective optimization; Generalization; Machine learning; Multiobjective learning; Multiobjective optimization; Neural networks; Pareto optimization

Indexed keywords

COST FUNCTIONS; EVOLUTIONARY ALGORITHMS; FEATURE EXTRACTION; LEARNING ALGORITHMS; MULTIOBJECTIVE OPTIMIZATION; NEURAL NETWORKS; PARETO PRINCIPLE;

EID: 43449135303     PISSN: 10946977     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSMCC.2008.919172     Document Type: Review
Times cited : (386)

References (94)
  • 4
    • 24344432885 scopus 로고    scopus 로고
    • Evolutionary multi-objective optimization for simultaneous generation of signal-type and symbol-type representations
    • Proc. 3rd Int. Conf. Evol. Multi-Criterion Optim, New York: Springer-Verlag
    • Y. Jin, B. Sendhoff, and E. Körner, "Evolutionary multi-objective optimization for simultaneous generation of signal-type and symbol-type representations," in Proc. 3rd Int. Conf. Evol. Multi-Criterion Optim. Lecture Notes in Computer Science, vol. 3410. New York: Springer-Verlag, 2005, pp. 752-766.
    • (2005) Lecture Notes in Computer Science , vol.3410 , pp. 752-766
    • Jin, Y.1    Sendhoff, B.2    Körner, E.3
  • 5
    • 0001219859 scopus 로고
    • Regularization theory and neural network architectures
    • F. Girosi, M. Jones, and T. Poggio, "Regularization theory and neural network architectures," Neural Comput, vol. 7, pp. 219-269, 1995.
    • (1995) Neural Comput , vol.7 , pp. 219-269
    • Girosi, F.1    Jones, M.2    Poggio, T.3
  • 6
    • 0033704546 scopus 로고    scopus 로고
    • Fuzzy modeling of high-dimensional systems: Complexity reduction and interpretability improvement
    • Y. Jin, "Fuzzy modeling of high-dimensional systems: Complexity reduction and interpretability improvement:" IEEE Trans. Fuzzy Syst. vol. 8, no. 2, pp. 212-221, 2000.
    • (2000) IEEE Trans. Fuzzy Syst , vol.8 , Issue.2 , pp. 212-221
    • Jin, Y.1
  • 8
    • 0033485370 scopus 로고    scopus 로고
    • Ensemble learning via negative correlation
    • Y. Liu and X. Yao, "Ensemble learning via negative correlation," Neural Netw., vol. 12, pp. 1399-1404, 1999.
    • (1999) Neural Netw , vol.12 , pp. 1399-1404
    • Liu, Y.1    Yao, X.2
  • 9
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes and V. Vapink, "Support vector networks," Mach. Learn. vol. 20, pp. 273-297, 1995.
    • (1995) Mach. Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapink, V.2
  • 10
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by V1?
    • B. Olhausen and D. Field, "Sparse coding with an overcomplete basis set: A strategy employed by V1?," Vis. Res., vol. 37, pp. 3311-3325, 1997.
    • (1997) Vis. Res , vol.37 , pp. 3311-3325
    • Olhausen, B.1    Field, D.2
  • 12
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • J. Banfield and A. Raftery, "Model-based Gaussian and non-Gaussian clustering," Biometrics, vol. 49, pp. 803-821, 1993.
    • (1993) Biometrics , vol.49 , pp. 803-821
    • Banfield, J.1    Raftery, A.2
  • 14
    • 0031212567 scopus 로고    scopus 로고
    • A closer look at drawbacks of minimizing weighted sum of objectives for Pareto set generation in multicriteria optimization problems
    • I. Das and J. Dennis. "A closer look at drawbacks of minimizing weighted sum of objectives for Pareto set generation in multicriteria optimization problems," Struct. Optim., vol. 14, no. 1, pp. 63-69, 1997.
    • (1997) Struct. Optim , vol.14 , Issue.1 , pp. 63-69
    • Das, I.1    Dennis, J.2
  • 15
    • 0142172455 scopus 로고    scopus 로고
    • Dynamic weighted aggregation for evolutionary multi-objective optimization: Why does it work and how?
    • San Mateo, CA: Morgan Kaufmann
    • Y. Jin, M. Olhofer, and B. Sendhoff, "Dynamic weighted aggregation for evolutionary multi-objective optimization: Why does it work and how?," in Proc. Genetic Evol. Comput. Conf. San Mateo, CA: Morgan Kaufmann, 2001, pp. 1042-1049.
    • (2001) Proc. Genetic Evol. Comput. Conf , pp. 1042-1049
    • Jin, Y.1    Olhofer, M.2    Sendhoff, B.3
  • 16
    • 0141542628 scopus 로고    scopus 로고
    • Speeding up back-propagation using multi-objective evolutionary algorithms
    • H. Abbass, "Speeding up back-propagation using multi-objective evolutionary algorithms," Neural Comput., vol. 15, no. 11, pp. 2705-2726, 2003.
    • (2003) Neural Comput , vol.15 , Issue.11 , pp. 2705-2726
    • Abbass, H.1
  • 17
    • 0034331142 scopus 로고    scopus 로고
    • Improving generalization of MLP with multi-objective optimization
    • R. de A. Teixeira, A. Braga, R. Takahashi, and R. Saldanha, "Improving generalization of MLP with multi-objective optimization," Neurocomputing, vol. 35, pp. 189-194, 2000.
    • (2000) Neurocomputing , vol.35 , pp. 189-194
    • Teixeira, R.D.A.1    Braga, A.2    Takahashi, R.3    Saldanha, R.4
  • 18
    • 34250779169 scopus 로고    scopus 로고
    • Y. Jin, Ed, New York: Springer-Verlag
    • Y. Jin, Ed., Multi-Objective Machine Learning. New York: Springer-Verlag, 2006.
    • (2006) Multi-Objective Machine Learning
  • 20
    • 0030149635 scopus 로고    scopus 로고
    • Harmonic competition: A self-organizing multiple criteria optimization
    • May
    • Y. Matsuyama, "Harmonic competition: A self-organizing multiple criteria optimization," IEEE Trans. Neural Netw., vol. 7, no. 3, pp. 652-668, May 1996.
    • (1996) IEEE Trans. Neural Netw , vol.7 , Issue.3 , pp. 652-668
    • Matsuyama, Y.1
  • 21
    • 0345879981 scopus 로고    scopus 로고
    • A novel multicriteria optimization algorithm for the structure determination of multilayer feedforward neural networks
    • K. Kottathra and Y. Attikiouzel, "A novel multicriteria optimization algorithm for the structure determination of multilayer feedforward neural networks," J. Netw. Comput. Appl., vol. 19, pp. 135-147, 1996.
    • (1996) J. Netw. Comput. Appl , vol.19 , pp. 135-147
    • Kottathra, K.1    Attikiouzel, Y.2
  • 23
    • 0035975688 scopus 로고    scopus 로고
    • Parameter identification with weightless regularization
    • T. Furukawa, "Parameter identification with weightless regularization," Int. J. Numer. Methods Eng., vol. 52, pp. 219-238, 2001.
    • (2001) Int. J. Numer. Methods Eng , vol.52 , pp. 219-238
    • Furukawa, T.1
  • 24
    • 84944892396 scopus 로고    scopus 로고
    • A memetic Pareto approach to artificial neural networks
    • H. Abbass, "A memetic Pareto approach to artificial neural networks," in Proc. 14th Aust. Joint Conf. Artif. Intell., 2001, pp. 1-12.
    • (2001) Proc. 14th Aust. Joint Conf. Artif. Intell , pp. 1-12
    • Abbass, H.1
  • 25
    • 33845294631 scopus 로고    scopus 로고
    • Evolutionary multi-objective approach to constructing neural network ensembles for regression
    • C. Coello Coello, Ed. Singapore: World Scientific
    • Y. Jin, T. Okabe, and B. Sendhoff, "Evolutionary multi-objective approach to constructing neural network ensembles for regression," in Applications of Evolutionary Multi-Objective Optimization, C. Coello Coello, Ed. Singapore: World Scientific, 2004, pp. 653-672.
    • (2004) Applications of Evolutionary Multi-Objective Optimization , pp. 653-672
    • Jin, Y.1    Okabe, T.2    Sendhoff, B.3
  • 26
    • 4344623228 scopus 로고    scopus 로고
    • Neural network regularization and ensembling using multi-objective evolutionary algorithms
    • Piscataway, NJ: IEEE Press, Jun
    • Y. Jin, T. Okabe, and B. Sendhoff, "Neural network regularization and ensembling using multi-objective evolutionary algorithms," in Proc. Congr. Evol. Comput. Piscataway, NJ: IEEE Press, Jun. 2004, pp. 1-8.
    • (2004) Proc. Congr. Evol. Comput , pp. 1-8
    • Jin, Y.1    Okabe, T.2    Sendhoff, B.3
  • 27
    • 0036079682 scopus 로고    scopus 로고
    • Pareto multi-objective non-linear regression modelling to aid CAPM analogous forecasting
    • J. Fieldsend and S. Singh, "Pareto multi-objective non-linear regression modelling to aid CAPM analogous forecasting," in Proc. Int. Joint Conf. Neural Netw., 2002, vol. 1, pp. 388-393.
    • (2002) Proc. Int. Joint Conf. Neural Netw , vol.1 , pp. 388-393
    • Fieldsend, J.1    Singh, S.2
  • 28
    • 15344342907 scopus 로고    scopus 로고
    • Pareto evolutionary neural networks
    • Mar
    • J. Fieldsend and S. Singh, "Pareto evolutionary neural networks," IEEE Trans. Neural. Netw., vol. 16, no. 2, pp. 338-354, Mar. 2005.
    • (2005) IEEE Trans. Neural. Netw , vol.16 , Issue.2 , pp. 338-354
    • Fieldsend, J.1    Singh, S.2
  • 29
    • 0036887498 scopus 로고    scopus 로고
    • Multi-objective cooperative coevolution of artificial neural networks
    • N. Garcia-Pedrajas, C. Hervas-Martinez, and J. Munoz-Perez, "Multi-objective cooperative coevolution of artificial neural networks," Neural Netw., vol. 15, no. 10, pp. 1255-1274, 2002.
    • (2002) Neural Netw , vol.15 , Issue.10 , pp. 1255-1274
    • Garcia-Pedrajas, N.1    Hervas-Martinez, C.2    Munoz-Perez, J.3
  • 30
    • 84901427290 scopus 로고    scopus 로고
    • Hierarchical rank density genetic algorithm for radial-basis function neural network design
    • G. G. Yen and H. Lu, "Hierarchical rank density genetic algorithm for radial-basis function neural network design," in Proc. Congr. Evol. Comput., 2002, vol. 1, pp. 25-30.
    • (2002) Proc. Congr. Evol. Comput , vol.1 , pp. 25-30
    • Yen, G.G.1    Lu, H.2
  • 31
    • 33845963336 scopus 로고    scopus 로고
    • Multi-objective structure selection for radial basis function networks based on genetic algorithm
    • T. Hatanaka, N. Kondo, and K. Uosaki, "Multi-objective structure selection for radial basis function networks based on genetic algorithm," in Proc. Congr. Evol. Comput., 2003, pp. 1095-1100.
    • (2003) Proc. Congr. Evol. Comput , pp. 1095-1100
    • Hatanaka, T.1    Kondo, N.2    Uosaki, K.3
  • 32
    • 1942517341 scopus 로고    scopus 로고
    • Multi-objective programming in SVMs
    • Washington, DC
    • J. Bi, "Multi-objective programming in SVMs," in Proc. 20th Int. Conf. Mach. Learn., Washington, DC, 2003, pp. 35-42.
    • (2003) Proc. 20th Int. Conf. Mach. Learn , pp. 35-42
    • Bi, J.1
  • 33
    • 24344435631 scopus 로고    scopus 로고
    • Multi-objective model selection for support vector machines
    • Evolution Multi-Criterion Optimization, New York: Springer-Verlag
    • C. Igel, "Multi-objective model selection for support vector machines," in Evolution Multi-Criterion Optimization Lecture Notes in Computer Science, vol. 3410. New York: Springer-Verlag, 2005, pp. 534-546.
    • (2005) Lecture Notes in Computer Science , vol.3410 , pp. 534-546
    • Igel, C.1
  • 34
    • 13544265063 scopus 로고    scopus 로고
    • Support vector machines formulated as multi-objective linear programming
    • H. Nakayama and T. Asada, "Support vector machines formulated as multi-objective linear programming," in Proc. ICOTA, 2001, pp. 1171-1178.
    • (2001) Proc. ICOTA , pp. 1171-1178
    • Nakayama, H.1    Asada, T.2
  • 35
    • 35048845248 scopus 로고    scopus 로고
    • Structural risk minimization on decision trees using an evolutionary multiobjective optimization
    • Proc. Eur. Conf. Genetic Program, New York: Springer-Verlag
    • D. Kim, "Structural risk minimization on decision trees using an evolutionary multiobjective optimization," in Proc. Eur. Conf. Genetic Program. Lecture Notes in Computer Science, vol. 3003. New York: Springer-Verlag, 2004, pp. 338-348.
    • (2004) Lecture Notes in Computer Science , vol.3003 , pp. 338-348
    • Kim, D.1
  • 36
    • 79959393682 scopus 로고    scopus 로고
    • MOLeCS: Using multi-objective evolutionary algorithms for learning
    • Proc. EMO 2001, New York: Springer-Verlag, pp
    • E. Bernado-Manssilla and J. Garrell-Guii, "MOLeCS: Using multi-objective evolutionary algorithms for learning," in Proc. EMO 2001 Lecture Notes in Computer Science, vol. 1993. New York: Springer-Verlag, pp. 696-710.
    • Lecture Notes in Computer Science , vol.1993 , pp. 696-710
    • Bernado-Manssilla, E.1    Garrell-Guii, J.2
  • 37
    • 24344471654 scopus 로고    scopus 로고
    • Evolutionary multiobjective optimization of neural networks fore face detection
    • S. Wiegand, C. Igel, and U. Handmann, "Evolutionary multiobjective optimization of neural networks fore face detection," Int. J. Comput. Intell., vol. 4, no. 3, pp. 237-253, 2005.
    • (2005) Int. J. Comput. Intell , vol.4 , Issue.3 , pp. 237-253
    • Wiegand, S.1    Igel, C.2    Handmann, U.3
  • 38
    • 32444433452 scopus 로고    scopus 로고
    • Evolving optimal feature extraction using multi-objective genetic programming: A methodology and preliminary study on edge detection
    • Y. Zhang and P. I. Rockett, "Evolving optimal feature extraction using multi-objective genetic programming: A methodology and preliminary study on edge detection," in Proc. Genetic Evol. Comput. Conf., 2005, pp. 795-802.
    • (2005) Proc. Genetic Evol. Comput. Conf , pp. 795-802
    • Zhang, Y.1    Rockett, P.I.2
  • 39
    • 4544275445 scopus 로고    scopus 로고
    • Automatic generation of controllers for embodied legged organisms: A Pareto evolutionary multi-objective approach
    • J. Teo and H. Abbass, "Automatic generation of controllers for embodied legged organisms: A Pareto evolutionary multi-objective approach," Evol. Comput., vol. 12, no. 3, pp. 355-394, 2004.
    • (2004) Evol. Comput , vol.12 , Issue.3 , pp. 355-394
    • Teo, J.1    Abbass, H.2
  • 40
    • 43449086068 scopus 로고    scopus 로고
    • A multi-objective genetic algorithm for learning linguistic persistent quries in text retrieval environments
    • Y. Jin, Ed. New York: Springer-Verlag, ch. 25, pp
    • M. Luque, O. Cordon, and E. Herrera-Viedma, "A multi-objective genetic algorithm for learning linguistic persistent quries in text retrieval environments," in Multi-Objective Machine Learning, Y. Jin, Ed. New York: Springer-Verlag, 2006, ch. 25, pp. 585-600.
    • (2006) Multi-Objective Machine Learning , pp. 585-600
    • Luque, M.1    Cordon, O.2    Herrera-Viedma, E.3
  • 42
    • 0000919523 scopus 로고    scopus 로고
    • Single-objective and two-objective genetic algorithms for selecting linguistic rules for pattern recognition
    • H. Ishibuchi, I. Murata, and I. Türksen, "Single-objective and two-objective genetic algorithms for selecting linguistic rules for pattern recognition," Fuzzy Sets Syst., vol. 89, pp. 135-150, 1997.
    • (1997) Fuzzy Sets Syst , vol.89 , pp. 135-150
    • Ishibuchi, H.1    Murata, I.2    Türksen, I.3
  • 45
    • 0035426682 scopus 로고    scopus 로고
    • Three-objective genetics-based machine learning for linguistic rule extraction
    • H. Ishibuchi, T. Nakashima, and T. Murata, "Three-objective genetics-based machine learning for linguistic rule extraction," Inf. Sci., vol. 136, no. 1-4, pp. 109-133, 2001.
    • (2001) Inf. Sci , vol.136 , Issue.1-4 , pp. 109-133
    • Ishibuchi, H.1    Nakashima, T.2    Murata, T.3
  • 46
    • 0036570765 scopus 로고    scopus 로고
    • A structure identification method of submodels for hierarchical fuzzy modeling using the multiple objective genetic algorithm
    • K. Tachibana and T. Furuhashi, "A structure identification method of submodels for hierarchical fuzzy modeling using the multiple objective genetic algorithm," Int. J. Intell. Syst., vol. 17, pp. 495-513, 2001.
    • (2001) Int. J. Intell. Syst , vol.17 , pp. 495-513
    • Tachibana, K.1    Furuhashi, T.2
  • 48
    • 18544378721 scopus 로고    scopus 로고
    • Agent-based evolutionary approach to interpretable rule-based knowledge extraction
    • May
    • H. Wang, S. Kwong, Y. Jin, W. Wei, and K. Man, "Agent-based evolutionary approach to interpretable rule-based knowledge extraction," IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 35, no. 2, pp. 143-155, May 2005.
    • (2005) IEEE Trans. Syst., Man, Cybern. C, Appl. Rev , vol.35 , Issue.2 , pp. 143-155
    • Wang, H.1    Kwong, S.2    Jin, Y.3    Wei, W.4    Man, K.5
  • 49
    • 9644257194 scopus 로고    scopus 로고
    • Multi-objective hierarchical genetic algorithm for interpretable fuzzy rule absed knowledge extraction
    • H. Wang, S. Kwong, Y. Jin, W. Wei, and K. Man, "Multi-objective hierarchical genetic algorithm for interpretable fuzzy rule absed knowledge extraction," Fuzzy Sets Syst., vol. 149, no. 1. pp. 149-186, 2005.
    • (2005) Fuzzy Sets Syst , vol.149 , Issue.1 , pp. 149-186
    • Wang, H.1    Kwong, S.2    Jin, Y.3    Wei, W.4    Man, K.5
  • 50
    • 85088764044 scopus 로고    scopus 로고
    • Rule extraction from neural networks with Pareto optimization
    • Berlin, Germany: Springer-Verlag
    • U. Markowska-Kaczmar and P. Wnuk-Liplnski, "Rule extraction from neural networks with Pareto optimization," in Artificial Intelligence and Soft Computing. Berlin, Germany: Springer-Verlag, 2004, pp. 450-455.
    • (2004) Artificial Intelligence and Soft Computing , pp. 450-455
    • Markowska-Kaczmar, U.1    Wnuk-Liplnski, P.2
  • 53
    • 85156192015 scopus 로고    scopus 로고
    • Generating accurate and diverse members of a neural network ensemble
    • Cambridge, MA: MIT Press
    • D. Opitz and J. Shavlik, "Generating accurate and diverse members of a neural network ensemble," in Advances in Neural Information Processing Systems 8. Cambridge, MA: MIT Press, 1996, pp. 535-541.
    • (1996) Advances in Neural Information Processing Systems 8 , pp. 535-541
    • Opitz, D.1    Shavlik, J.2
  • 54
    • 10444221886 scopus 로고    scopus 로고
    • Diversity creation methods: A survey and categorisation
    • G. Brown, J. Wyatt, R. Harris, and X. Yao, "Diversity creation methods: A survey and categorisation," J. Inf. Fusion, vol. 6, no. 1, pp. 5-20, 2005.
    • (2005) J. Inf. Fusion , vol.6 , Issue.1 , pp. 5-20
    • Brown, G.1    Wyatt, J.2    Harris, R.3    Yao, X.4
  • 55
    • 0030367578 scopus 로고    scopus 로고
    • Ensemble learning using decorrelated neural networks
    • B. Rosen, "Ensemble learning using decorrelated neural networks," Connection Sci., vol. 88, pp. 373-384, 1996.
    • (1996) Connection Sci , vol.88 , pp. 373-384
    • Rosen, B.1
  • 56
    • 32544431928 scopus 로고    scopus 로고
    • Evolving hybrid ensembles of learning machines for better generalisation
    • A. Chandra and X. Yao, "Evolving hybrid ensembles of learning machines for better generalisation," Neurocomputing, vol. 69, pp. 686-700, 2006.
    • (2006) Neurocomputing , vol.69 , pp. 686-700
    • Chandra, A.1    Yao, X.2
  • 57
    • 84901459245 scopus 로고    scopus 로고
    • Pareto neuro-evolution: Constructing ensemble of neural networks using multi-objective optimization
    • Dec
    • H. Abbass, "Pareto neuro-evolution: Constructing ensemble of neural networks using multi-objective optimization," in Proc. Congr. Evol. Comput, Dec. 2003, pp. 2074-2080.
    • (2003) Proc. Congr. Evol. Comput , pp. 2074-2080
    • Abbass, H.1
  • 58
    • 0037844875 scopus 로고    scopus 로고
    • COVNET: A cooperative coevolutionary model for evolving artificial neural networks
    • May
    • N. Garcia-Pedrajas, C. Hervas-Martinez, and J. Munoz-Perez, "COVNET: A cooperative coevolutionary model for evolving artificial neural networks," IEEE Trans. Neural Netw., vol. 14, no. 3, pp. 575-596, May 2003.
    • (2003) IEEE Trans. Neural Netw , vol.14 , Issue.3 , pp. 575-596
    • Garcia-Pedrajas, N.1    Hervas-Martinez, C.2    Munoz-Perez, J.3
  • 59
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • L. Kuncheva and C. Whitaker, "Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy," Mach. Learn., vol. 51, no. 2, pp. 181-207, 2003.
    • (2003) Mach. Learn , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.1    Whitaker, C.2
  • 60
    • 33845313035 scopus 로고    scopus 로고
    • Multiobjective structure selection for RBF networks and its application to nonlinear system design
    • Y. Jin, Ed. New York: Springer-Verlag, ch. 21, pp
    • T. Hatanaka, N. Kondo, and K. Uosaki, "Multiobjective structure selection for RBF networks and its application to nonlinear system design," in Multi-Objective Machine Learning, Y. Jin, Ed. New York: Springer-Verlag, 2006, ch. 21, pp. 491-505.
    • (2006) Multi-Objective Machine Learning , pp. 491-505
    • Hatanaka, T.1    Kondo, N.2    Uosaki, K.3
  • 61
    • 35248819821 scopus 로고    scopus 로고
    • Evolutionary multi-objective optimization for generating an ensemble of fuzzy rule-based classifiers
    • Proc. Genetic Evol. Comput. Conf
    • H. Ishibuchi and T. Yamamoto, "Evolutionary multi-objective optimization for generating an ensemble of fuzzy rule-based classifiers," in Proc. Genetic Evol. Comput. Conf. Lecture Notes in Computer Science, vol. 2723, 2003, pp. 1077-1088.
    • (2003) Lecture Notes in Computer Science , vol.2723 , pp. 1077-1088
    • Ishibuchi, H.1    Yamamoto, T.2
  • 62
    • 0033169217 scopus 로고    scopus 로고
    • Multiobjective genetic optimization of diagnostic classifiers with implementations for generating receiver operating characteristic curves
    • Aug
    • M. Kupinski and M. Anastasio, "Multiobjective genetic optimization of diagnostic classifiers with implementations for generating receiver operating characteristic curves," IEEE Trans. Med. Imag., vol. 18, no. 8, pp. 675-685, Aug. 1999.
    • (1999) IEEE Trans. Med. Imag , vol.18 , Issue.8 , pp. 675-685
    • Kupinski, M.1    Anastasio, M.2
  • 63
    • 43449109438 scopus 로고    scopus 로고
    • J. Horn and N. Nafpliotis, Multiobjective optimization using the niched Pareto genetic algorithms, IlliGAL, Univ. Illinois at Urbana-Champaign, Urbana-Champaign, Tech. Rep. 93005, 1993.
    • J. Horn and N. Nafpliotis, "Multiobjective optimization using the niched Pareto genetic algorithms," IlliGAL, Univ. Illinois at Urbana-Champaign, Urbana-Champaign, Tech. Rep. 93005, 1993.
  • 65
    • 33646054819 scopus 로고    scopus 로고
    • Multi-class ROC analysis from a multi-objective optimisation perspective
    • R. Everson and J. Fieldsend, "Multi-class ROC analysis from a multi-objective optimisation perspective," Pattern Recognit. Lett. vol. 27, pp. 918-927, 2006.
    • (2006) Pattern Recognit. Lett , vol.27 , pp. 918-927
    • Everson, R.1    Fieldsend, J.2
  • 66
    • 0033280216 scopus 로고    scopus 로고
    • Design of a neural controller using multi-objective optimization for nonminimum phase systems
    • S. Park, D. Nam, and C. H. Park, "Design of a neural controller using multi-objective optimization for nonminimum phase systems," in Proc. IEEE Int. Conf. Fuzzy Sets Syst., 1999, vol. I, pp. 533-537.
    • (1999) Proc. IEEE Int. Conf. Fuzzy Sets Syst , vol.1 , pp. 533-537
    • Park, S.1    Nam, D.2    Park, C.H.3
  • 67
    • 0035791914 scopus 로고    scopus 로고
    • A multi-objective genetic algorithm for feature selection and granularity learning in fuzzy-rule based classification systems
    • O. Cordon, F. Herrera, M. del-Jesus, and P. Villar, "A multi-objective genetic algorithm for feature selection and granularity learning in fuzzy-rule based classification systems," in Proc. Joint 9th IFSA World Congr. 20th NAFIPS Int. Conf., 2001, vol. 3, pp. 1253-1258.
    • (2001) Proc. Joint 9th IFSA World Congr. 20th NAFIPS Int. Conf , vol.3 , pp. 1253-1258
    • Cordon, O.1    Herrera, F.2    del-Jesus, M.3    Villar, P.4
  • 69
    • 78149347898 scopus 로고    scopus 로고
    • Feature seelction for ensembles: A hierarchical multi-objective genetic algorithm approach
    • L. Oliveira, R. Sabourin, F. Bortolozz, and C.Suen, "Feature seelction for ensembles: A hierarchical multi-objective genetic algorithm approach," in Proc. 7th Int. Conf. Anal. Recognit., 2003, pp. 676-680.
    • (2003) Proc. 7th Int. Conf. Anal. Recognit , pp. 676-680
    • Oliveira, L.1    Sabourin, R.2    Bortolozz, F.3    Suen, C.4
  • 70
    • 24344503628 scopus 로고    scopus 로고
    • Evolutionary model selection in unsupervised learning
    • Y. Kim, W. Street, and F. Menczer, "Evolutionary model selection in unsupervised learning," Intell. Data Anal., vol. 6. pp. 531 556, 2002.
    • (2002) Intell. Data Anal , vol.6 , pp. 531-556
    • Kim, Y.1    Street, W.2    Menczer, F.3
  • 71
    • 24344485715 scopus 로고    scopus 로고
    • Exploiting the tradeoff - The benefits of multiple objectives in data clustering
    • Evolutionary Multi-Criterion Optimization, New York: Springer-Verlag
    • J. Handl and J. Knowles, "Exploiting the tradeoff - The benefits of multiple objectives in data clustering," in Evolutionary Multi-Criterion Optimization Lecture Notes in Computer Science, vol. 3410. New York: Springer-Verlag, 2005, pp. 547-560.
    • (2005) Lecture Notes in Computer Science , vol.3410 , pp. 547-560
    • Handl, J.1    Knowles, J.2
  • 72
    • 0035532141 scopus 로고    scopus 로고
    • Estimating the number of clusters in a dataset via the gap statistics
    • R. Tibshirani, G. Walther, and T. Hastie, "Estimating the number of clusters in a dataset via the gap statistics," J. R. Stat. Soc. B, vol. 63, pp. 411-423, 2001
    • (2001) J. R. Stat. Soc. B , vol.63 , pp. 411-423
    • Tibshirani, R.1    Walther, G.2    Hastie, T.3
  • 73
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • Sep
    • X. Yao, "Evolving artificial neural networks," Proc. IEEE, vol. 87, no. 9, pp. 1423-1447, Sep. 1999.
    • (1999) Proc. IEEE , vol.87 , Issue.9 , pp. 1423-1447
    • Yao, X.1
  • 74
    • 0037238922 scopus 로고    scopus 로고
    • Empirical evaluation of the improved Rprop learning algorithm
    • C. Igel and M. Husken, "Empirical evaluation of the improved Rprop learning algorithm," Neurocomputing, vol. 55, no. C, pp. 105-123, 2003.
    • (2003) Neurocomputing , vol.55 , Issue.C , pp. 105-123
    • Igel, C.1    Husken, M.2
  • 75
    • 84943274699 scopus 로고
    • A direct adaptive method for faster back-propgation learning: The RPROP algorithm
    • M. Riedmiller and H. Braun, "A direct adaptive method for faster back-propgation learning: The RPROP algorithm," in Proc. IEEE Int. Conf. Neural Netw., 1993, vol. 1, pp. 586-591.
    • (1993) Proc. IEEE Int. Conf. Neural Netw , vol.1 , pp. 586-591
    • Riedmiller, M.1    Braun, H.2
  • 76
    • 84947926042 scopus 로고    scopus 로고
    • A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II
    • K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, "A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II," in Proc. Parallel Problem Solving Nat., 2000, vol. VI, pp. 849-858.
    • (2000) Proc. Parallel Problem Solving Nat , vol.6 , pp. 849-858
    • Deb, K.1    Agrawal, S.2    Pratap, A.3    Meyarivan, T.4
  • 78
    • 85150197299 scopus 로고
    • Extracting rules from artificial neural networks with distributed representation
    • S. Thrun, "Extracting rules from artificial neural networks with distributed representation," in Proc. Adv. Neural Inf. Process. Syst. (NIPS), 1994, pp. 505-512.
    • (1994) Proc. Adv. Neural Inf. Process. Syst. (NIPS) , pp. 505-512
    • Thrun, S.1
  • 79
    • 84981292249 scopus 로고    scopus 로고
    • Extraction of symbolic rules from artificial neural networks
    • S. Kamruzzaman and M. Islami, "Extraction of symbolic rules from artificial neural networks," Trans. Eng., Comput Technol., vol. 10, pp. 271-277, 2005.
    • (2005) Trans. Eng., Comput Technol , vol.10 , pp. 271-277
    • Kamruzzaman, S.1    Islami, M.2
  • 80
    • 0034159928 scopus 로고    scopus 로고
    • Generating concise and accurate classification rules for breast cancer dignosis
    • R. Setiono, "Generating concise and accurate classification rules for breast cancer dignosis," Artif. Intell. Med., vol. 18, pp. 205-219, 2000.
    • (2000) Artif. Intell. Med , vol.18 , pp. 205-219
    • Setiono, R.1
  • 83
    • 43449113202 scopus 로고    scopus 로고
    • Alleviating catastrophic forgetting via multi-objective learning
    • Y. Yin and B. Sendhoff, "Alleviating catastrophic forgetting via multi-objective learning," in Proc. Int. Joint Conf. Neural Netw. 2006, pp. 6367-6374.
    • (2006) Proc. Int. Joint Conf. Neural Netw , pp. 6367-6374
    • Yin, Y.1    Sendhoff, B.2
  • 84
    • 0027257001 scopus 로고
    • A universal theorem on learning curves
    • S. Amari, "A universal theorem on learning curves," Neural Netw. vol. 6, no-2, pp. 161-166, 1993.
    • (1993) Neural Netw , vol.6 , Issue.2 , pp. 161-166
    • Amari, S.1
  • 85
    • 0040907600 scopus 로고    scopus 로고
    • Paramater convergence and learning curves for neural networks
    • T. Fine and S. Mukherjee, "Paramater convergence and learning curves for neural networks," Neural Comput., vol. 11, pp. 747-769, 1999.
    • (1999) Neural Comput , vol.11 , pp. 747-769
    • Fine, T.1    Mukherjee, S.2
  • 87
    • 84931320658 scopus 로고    scopus 로고
    • Reducing local optima in single-objective problems by multi-objectivization
    • Proc. 1st Int. Conf. Evol. Multi-Criterion Optim, New York: Springer-Verlag
    • J. Knowles, R. Watson, and D. Come, "Reducing local optima in single-objective problems by multi-objectivization," in Proc. 1st Int. Conf. Evol. Multi-Criterion Optim. Lecture Notes in Computer Science, vol. 1993. New York: Springer-Verlag, 2001, pp. 269-283.
    • (2001) Lecture Notes in Computer Science , vol.1993 , pp. 269-283
    • Knowles, J.1    Watson, R.2    Come, D.3
  • 88
    • 0029308833 scopus 로고
    • On-line learning with minimal degradation in feedforward networks
    • May
    • V. de Angulo and C. Torras, "On-line learning with minimal degradation in feedforward networks," IEEE Trans. Neural Netw., vol. 6, no. 3, pp. 657-668, May 1995.
    • (1995) IEEE Trans. Neural Netw , vol.6 , Issue.3 , pp. 657-668
    • de Angulo, V.1    Torras, C.2
  • 89
    • 37849186543 scopus 로고    scopus 로고
    • Parameter incremental learning algorithm for neural. networks
    • Nov
    • S. Wan and L. Banta, "Parameter incremental learning algorithm for neural. networks," IEEE Trans. Neural Netw., vol. 17, no. 6, pp. 1424-1438, Nov. 2006.
    • (2006) IEEE Trans. Neural Netw , vol.17 , Issue.6 , pp. 1424-1438
    • Wan, S.1    Banta, L.2
  • 90
    • 0042912151 scopus 로고    scopus 로고
    • Catastrophic forgetting in simple networks: An analysis of the pseudo-rehearsal solution
    • M. Frean and A. Robins, "Catastrophic forgetting in simple networks: An analysis of the pseudo-rehearsal solution," Netw.: Comput. Neural Syst., vol. 10, pp. 227-236, 1999.
    • (1999) Netw.: Comput. Neural Syst , vol.10 , pp. 227-236
    • Frean, M.1    Robins, A.2
  • 92
    • 85040486649 scopus 로고    scopus 로고
    • Classes of network connectivity and dynamics
    • O. Sporns and G. Tononi, "Classes of network connectivity and dynamics," Complexity, vol. 7, pp. 28-38, 2002.
    • (2002) Complexity , vol.7 , pp. 28-38
    • Sporns, O.1    Tononi, G.2
  • 93
    • 38149017213 scopus 로고    scopus 로고
    • Evolutionary multi-objective optimization of spiking neural networks
    • Proc. Int. Conf. Artif. Neura Netw, ICANN, New York: Springer-Verlag
    • Y. Yin, R. Wen, and B. Sendhoff, "Evolutionary multi-objective optimization of spiking neural networks," in Proc. Int. Conf. Artif. Neura Netw. (ICANN) Part I, Lecture Notes in Computer Science, vol. 4668, New York: Springer-Verlag, 2007, pp. 370-379.
    • (2007) Lecture Notes in Computer Science , vol.4668 , Issue.PART I , pp. 370-379
    • Yin, Y.1    Wen, R.2    Sendhoff, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.