메뉴 건너뛰기




Volumn 39, Issue 11, 2014, Pages 527-535

The UPS and downs of cholesterol homeostasis

Author keywords

Cholesterol; Degradation; E3 ubiquitin ligase; Proteasome; Ubiquitylation

Indexed keywords

ABC TRANSPORTER A1; ABC TRANSPORTER G1; APOLIPOPROTEIN A1; DEUBIQUITINASE; HIGH DENSITY LIPOPROTEIN; HYDROXYMETHYLGLUTARYL COENZYME A REDUCTASE; LIVER X RECEPTOR; LOW DENSITY LIPOPROTEIN RECEPTOR; PROPROTEIN CONVERTASE SUBTILISIN KEXIN ISOTYPE 9; PROTEASOME; SQUALENE MONOOXYGENASE; STEROL REGULATORY ELEMENT BINDING PROTEIN; SUBTILISIN; UBIQUITIN; UBIQUITIN PROTEASOME SYSTEM; UBIQUITIN PROTEIN LIGASE E3; UBIQUITIN SPECIFIC PROTEASE 8; UNCLASSIFIED DRUG; ATP-BINDING CASSETTE TRANSPORTERS; CHOLESTEROL; HMGCR PROTEIN, HUMAN; HYDROXYMETHYLGLUTARYL COA REDUCTASES; PROTEASOME ENDOPEPTIDASE COMPLEX; RECEPTORS, LDL; TRANSCRIPTION FACTORS; UBIQUITIN-PROTEIN LIGASES;

EID: 84923182873     PISSN: 09680004     EISSN: 13624326     Source Type: Journal    
DOI: 10.1016/j.tibs.2014.08.008     Document Type: Review
Times cited : (64)

References (82)
  • 1
    • 84857047339 scopus 로고    scopus 로고
    • PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse
    • Hornbeck P.V., et al. PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res. 2012, 40:D261-D270.
    • (2012) Nucleic Acids Res. , vol.40 , pp. D261-D270
    • Hornbeck, P.V.1
  • 2
    • 84858142724 scopus 로고    scopus 로고
    • HECT and RING finger families of E3 ubiquitin ligases at a glance
    • Metzger M.B., et al. HECT and RING finger families of E3 ubiquitin ligases at a glance. J. Cell Sci. 2012, 125:531-537.
    • (2012) J. Cell Sci. , vol.125 , pp. 531-537
    • Metzger, M.B.1
  • 4
    • 84858796689 scopus 로고    scopus 로고
    • Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR
    • Calkin A.C., Tontonoz P. Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nat. Rev. Mol. Cell Biol. 2012, 13:213-224.
    • (2012) Nat. Rev. Mol. Cell Biol. , vol.13 , pp. 213-224
    • Calkin, A.C.1    Tontonoz, P.2
  • 5
    • 30344473341 scopus 로고    scopus 로고
    • Protein sensors for membrane sterols
    • Goldstein J.L., et al. Protein sensors for membrane sterols. Cell 2006, 124:35-46.
    • (2006) Cell , vol.124 , pp. 35-46
    • Goldstein, J.L.1
  • 6
    • 0036251153 scopus 로고    scopus 로고
    • SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver
    • Horton J.D., et al. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 2002, 109:1125-1131.
    • (2002) J. Clin. Invest. , vol.109 , pp. 1125-1131
    • Horton, J.D.1
  • 7
    • 84879588228 scopus 로고    scopus 로고
    • Controlling cholesterol synthesis beyond 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR)
    • Sharpe L.J., Brown A.J. Controlling cholesterol synthesis beyond 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR). J. Biol. Chem. 2013, 288:18707-18715.
    • (2013) J. Biol. Chem. , vol.288 , pp. 18707-18715
    • Sharpe, L.J.1    Brown, A.J.2
  • 8
    • 0142027805 scopus 로고    scopus 로고
    • Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes
    • Horton J.D., et al. Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:12027-12032.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 12027-12032
    • Horton, J.D.1
  • 9
    • 56449110891 scopus 로고    scopus 로고
    • Switch-like control of SREBP-2 transport triggered by small changes in ER cholesterol: a delicate balance
    • Radhakrishnan A., et al. Switch-like control of SREBP-2 transport triggered by small changes in ER cholesterol: a delicate balance. Cell Metab. 2008, 8:512-521.
    • (2008) Cell Metab. , vol.8 , pp. 512-521
    • Radhakrishnan, A.1
  • 10
    • 0035965231 scopus 로고    scopus 로고
    • Direct demonstration of rapid degradation of nuclear sterol regulatory element-binding proteins by the ubiquitin-proteasome pathway
    • Hirano Y., et al. Direct demonstration of rapid degradation of nuclear sterol regulatory element-binding proteins by the ubiquitin-proteasome pathway. J. Biol. Chem. 2001, 276:36431-36437.
    • (2001) J. Biol. Chem. , vol.276 , pp. 36431-36437
    • Hirano, Y.1
  • 11
    • 23844530704 scopus 로고    scopus 로고
    • Control of lipid metabolism by phosphorylation-dependent degradation of the SREBP family of transcription factors by SCF(Fbw7)
    • Sundqvist A., et al. Control of lipid metabolism by phosphorylation-dependent degradation of the SREBP family of transcription factors by SCF(Fbw7). Cell Metab. 2005, 1:379-391.
    • (2005) Cell Metab. , vol.1 , pp. 379-391
    • Sundqvist, A.1
  • 12
    • 65549140251 scopus 로고    scopus 로고
    • A phosphorylation cascade controls the degradation of active SREBP1
    • Bengoechea-Alonso M.T., Ericsson J. A phosphorylation cascade controls the degradation of active SREBP1. J. Biol. Chem. 2009, 284:5885-5895.
    • (2009) J. Biol. Chem. , vol.284 , pp. 5885-5895
    • Bengoechea-Alonso, M.T.1    Ericsson, J.2
  • 13
    • 33748751591 scopus 로고    scopus 로고
    • Phosphorylation and ubiquitination of the transcription factor sterol regulatory element-binding protein-1 in response to DNA binding
    • Punga T., et al. Phosphorylation and ubiquitination of the transcription factor sterol regulatory element-binding protein-1 in response to DNA binding. J. Biol. Chem. 2006, 281:25278-25286.
    • (2006) J. Biol. Chem. , vol.281 , pp. 25278-25286
    • Punga, T.1
  • 14
    • 0344270908 scopus 로고    scopus 로고
    • Transcription-dependent degradation controls the stability of the SREBP family of transcription factors
    • Sundqvist A., Ericsson J. Transcription-dependent degradation controls the stability of the SREBP family of transcription factors. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:13833-13838.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 13833-13838
    • Sundqvist, A.1    Ericsson, J.2
  • 15
    • 84863552454 scopus 로고    scopus 로고
    • Regulation of lipogenesis by cyclin-dependent kinase 8-mediated control of SREBP-1
    • Zhao X., et al. Regulation of lipogenesis by cyclin-dependent kinase 8-mediated control of SREBP-1. J. Clin. Invest. 2012, 122:2417-2427.
    • (2012) J. Clin. Invest. , vol.122 , pp. 2417-2427
    • Zhao, X.1
  • 16
    • 84906794015 scopus 로고    scopus 로고
    • RNF20 regulates hepatic lipid metabolism through PKA-dependent SREBP1c degradation
    • Lee J.H., et al. RNF20 regulates hepatic lipid metabolism through PKA-dependent SREBP1c degradation. Hepatology 2014, 60:844-857.
    • (2014) Hepatology , vol.60 , pp. 844-857
    • Lee, J.H.1
  • 17
    • 0037378516 scopus 로고    scopus 로고
    • Coactivator-dependent acetylation stabilizes members of the SREBP family of transcription factors
    • Giandomenico V., et al. Coactivator-dependent acetylation stabilizes members of the SREBP family of transcription factors. Mol. Cell. Biol. 2003, 23:2587-2599.
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 2587-2599
    • Giandomenico, V.1
  • 18
    • 77954488637 scopus 로고    scopus 로고
    • Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP
    • Walker A.K., et al. Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Genes Dev. 2010, 24:1403-1417.
    • (2010) Genes Dev. , vol.24 , pp. 1403-1417
    • Walker, A.K.1
  • 19
    • 77958595135 scopus 로고    scopus 로고
    • SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism
    • Ponugoti B., et al. SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J. Biol. Chem. 2010, 285:33959-33970.
    • (2010) J. Biol. Chem. , vol.285 , pp. 33959-33970
    • Ponugoti, B.1
  • 20
    • 0037930875 scopus 로고    scopus 로고
    • Sterol regulatory element-binding proteins are negatively regulated through SUMO-1 modification independent of the ubiquitin/26S proteasome pathway
    • Hirano Y., et al. Sterol regulatory element-binding proteins are negatively regulated through SUMO-1 modification independent of the ubiquitin/26S proteasome pathway. J. Biol. Chem. 2003, 278:16809-16819.
    • (2003) J. Biol. Chem. , vol.278 , pp. 16809-16819
    • Hirano, Y.1
  • 21
    • 84894241362 scopus 로고    scopus 로고
    • PIASy-mediated sumoylation of SREBP1c regulates hepatic lipid metabolism upon fasting signaling
    • Lee G.Y., et al. PIASy-mediated sumoylation of SREBP1c regulates hepatic lipid metabolism upon fasting signaling. Mol. Cell. Biol. 2014, 34:926-938.
    • (2014) Mol. Cell. Biol. , vol.34 , pp. 926-938
    • Lee, G.Y.1
  • 22
    • 84870500730 scopus 로고    scopus 로고
    • Cholesterol and the development of clear-cell renal carcinoma
    • Drabkin H.A., Gemmill R.M. Cholesterol and the development of clear-cell renal carcinoma. Curr. Opin. Pharmacol. 2012, 12:742-750.
    • (2012) Curr. Opin. Pharmacol. , vol.12 , pp. 742-750
    • Drabkin, H.A.1    Gemmill, R.M.2
  • 23
    • 0032482964 scopus 로고    scopus 로고
    • The hereditary renal cell carcinoma 3;8 translocation fuses FHIT to a patched-related gene, TRC8
    • Gemmill R.M., et al. The hereditary renal cell carcinoma 3;8 translocation fuses FHIT to a patched-related gene, TRC8. Proc. Natl. Acad. Sci. U.S.A. 1998, 95:9572-9577.
    • (1998) Proc. Natl. Acad. Sci. U.S.A. , vol.95 , pp. 9572-9577
    • Gemmill, R.M.1
  • 24
    • 34147167696 scopus 로고    scopus 로고
    • RING-dependent tumor suppression and G2/M arrest induced by the TRC8 hereditary kidney cancer gene
    • Brauweiler A., et al. RING-dependent tumor suppression and G2/M arrest induced by the TRC8 hereditary kidney cancer gene. Oncogene 2007, 26:2263-2271.
    • (2007) Oncogene , vol.26 , pp. 2263-2271
    • Brauweiler, A.1
  • 25
    • 70350400757 scopus 로고    scopus 로고
    • The sterol-sensing endoplasmic reticulum (ER) membrane protein TRC8 hampers ER to Golgi transport of sterol regulatory element-binding protein-2 (SREBP-2)/SREBP cleavage-activated protein and reduces SREBP-2 cleavage
    • Irisawa M., et al. The sterol-sensing endoplasmic reticulum (ER) membrane protein TRC8 hampers ER to Golgi transport of sterol regulatory element-binding protein-2 (SREBP-2)/SREBP cleavage-activated protein and reduces SREBP-2 cleavage. J. Biol. Chem. 2009, 284:28995-29004.
    • (2009) J. Biol. Chem. , vol.284 , pp. 28995-29004
    • Irisawa, M.1
  • 26
    • 75149146624 scopus 로고    scopus 로고
    • The TRC8 ubiquitin ligase is sterol regulated and interacts with lipid and protein biosynthetic pathways
    • Lee J.P., et al. The TRC8 ubiquitin ligase is sterol regulated and interacts with lipid and protein biosynthetic pathways. Mol. Cancer Res. 2010, 8:93-106.
    • (2010) Mol. Cancer Res. , vol.8 , pp. 93-106
    • Lee, J.P.1
  • 27
    • 53149118574 scopus 로고    scopus 로고
    • Sterol regulators of cholesterol homeostasis and beyond: the oxysterol hypothesis revisited and revised
    • Gill S., et al. Sterol regulators of cholesterol homeostasis and beyond: the oxysterol hypothesis revisited and revised. Prog. Lipid Res. 2008, 47:391-404.
    • (2008) Prog. Lipid Res. , vol.47 , pp. 391-404
    • Gill, S.1
  • 28
    • 34948883324 scopus 로고    scopus 로고
    • SIRT1 deacetylates and positively regulates the nuclear receptor LXR
    • Li X., et al. SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol. Cell 2007, 28:91-106.
    • (2007) Mol. Cell , vol.28 , pp. 91-106
    • Li, X.1
  • 29
    • 0033638393 scopus 로고    scopus 로고
    • The 26S proteasome is required for estrogen receptor-α and coactivator turnover and for efficient estrogen receptor-α transactivation
    • Lonard D.M., et al. The 26S proteasome is required for estrogen receptor-α and coactivator turnover and for efficient estrogen receptor-α transactivation. Mol. Cell 2000, 5:939-948.
    • (2000) Mol. Cell , vol.5 , pp. 939-948
    • Lonard, D.M.1
  • 30
    • 0034255143 scopus 로고    scopus 로고
    • Hormone binding induces rapid proteasome-mediated degradation of thyroid hormone receptors
    • Dace A., et al. Hormone binding induces rapid proteasome-mediated degradation of thyroid hormone receptors. Proc. Natl. Acad. Sci. U.S.A. 2000, 97:8985-8990.
    • (2000) Proc. Natl. Acad. Sci. U.S.A. , vol.97 , pp. 8985-8990
    • Dace, A.1
  • 31
    • 64749084839 scopus 로고    scopus 로고
    • Liver X receptor ligands suppress ubiquitination and degradation of LXRalpha by displacing BARD1/BRCA1
    • Kim K.H., et al. Liver X receptor ligands suppress ubiquitination and degradation of LXRalpha by displacing BARD1/BRCA1. Mol. Endocrinol. 2009, 23:466-474.
    • (2009) Mol. Endocrinol. , vol.23 , pp. 466-474
    • Kim, K.H.1
  • 32
    • 79952174597 scopus 로고    scopus 로고
    • Cholesterol-dependent degradation of squalene monooxygenase, a control point in cholesterol synthesis beyond HMG-CoA reductase
    • Gill S., et al. Cholesterol-dependent degradation of squalene monooxygenase, a control point in cholesterol synthesis beyond HMG-CoA reductase. Cell Metab. 2011, 13:260-273.
    • (2011) Cell Metab. , vol.13 , pp. 260-273
    • Gill, S.1
  • 33
    • 9144239817 scopus 로고    scopus 로고
    • Human HRD1 is an E3 ubiquitin ligase involved in degradation of proteins from the endoplasmic reticulum
    • Kikkert M., et al. Human HRD1 is an E3 ubiquitin ligase involved in degradation of proteins from the endoplasmic reticulum. J. Biol. Chem. 2004, 279:3525-3534.
    • (2004) J. Biol. Chem. , vol.279 , pp. 3525-3534
    • Kikkert, M.1
  • 34
    • 84894720321 scopus 로고    scopus 로고
    • Signaling regulates activity of DHCR24, the final enzyme in cholesterol synthesis
    • Luu W., et al. Signaling regulates activity of DHCR24, the final enzyme in cholesterol synthesis. J. Lipid Res. 2014, 55:410-420.
    • (2014) J. Lipid Res. , vol.55 , pp. 410-420
    • Luu, W.1
  • 35
    • 0034971386 scopus 로고    scopus 로고
    • In vivo action of the HRD ubiquitin ligase complex: mechanisms of endoplasmic reticulum quality control and sterol regulation
    • Gardner R.G., et al. In vivo action of the HRD ubiquitin ligase complex: mechanisms of endoplasmic reticulum quality control and sterol regulation. Mol. Cell. Biol. 2001, 21:4276-4291.
    • (2001) Mol. Cell. Biol. , vol.21 , pp. 4276-4291
    • Gardner, R.G.1
  • 36
    • 24944591120 scopus 로고    scopus 로고
    • Gp78, a membrane-anchored ubiquitin ligase, associates with Insig-1 and couples sterol-regulated ubiquitination to degradation of HMG CoA reductase
    • Song B.L., et al. Gp78, a membrane-anchored ubiquitin ligase, associates with Insig-1 and couples sterol-regulated ubiquitination to degradation of HMG CoA reductase. Mol. Cell 2005, 19:829-840.
    • (2005) Mol. Cell , vol.19 , pp. 829-840
    • Song, B.L.1
  • 37
    • 84870495262 scopus 로고    scopus 로고
    • Differential regulation of HMG-CoA reductase and Insig-1 by enzymes of the ubiquitin-proteasome system
    • Tsai Y.C., et al. Differential regulation of HMG-CoA reductase and Insig-1 by enzymes of the ubiquitin-proteasome system. Mol. Biol. Cell 2012, 23:4484-4494.
    • (2012) Mol. Biol. Cell , vol.23 , pp. 4484-4494
    • Tsai, Y.C.1
  • 38
    • 33846013601 scopus 로고    scopus 로고
    • Sterol-regulated degradation of Insig-1 mediated by the membrane-bound ubiquitin ligase gp78
    • Lee J.N., et al. Sterol-regulated degradation of Insig-1 mediated by the membrane-bound ubiquitin ligase gp78. J. Biol. Chem. 2006, 281:39308-39315.
    • (2006) J. Biol. Chem. , vol.281 , pp. 39308-39315
    • Lee, J.N.1
  • 39
    • 84855510314 scopus 로고    scopus 로고
    • Sterol-induced degradation of HMG CoA reductase depends on interplay of two Insigs and two ubiquitin ligases, gp78 and Trc8
    • Jo Y., et al. Sterol-induced degradation of HMG CoA reductase depends on interplay of two Insigs and two ubiquitin ligases, gp78 and Trc8. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:20503-20508.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 20503-20508
    • Jo, Y.1
  • 40
    • 84864684825 scopus 로고    scopus 로고
    • Ablation of gp78 in liver improves hyperlipidemia and insulin resistance by inhibiting SREBP to decrease lipid biosynthesis
    • Liu T.F., et al. Ablation of gp78 in liver improves hyperlipidemia and insulin resistance by inhibiting SREBP to decrease lipid biosynthesis. Cell Metab. 2012, 16:213-225.
    • (2012) Cell Metab. , vol.16 , pp. 213-225
    • Liu, T.F.1
  • 41
    • 84895820661 scopus 로고    scopus 로고
    • The E3 ubiquitin ligase MARCH6 degrades squalene monooxygenase and affects 3-hydroxy-3-methyl-glutaryl coenzyme A reductase and the cholesterol synthesis pathway
    • Zelcer N., et al. The E3 ubiquitin ligase MARCH6 degrades squalene monooxygenase and affects 3-hydroxy-3-methyl-glutaryl coenzyme A reductase and the cholesterol synthesis pathway. Mol. Cell. Biol. 2014, 34:1262-1270.
    • (2014) Mol. Cell. Biol. , vol.34 , pp. 1262-1270
    • Zelcer, N.1
  • 42
    • 36248988054 scopus 로고    scopus 로고
    • Ubiquitin ligases, critical mediators of endoplasmic reticulum-associated degradation
    • Kostova Z., et al. Ubiquitin ligases, critical mediators of endoplasmic reticulum-associated degradation. Semin. Cell Dev. Biol. 2007, 18:770-779.
    • (2007) Semin. Cell Dev. Biol. , vol.18 , pp. 770-779
    • Kostova, Z.1
  • 43
    • 84880707873 scopus 로고    scopus 로고
    • Sterol homeostasis requires regulated degradation of squalene monooxygenase by the ubiquitin ligase Doa10/Teb4
    • Foresti O., et al. Sterol homeostasis requires regulated degradation of squalene monooxygenase by the ubiquitin ligase Doa10/Teb4. Elife 2013, 2:e00953.
    • (2013) Elife , vol.2 , pp. e00953
    • Foresti, O.1
  • 44
    • 70349316465 scopus 로고    scopus 로고
    • The E3 ubiquitin ligase TEB4 mediates degradation of type 2 iodothyronine deiodinase
    • Zavacki A.M., et al. The E3 ubiquitin ligase TEB4 mediates degradation of type 2 iodothyronine deiodinase. Mol. Cell. Biol. 2009, 29:5339-5347.
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 5339-5347
    • Zavacki, A.M.1
  • 45
    • 84875521267 scopus 로고    scopus 로고
    • The SUD1 gene encodes a putative E3 ubiquitin ligase and is a positive regulator of 3-hydroxy-3-methylglutaryl coenzyme a reductase activity in Arabidopsis
    • Doblas V.G., et al. The SUD1 gene encodes a putative E3 ubiquitin ligase and is a positive regulator of 3-hydroxy-3-methylglutaryl coenzyme a reductase activity in Arabidopsis. Plant Cell 2013, 25:728-743.
    • (2013) Plant Cell , vol.25 , pp. 728-743
    • Doblas, V.G.1
  • 46
    • 84904095534 scopus 로고    scopus 로고
    • Squalene monooxygenase, a key enzyme in cholesterol synthesis, is stabilised by unsaturated fatty acids
    • Stevenson J., et al. Squalene monooxygenase, a key enzyme in cholesterol synthesis, is stabilised by unsaturated fatty acids. Biochem. J. 2014, 461:435-442.
    • (2014) Biochem. J. , vol.461 , pp. 435-442
    • Stevenson, J.1
  • 47
    • 84874644958 scopus 로고    scopus 로고
    • Proteome-wide mapping of cholesterol-interacting proteins in mammalian cells
    • Hulce J.J., et al. Proteome-wide mapping of cholesterol-interacting proteins in mammalian cells. Nat. Methods 2013, 10:259-264.
    • (2013) Nat. Methods , vol.10 , pp. 259-264
    • Hulce, J.J.1
  • 48
    • 84866925293 scopus 로고    scopus 로고
    • Cholesterol through the looking glass: ability of its enantiomer also to elicit homeostatic responses
    • Kristiana I., et al. Cholesterol through the looking glass: ability of its enantiomer also to elicit homeostatic responses. J. Biol. Chem. 2012, 287:33897-33904.
    • (2012) J. Biol. Chem. , vol.287 , pp. 33897-33904
    • Kristiana, I.1
  • 50
    • 38949137409 scopus 로고    scopus 로고
    • Sterol-dependent regulation of proprotein convertase subtilisin/kexin type 9 expression by sterol-regulatory element binding protein-2
    • Jeong H.J., et al. Sterol-dependent regulation of proprotein convertase subtilisin/kexin type 9 expression by sterol-regulatory element binding protein-2. J. Lipid Res. 2008, 49:399-409.
    • (2008) J. Lipid Res. , vol.49 , pp. 399-409
    • Jeong, H.J.1
  • 51
    • 50849137811 scopus 로고    scopus 로고
    • PCSK9 and LDL cholesterol: unravelling the target to design the bullet
    • Costet P., et al. PCSK9 and LDL cholesterol: unravelling the target to design the bullet. Trends Biochem. Sci. 2008, 33:426-434.
    • (2008) Trends Biochem. Sci. , vol.33 , pp. 426-434
    • Costet, P.1
  • 52
    • 84864851760 scopus 로고    scopus 로고
    • Molecular characterization of proprotein convertase subtilisin/kexin type 9-mediated degradation of the LDLR
    • Wang Y., et al. Molecular characterization of proprotein convertase subtilisin/kexin type 9-mediated degradation of the LDLR. J. Lipid Res. 2012, 53:1932-1943.
    • (2012) J. Lipid Res. , vol.53 , pp. 1932-1943
    • Wang, Y.1
  • 53
    • 73749086245 scopus 로고    scopus 로고
    • A chimeric LDL receptor containing the cytoplasmic domain of the transferrin receptor is degraded by PCSK9
    • Holla O.L., et al. A chimeric LDL receptor containing the cytoplasmic domain of the transferrin receptor is degraded by PCSK9. Mol. Genet. Metab. 2010, 99:149-156.
    • (2010) Mol. Genet. Metab. , vol.99 , pp. 149-156
    • Holla, O.L.1
  • 54
    • 77955658614 scopus 로고    scopus 로고
    • Disrupted recycling of the low density lipoprotein receptor by PCSK9 is not mediated by residues of the cytoplasmic domain
    • Strom T.B., et al. Disrupted recycling of the low density lipoprotein receptor by PCSK9 is not mediated by residues of the cytoplasmic domain. Mol. Genet. Metab. 2010, 101:76-80.
    • (2010) Mol. Genet. Metab. , vol.101 , pp. 76-80
    • Strom, T.B.1
  • 55
    • 38349117118 scopus 로고    scopus 로고
    • The proprotein convertase PCSK9 induces the degradation of low density lipoprotein receptor (LDLR) and its closest family members VLDLR and ApoER2
    • Poirier S., et al. The proprotein convertase PCSK9 induces the degradation of low density lipoprotein receptor (LDLR) and its closest family members VLDLR and ApoER2. J. Biol. Chem. 2008, 283:2363-2372.
    • (2008) J. Biol. Chem. , vol.283 , pp. 2363-2372
    • Poirier, S.1
  • 56
    • 67650092919 scopus 로고    scopus 로고
    • LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor
    • Zelcer N., et al. LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor. Science 2009, 325:100-104.
    • (2009) Science , vol.325 , pp. 100-104
    • Zelcer, N.1
  • 57
    • 84861092119 scopus 로고    scopus 로고
    • Post-transcriptional regulation of lipoprotein receptors by the E3-ubiquitin ligase inducible degrader of the low-density lipoprotein receptor
    • Sorrentino V., Zelcer N. Post-transcriptional regulation of lipoprotein receptors by the E3-ubiquitin ligase inducible degrader of the low-density lipoprotein receptor. Curr. Opin. Lipidol. 2012, 23:213-219.
    • (2012) Curr. Opin. Lipidol. , vol.23 , pp. 213-219
    • Sorrentino, V.1    Zelcer, N.2
  • 58
    • 77953767546 scopus 로고    scopus 로고
    • The E3 ubiquitin ligase IDOL induces the degradation of the low density lipoprotein receptor family members VLDLR and ApoER2
    • Hong C., et al. The E3 ubiquitin ligase IDOL induces the degradation of the low density lipoprotein receptor family members VLDLR and ApoER2. J. Biol. Chem. 2010, 285:19720-19726.
    • (2010) J. Biol. Chem. , vol.285 , pp. 19720-19726
    • Hong, C.1
  • 59
    • 80051931966 scopus 로고    scopus 로고
    • Distinct functional domains contribute to degradation of the low density lipoprotein receptor (LDLR) by the E3 ubiquitin ligase inducible degrader of the LDLR (IDOL)
    • Sorrentino V., et al. Distinct functional domains contribute to degradation of the low density lipoprotein receptor (LDLR) by the E3 ubiquitin ligase inducible degrader of the LDLR (IDOL). J. Biol. Chem. 2011, 286:30190-30199.
    • (2011) J. Biol. Chem. , vol.286 , pp. 30190-30199
    • Sorrentino, V.1
  • 60
    • 84055187648 scopus 로고    scopus 로고
    • FERM-dependent E3 ligase recognition is a conserved mechanism for targeted degradation of lipoprotein receptors
    • Calkin A.C., et al. FERM-dependent E3 ligase recognition is a conserved mechanism for targeted degradation of lipoprotein receptors. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:20107-20112.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 20107-20112
    • Calkin, A.C.1
  • 61
    • 84881247296 scopus 로고    scopus 로고
    • The LXR-IDOL axis defines a clathrin-, caveolae-, and dynamin-independent endocytic route for LDLR internalization and lysosomal degradation
    • Sorrentino V., et al. The LXR-IDOL axis defines a clathrin-, caveolae-, and dynamin-independent endocytic route for LDLR internalization and lysosomal degradation. J. Lipid Res. 2013, 54:2174-2184.
    • (2013) J. Lipid Res. , vol.54 , pp. 2174-2184
    • Sorrentino, V.1
  • 62
    • 84876345363 scopus 로고    scopus 로고
    • IDOL stimulates clathrin-independent endocytosis and multivesicular body-mediated lysosomal degradation of the low-density lipoprotein receptor
    • Scotti E., et al. IDOL stimulates clathrin-independent endocytosis and multivesicular body-mediated lysosomal degradation of the low-density lipoprotein receptor. Mol. Cell. Biol. 2013, 33:1503-1514.
    • (2013) Mol. Cell. Biol. , vol.33 , pp. 1503-1514
    • Scotti, E.1
  • 63
    • 84878435406 scopus 로고    scopus 로고
    • Drug targets beyond HMG-CoA reductase: why venture beyond the statins?
    • Gelissen I.C., Brown A.J. Drug targets beyond HMG-CoA reductase: why venture beyond the statins?. Front. Biol. 2011, 6:197-205.
    • (2011) Front. Biol. , vol.6 , pp. 197-205
    • Gelissen, I.C.1    Brown, A.J.2
  • 64
    • 71749098578 scopus 로고    scopus 로고
    • New Idol for cholesterol reduction?
    • Sawamura T. New Idol for cholesterol reduction?. Clin. Chem. 2009, 55:2082-2084.
    • (2009) Clin. Chem. , vol.55 , pp. 2082-2084
    • Sawamura, T.1
  • 65
    • 84901365380 scopus 로고    scopus 로고
    • Hepatic overexpression of Idol increases circulating protein convertase subtilisin/kexin type 9 in mice and hamsters via dual mechanisms: sterol regulatory element-binding protein 2 and low-density lipoprotein receptor-dependent pathways
    • Sasaki M., et al. Hepatic overexpression of Idol increases circulating protein convertase subtilisin/kexin type 9 in mice and hamsters via dual mechanisms: sterol regulatory element-binding protein 2 and low-density lipoprotein receptor-dependent pathways. Atertioscler. Thromb. Vasc. Biol. 2014, 34:1171-1178.
    • (2014) Atertioscler. Thromb. Vasc. Biol. , vol.34 , pp. 1171-1178
    • Sasaki, M.1
  • 66
    • 84877246816 scopus 로고    scopus 로고
    • Identification of a loss-of-function inducible degrader of the low-density lipoprotein receptor variant in individuals with low circulating low-density lipoprotein
    • Sorrentino V., et al. Identification of a loss-of-function inducible degrader of the low-density lipoprotein receptor variant in individuals with low circulating low-density lipoprotein. Eur. Heart J. 2013, 34:1292-1297.
    • (2013) Eur. Heart J. , vol.34 , pp. 1292-1297
    • Sorrentino, V.1
  • 67
    • 84892913843 scopus 로고    scopus 로고
    • ATP-binding cassette transporters, atherosclerosis, and inflammation
    • Westerterp M., et al. ATP-binding cassette transporters, atherosclerosis, and inflammation. Circ. Res. 2014, 114:157-170.
    • (2014) Circ. Res. , vol.114 , pp. 157-170
    • Westerterp, M.1
  • 68
    • 0141844589 scopus 로고    scopus 로고
    • Phosphorylation of a pest sequence in ABCA1 promotes calpain degradation and is reversed by ApoA-I
    • Martinez L.O., et al. Phosphorylation of a pest sequence in ABCA1 promotes calpain degradation and is reversed by ApoA-I. J. Biol. Chem. 2003, 278:37368-37374.
    • (2003) J. Biol. Chem. , vol.278 , pp. 37368-37374
    • Martinez, L.O.1
  • 69
    • 0037253264 scopus 로고    scopus 로고
    • A PEST sequence in ABCA1 regulates degradation by calpain protease and stabilization of ABCA1 by apoA-I
    • Wang N., et al. A PEST sequence in ABCA1 regulates degradation by calpain protease and stabilization of ABCA1 by apoA-I. J. Clin. Invest. 2003, 111:99-107.
    • (2003) J. Clin. Invest. , vol.111 , pp. 99-107
    • Wang, N.1
  • 70
    • 53449094470 scopus 로고    scopus 로고
    • ApoA-I facilitates ABCA1 recycle/accumulation to cell surface by inhibiting its intracellular degradation and increases HDL generation
    • Lu R., et al. ApoA-I facilitates ABCA1 recycle/accumulation to cell surface by inhibiting its intracellular degradation and increases HDL generation. Atertioscler. Thromb. Vasc. Biol. 2008, 28:1820-1824.
    • (2008) Atertioscler. Thromb. Vasc. Biol. , vol.28 , pp. 1820-1824
    • Lu, R.1
  • 71
    • 2442476368 scopus 로고    scopus 로고
    • Effect of apolipoprotein A-I on ATP binding cassette transporter A1 degradation and cholesterol efflux in THP-1 macrophage-derived foam cells
    • Tang C.K., et al. Effect of apolipoprotein A-I on ATP binding cassette transporter A1 degradation and cholesterol efflux in THP-1 macrophage-derived foam cells. Acta Biochim. Biophys. Sin. 2004, 36:218-226.
    • (2004) Acta Biochim. Biophys. Sin. , vol.36 , pp. 218-226
    • Tang, C.K.1
  • 72
    • 79960727241 scopus 로고    scopus 로고
    • Ubiquitination is associated with lysosomal degradation of cell surface-resident ATP-binding cassette transporter A1 (ABCA1) through the endosomal sorting complex required for transport (ESCRT) pathway
    • Mizuno T., et al. Ubiquitination is associated with lysosomal degradation of cell surface-resident ATP-binding cassette transporter A1 (ABCA1) through the endosomal sorting complex required for transport (ESCRT) pathway. Hepatology 2011, 54:631-643.
    • (2011) Hepatology , vol.54 , pp. 631-643
    • Mizuno, T.1
  • 73
    • 80052147737 scopus 로고    scopus 로고
    • Proteasomal inhibition promotes ATP-binding cassette transporter A1 (ABCA1) and ABCG1 expression and cholesterol efflux from macrophages in vitro and in vivo
    • Ogura M., et al. Proteasomal inhibition promotes ATP-binding cassette transporter A1 (ABCA1) and ABCG1 expression and cholesterol efflux from macrophages in vitro and in vivo. Atertioscler. Thromb. Vasc. Biol. 2011, 31:1980-1987.
    • (2011) Atertioscler. Thromb. Vasc. Biol. , vol.31 , pp. 1980-1987
    • Ogura, M.1
  • 74
    • 84897594924 scopus 로고    scopus 로고
    • Inhibition of post-translational N-glycosylation by HRD1 that controls the fate of ABCG5/8 transporter
    • Suzuki S., et al. Inhibition of post-translational N-glycosylation by HRD1 that controls the fate of ABCG5/8 transporter. Sci. Rep. 2014, 4:4258.
    • (2014) Sci. Rep. , vol.4 , pp. 4258
    • Suzuki, S.1
  • 75
    • 84896276954 scopus 로고    scopus 로고
    • Cellular cholesterol regulates ubiquitination and degradation of the cholesterol export proteins ABCA1 and ABCG1
    • Hsieh V., et al. Cellular cholesterol regulates ubiquitination and degradation of the cholesterol export proteins ABCA1 and ABCG1. J. Biol. Chem. 2014, 289:7524-7536.
    • (2014) J. Biol. Chem. , vol.289 , pp. 7524-7536
    • Hsieh, V.1
  • 76
    • 68049084674 scopus 로고    scopus 로고
    • Breaking the chains: structure and function of the deubiquitinases
    • Komander D., et al. Breaking the chains: structure and function of the deubiquitinases. Nat. Rev. Mol. Cell Biol. 2009, 10:550-563.
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 550-563
    • Komander, D.1
  • 77
    • 84866006042 scopus 로고    scopus 로고
    • Governance of endocytic trafficking and signaling by reversible ubiquitylation
    • Clague M.J., et al. Governance of endocytic trafficking and signaling by reversible ubiquitylation. Dev. Cell 2012, 23:457-467.
    • (2012) Dev. Cell , vol.23 , pp. 457-467
    • Clague, M.J.1
  • 78
    • 80051733972 scopus 로고    scopus 로고
    • Ubiquitination of E3 ligases: self-regulation of the ubiquitin system via proteolytic and non-proteolytic mechanisms
    • de Bie P., Ciechanover A. Ubiquitination of E3 ligases: self-regulation of the ubiquitin system via proteolytic and non-proteolytic mechanisms. Cell Death Differ. 2011, 18:1393-1402.
    • (2011) Cell Death Differ. , vol.18 , pp. 1393-1402
    • de Bie, P.1    Ciechanover, A.2
  • 79
    • 84904171063 scopus 로고    scopus 로고
    • Endoplasmic reticulum-associated degradation of Niemann-Pick C1: evidence for the role of heat shock proteins and identification of lysine residues that accept ubiquitin
    • Nakasone N., et al. Endoplasmic reticulum-associated degradation of Niemann-Pick C1: evidence for the role of heat shock proteins and identification of lysine residues that accept ubiquitin. J. Biol. Chem. 2014, 289:19714-19725.
    • (2014) J. Biol. Chem. , vol.289 , pp. 19714-19725
    • Nakasone, N.1
  • 80
    • 79956050306 scopus 로고    scopus 로고
    • Ubiquitination regulates the assembly of VLDL in HepG2 cells and is the committing step of the apoB-100 ERAD pathway
    • Fisher E.A., et al. Ubiquitination regulates the assembly of VLDL in HepG2 cells and is the committing step of the apoB-100 ERAD pathway. J. Lipid Res. 2011, 52:1170-1180.
    • (2011) J. Lipid Res. , vol.52 , pp. 1170-1180
    • Fisher, E.A.1
  • 81
    • 84903845724 scopus 로고    scopus 로고
    • Ubiquitin ligases in cholesterol metabolism
    • Jiang W., Song B-L. Ubiquitin ligases in cholesterol metabolism. Diabetes Metab. J. 2014, 38:171-180.
    • (2014) Diabetes Metab. J. , vol.38 , pp. 171-180
    • Jiang, W.1    Song, B.-L.2
  • 82
    • 84896270715 scopus 로고    scopus 로고
    • Quality control: ER-associated degradation: protein quality control and beyond
    • Ruggiano A., et al. Quality control: ER-associated degradation: protein quality control and beyond. J. Cell Biol. 2014, 204:869-879.
    • (2014) J. Cell Biol. , vol.204 , pp. 869-879
    • Ruggiano, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.