-
1
-
-
84857047339
-
PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse
-
Hornbeck P.V., et al. PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res. 2012, 40:D261-D270.
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. D261-D270
-
-
Hornbeck, P.V.1
-
2
-
-
84858142724
-
HECT and RING finger families of E3 ubiquitin ligases at a glance
-
Metzger M.B., et al. HECT and RING finger families of E3 ubiquitin ligases at a glance. J. Cell Sci. 2012, 125:531-537.
-
(2012)
J. Cell Sci.
, vol.125
, pp. 531-537
-
-
Metzger, M.B.1
-
4
-
-
84858796689
-
Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR
-
Calkin A.C., Tontonoz P. Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nat. Rev. Mol. Cell Biol. 2012, 13:213-224.
-
(2012)
Nat. Rev. Mol. Cell Biol.
, vol.13
, pp. 213-224
-
-
Calkin, A.C.1
Tontonoz, P.2
-
5
-
-
30344473341
-
Protein sensors for membrane sterols
-
Goldstein J.L., et al. Protein sensors for membrane sterols. Cell 2006, 124:35-46.
-
(2006)
Cell
, vol.124
, pp. 35-46
-
-
Goldstein, J.L.1
-
6
-
-
0036251153
-
SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver
-
Horton J.D., et al. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 2002, 109:1125-1131.
-
(2002)
J. Clin. Invest.
, vol.109
, pp. 1125-1131
-
-
Horton, J.D.1
-
7
-
-
84879588228
-
Controlling cholesterol synthesis beyond 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR)
-
Sharpe L.J., Brown A.J. Controlling cholesterol synthesis beyond 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR). J. Biol. Chem. 2013, 288:18707-18715.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 18707-18715
-
-
Sharpe, L.J.1
Brown, A.J.2
-
8
-
-
0142027805
-
Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes
-
Horton J.D., et al. Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:12027-12032.
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 12027-12032
-
-
Horton, J.D.1
-
9
-
-
56449110891
-
Switch-like control of SREBP-2 transport triggered by small changes in ER cholesterol: a delicate balance
-
Radhakrishnan A., et al. Switch-like control of SREBP-2 transport triggered by small changes in ER cholesterol: a delicate balance. Cell Metab. 2008, 8:512-521.
-
(2008)
Cell Metab.
, vol.8
, pp. 512-521
-
-
Radhakrishnan, A.1
-
10
-
-
0035965231
-
Direct demonstration of rapid degradation of nuclear sterol regulatory element-binding proteins by the ubiquitin-proteasome pathway
-
Hirano Y., et al. Direct demonstration of rapid degradation of nuclear sterol regulatory element-binding proteins by the ubiquitin-proteasome pathway. J. Biol. Chem. 2001, 276:36431-36437.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 36431-36437
-
-
Hirano, Y.1
-
11
-
-
23844530704
-
Control of lipid metabolism by phosphorylation-dependent degradation of the SREBP family of transcription factors by SCF(Fbw7)
-
Sundqvist A., et al. Control of lipid metabolism by phosphorylation-dependent degradation of the SREBP family of transcription factors by SCF(Fbw7). Cell Metab. 2005, 1:379-391.
-
(2005)
Cell Metab.
, vol.1
, pp. 379-391
-
-
Sundqvist, A.1
-
12
-
-
65549140251
-
A phosphorylation cascade controls the degradation of active SREBP1
-
Bengoechea-Alonso M.T., Ericsson J. A phosphorylation cascade controls the degradation of active SREBP1. J. Biol. Chem. 2009, 284:5885-5895.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 5885-5895
-
-
Bengoechea-Alonso, M.T.1
Ericsson, J.2
-
13
-
-
33748751591
-
Phosphorylation and ubiquitination of the transcription factor sterol regulatory element-binding protein-1 in response to DNA binding
-
Punga T., et al. Phosphorylation and ubiquitination of the transcription factor sterol regulatory element-binding protein-1 in response to DNA binding. J. Biol. Chem. 2006, 281:25278-25286.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 25278-25286
-
-
Punga, T.1
-
14
-
-
0344270908
-
Transcription-dependent degradation controls the stability of the SREBP family of transcription factors
-
Sundqvist A., Ericsson J. Transcription-dependent degradation controls the stability of the SREBP family of transcription factors. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:13833-13838.
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 13833-13838
-
-
Sundqvist, A.1
Ericsson, J.2
-
15
-
-
84863552454
-
Regulation of lipogenesis by cyclin-dependent kinase 8-mediated control of SREBP-1
-
Zhao X., et al. Regulation of lipogenesis by cyclin-dependent kinase 8-mediated control of SREBP-1. J. Clin. Invest. 2012, 122:2417-2427.
-
(2012)
J. Clin. Invest.
, vol.122
, pp. 2417-2427
-
-
Zhao, X.1
-
16
-
-
84906794015
-
RNF20 regulates hepatic lipid metabolism through PKA-dependent SREBP1c degradation
-
Lee J.H., et al. RNF20 regulates hepatic lipid metabolism through PKA-dependent SREBP1c degradation. Hepatology 2014, 60:844-857.
-
(2014)
Hepatology
, vol.60
, pp. 844-857
-
-
Lee, J.H.1
-
17
-
-
0037378516
-
Coactivator-dependent acetylation stabilizes members of the SREBP family of transcription factors
-
Giandomenico V., et al. Coactivator-dependent acetylation stabilizes members of the SREBP family of transcription factors. Mol. Cell. Biol. 2003, 23:2587-2599.
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 2587-2599
-
-
Giandomenico, V.1
-
18
-
-
77954488637
-
Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP
-
Walker A.K., et al. Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Genes Dev. 2010, 24:1403-1417.
-
(2010)
Genes Dev.
, vol.24
, pp. 1403-1417
-
-
Walker, A.K.1
-
19
-
-
77958595135
-
SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism
-
Ponugoti B., et al. SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J. Biol. Chem. 2010, 285:33959-33970.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 33959-33970
-
-
Ponugoti, B.1
-
20
-
-
0037930875
-
Sterol regulatory element-binding proteins are negatively regulated through SUMO-1 modification independent of the ubiquitin/26S proteasome pathway
-
Hirano Y., et al. Sterol regulatory element-binding proteins are negatively regulated through SUMO-1 modification independent of the ubiquitin/26S proteasome pathway. J. Biol. Chem. 2003, 278:16809-16819.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 16809-16819
-
-
Hirano, Y.1
-
21
-
-
84894241362
-
PIASy-mediated sumoylation of SREBP1c regulates hepatic lipid metabolism upon fasting signaling
-
Lee G.Y., et al. PIASy-mediated sumoylation of SREBP1c regulates hepatic lipid metabolism upon fasting signaling. Mol. Cell. Biol. 2014, 34:926-938.
-
(2014)
Mol. Cell. Biol.
, vol.34
, pp. 926-938
-
-
Lee, G.Y.1
-
22
-
-
84870500730
-
Cholesterol and the development of clear-cell renal carcinoma
-
Drabkin H.A., Gemmill R.M. Cholesterol and the development of clear-cell renal carcinoma. Curr. Opin. Pharmacol. 2012, 12:742-750.
-
(2012)
Curr. Opin. Pharmacol.
, vol.12
, pp. 742-750
-
-
Drabkin, H.A.1
Gemmill, R.M.2
-
23
-
-
0032482964
-
The hereditary renal cell carcinoma 3;8 translocation fuses FHIT to a patched-related gene, TRC8
-
Gemmill R.M., et al. The hereditary renal cell carcinoma 3;8 translocation fuses FHIT to a patched-related gene, TRC8. Proc. Natl. Acad. Sci. U.S.A. 1998, 95:9572-9577.
-
(1998)
Proc. Natl. Acad. Sci. U.S.A.
, vol.95
, pp. 9572-9577
-
-
Gemmill, R.M.1
-
24
-
-
34147167696
-
RING-dependent tumor suppression and G2/M arrest induced by the TRC8 hereditary kidney cancer gene
-
Brauweiler A., et al. RING-dependent tumor suppression and G2/M arrest induced by the TRC8 hereditary kidney cancer gene. Oncogene 2007, 26:2263-2271.
-
(2007)
Oncogene
, vol.26
, pp. 2263-2271
-
-
Brauweiler, A.1
-
25
-
-
70350400757
-
The sterol-sensing endoplasmic reticulum (ER) membrane protein TRC8 hampers ER to Golgi transport of sterol regulatory element-binding protein-2 (SREBP-2)/SREBP cleavage-activated protein and reduces SREBP-2 cleavage
-
Irisawa M., et al. The sterol-sensing endoplasmic reticulum (ER) membrane protein TRC8 hampers ER to Golgi transport of sterol regulatory element-binding protein-2 (SREBP-2)/SREBP cleavage-activated protein and reduces SREBP-2 cleavage. J. Biol. Chem. 2009, 284:28995-29004.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 28995-29004
-
-
Irisawa, M.1
-
26
-
-
75149146624
-
The TRC8 ubiquitin ligase is sterol regulated and interacts with lipid and protein biosynthetic pathways
-
Lee J.P., et al. The TRC8 ubiquitin ligase is sterol regulated and interacts with lipid and protein biosynthetic pathways. Mol. Cancer Res. 2010, 8:93-106.
-
(2010)
Mol. Cancer Res.
, vol.8
, pp. 93-106
-
-
Lee, J.P.1
-
27
-
-
53149118574
-
Sterol regulators of cholesterol homeostasis and beyond: the oxysterol hypothesis revisited and revised
-
Gill S., et al. Sterol regulators of cholesterol homeostasis and beyond: the oxysterol hypothesis revisited and revised. Prog. Lipid Res. 2008, 47:391-404.
-
(2008)
Prog. Lipid Res.
, vol.47
, pp. 391-404
-
-
Gill, S.1
-
28
-
-
34948883324
-
SIRT1 deacetylates and positively regulates the nuclear receptor LXR
-
Li X., et al. SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol. Cell 2007, 28:91-106.
-
(2007)
Mol. Cell
, vol.28
, pp. 91-106
-
-
Li, X.1
-
29
-
-
0033638393
-
The 26S proteasome is required for estrogen receptor-α and coactivator turnover and for efficient estrogen receptor-α transactivation
-
Lonard D.M., et al. The 26S proteasome is required for estrogen receptor-α and coactivator turnover and for efficient estrogen receptor-α transactivation. Mol. Cell 2000, 5:939-948.
-
(2000)
Mol. Cell
, vol.5
, pp. 939-948
-
-
Lonard, D.M.1
-
30
-
-
0034255143
-
Hormone binding induces rapid proteasome-mediated degradation of thyroid hormone receptors
-
Dace A., et al. Hormone binding induces rapid proteasome-mediated degradation of thyroid hormone receptors. Proc. Natl. Acad. Sci. U.S.A. 2000, 97:8985-8990.
-
(2000)
Proc. Natl. Acad. Sci. U.S.A.
, vol.97
, pp. 8985-8990
-
-
Dace, A.1
-
31
-
-
64749084839
-
Liver X receptor ligands suppress ubiquitination and degradation of LXRalpha by displacing BARD1/BRCA1
-
Kim K.H., et al. Liver X receptor ligands suppress ubiquitination and degradation of LXRalpha by displacing BARD1/BRCA1. Mol. Endocrinol. 2009, 23:466-474.
-
(2009)
Mol. Endocrinol.
, vol.23
, pp. 466-474
-
-
Kim, K.H.1
-
32
-
-
79952174597
-
Cholesterol-dependent degradation of squalene monooxygenase, a control point in cholesterol synthesis beyond HMG-CoA reductase
-
Gill S., et al. Cholesterol-dependent degradation of squalene monooxygenase, a control point in cholesterol synthesis beyond HMG-CoA reductase. Cell Metab. 2011, 13:260-273.
-
(2011)
Cell Metab.
, vol.13
, pp. 260-273
-
-
Gill, S.1
-
33
-
-
9144239817
-
Human HRD1 is an E3 ubiquitin ligase involved in degradation of proteins from the endoplasmic reticulum
-
Kikkert M., et al. Human HRD1 is an E3 ubiquitin ligase involved in degradation of proteins from the endoplasmic reticulum. J. Biol. Chem. 2004, 279:3525-3534.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 3525-3534
-
-
Kikkert, M.1
-
34
-
-
84894720321
-
Signaling regulates activity of DHCR24, the final enzyme in cholesterol synthesis
-
Luu W., et al. Signaling regulates activity of DHCR24, the final enzyme in cholesterol synthesis. J. Lipid Res. 2014, 55:410-420.
-
(2014)
J. Lipid Res.
, vol.55
, pp. 410-420
-
-
Luu, W.1
-
35
-
-
0034971386
-
In vivo action of the HRD ubiquitin ligase complex: mechanisms of endoplasmic reticulum quality control and sterol regulation
-
Gardner R.G., et al. In vivo action of the HRD ubiquitin ligase complex: mechanisms of endoplasmic reticulum quality control and sterol regulation. Mol. Cell. Biol. 2001, 21:4276-4291.
-
(2001)
Mol. Cell. Biol.
, vol.21
, pp. 4276-4291
-
-
Gardner, R.G.1
-
36
-
-
24944591120
-
Gp78, a membrane-anchored ubiquitin ligase, associates with Insig-1 and couples sterol-regulated ubiquitination to degradation of HMG CoA reductase
-
Song B.L., et al. Gp78, a membrane-anchored ubiquitin ligase, associates with Insig-1 and couples sterol-regulated ubiquitination to degradation of HMG CoA reductase. Mol. Cell 2005, 19:829-840.
-
(2005)
Mol. Cell
, vol.19
, pp. 829-840
-
-
Song, B.L.1
-
37
-
-
84870495262
-
Differential regulation of HMG-CoA reductase and Insig-1 by enzymes of the ubiquitin-proteasome system
-
Tsai Y.C., et al. Differential regulation of HMG-CoA reductase and Insig-1 by enzymes of the ubiquitin-proteasome system. Mol. Biol. Cell 2012, 23:4484-4494.
-
(2012)
Mol. Biol. Cell
, vol.23
, pp. 4484-4494
-
-
Tsai, Y.C.1
-
38
-
-
33846013601
-
Sterol-regulated degradation of Insig-1 mediated by the membrane-bound ubiquitin ligase gp78
-
Lee J.N., et al. Sterol-regulated degradation of Insig-1 mediated by the membrane-bound ubiquitin ligase gp78. J. Biol. Chem. 2006, 281:39308-39315.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 39308-39315
-
-
Lee, J.N.1
-
39
-
-
84855510314
-
Sterol-induced degradation of HMG CoA reductase depends on interplay of two Insigs and two ubiquitin ligases, gp78 and Trc8
-
Jo Y., et al. Sterol-induced degradation of HMG CoA reductase depends on interplay of two Insigs and two ubiquitin ligases, gp78 and Trc8. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:20503-20508.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 20503-20508
-
-
Jo, Y.1
-
40
-
-
84864684825
-
Ablation of gp78 in liver improves hyperlipidemia and insulin resistance by inhibiting SREBP to decrease lipid biosynthesis
-
Liu T.F., et al. Ablation of gp78 in liver improves hyperlipidemia and insulin resistance by inhibiting SREBP to decrease lipid biosynthesis. Cell Metab. 2012, 16:213-225.
-
(2012)
Cell Metab.
, vol.16
, pp. 213-225
-
-
Liu, T.F.1
-
41
-
-
84895820661
-
The E3 ubiquitin ligase MARCH6 degrades squalene monooxygenase and affects 3-hydroxy-3-methyl-glutaryl coenzyme A reductase and the cholesterol synthesis pathway
-
Zelcer N., et al. The E3 ubiquitin ligase MARCH6 degrades squalene monooxygenase and affects 3-hydroxy-3-methyl-glutaryl coenzyme A reductase and the cholesterol synthesis pathway. Mol. Cell. Biol. 2014, 34:1262-1270.
-
(2014)
Mol. Cell. Biol.
, vol.34
, pp. 1262-1270
-
-
Zelcer, N.1
-
42
-
-
36248988054
-
Ubiquitin ligases, critical mediators of endoplasmic reticulum-associated degradation
-
Kostova Z., et al. Ubiquitin ligases, critical mediators of endoplasmic reticulum-associated degradation. Semin. Cell Dev. Biol. 2007, 18:770-779.
-
(2007)
Semin. Cell Dev. Biol.
, vol.18
, pp. 770-779
-
-
Kostova, Z.1
-
43
-
-
84880707873
-
Sterol homeostasis requires regulated degradation of squalene monooxygenase by the ubiquitin ligase Doa10/Teb4
-
Foresti O., et al. Sterol homeostasis requires regulated degradation of squalene monooxygenase by the ubiquitin ligase Doa10/Teb4. Elife 2013, 2:e00953.
-
(2013)
Elife
, vol.2
, pp. e00953
-
-
Foresti, O.1
-
44
-
-
70349316465
-
The E3 ubiquitin ligase TEB4 mediates degradation of type 2 iodothyronine deiodinase
-
Zavacki A.M., et al. The E3 ubiquitin ligase TEB4 mediates degradation of type 2 iodothyronine deiodinase. Mol. Cell. Biol. 2009, 29:5339-5347.
-
(2009)
Mol. Cell. Biol.
, vol.29
, pp. 5339-5347
-
-
Zavacki, A.M.1
-
45
-
-
84875521267
-
The SUD1 gene encodes a putative E3 ubiquitin ligase and is a positive regulator of 3-hydroxy-3-methylglutaryl coenzyme a reductase activity in Arabidopsis
-
Doblas V.G., et al. The SUD1 gene encodes a putative E3 ubiquitin ligase and is a positive regulator of 3-hydroxy-3-methylglutaryl coenzyme a reductase activity in Arabidopsis. Plant Cell 2013, 25:728-743.
-
(2013)
Plant Cell
, vol.25
, pp. 728-743
-
-
Doblas, V.G.1
-
46
-
-
84904095534
-
Squalene monooxygenase, a key enzyme in cholesterol synthesis, is stabilised by unsaturated fatty acids
-
Stevenson J., et al. Squalene monooxygenase, a key enzyme in cholesterol synthesis, is stabilised by unsaturated fatty acids. Biochem. J. 2014, 461:435-442.
-
(2014)
Biochem. J.
, vol.461
, pp. 435-442
-
-
Stevenson, J.1
-
47
-
-
84874644958
-
Proteome-wide mapping of cholesterol-interacting proteins in mammalian cells
-
Hulce J.J., et al. Proteome-wide mapping of cholesterol-interacting proteins in mammalian cells. Nat. Methods 2013, 10:259-264.
-
(2013)
Nat. Methods
, vol.10
, pp. 259-264
-
-
Hulce, J.J.1
-
48
-
-
84866925293
-
Cholesterol through the looking glass: ability of its enantiomer also to elicit homeostatic responses
-
Kristiana I., et al. Cholesterol through the looking glass: ability of its enantiomer also to elicit homeostatic responses. J. Biol. Chem. 2012, 287:33897-33904.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 33897-33904
-
-
Kristiana, I.1
-
50
-
-
38949137409
-
Sterol-dependent regulation of proprotein convertase subtilisin/kexin type 9 expression by sterol-regulatory element binding protein-2
-
Jeong H.J., et al. Sterol-dependent regulation of proprotein convertase subtilisin/kexin type 9 expression by sterol-regulatory element binding protein-2. J. Lipid Res. 2008, 49:399-409.
-
(2008)
J. Lipid Res.
, vol.49
, pp. 399-409
-
-
Jeong, H.J.1
-
51
-
-
50849137811
-
PCSK9 and LDL cholesterol: unravelling the target to design the bullet
-
Costet P., et al. PCSK9 and LDL cholesterol: unravelling the target to design the bullet. Trends Biochem. Sci. 2008, 33:426-434.
-
(2008)
Trends Biochem. Sci.
, vol.33
, pp. 426-434
-
-
Costet, P.1
-
52
-
-
84864851760
-
Molecular characterization of proprotein convertase subtilisin/kexin type 9-mediated degradation of the LDLR
-
Wang Y., et al. Molecular characterization of proprotein convertase subtilisin/kexin type 9-mediated degradation of the LDLR. J. Lipid Res. 2012, 53:1932-1943.
-
(2012)
J. Lipid Res.
, vol.53
, pp. 1932-1943
-
-
Wang, Y.1
-
53
-
-
73749086245
-
A chimeric LDL receptor containing the cytoplasmic domain of the transferrin receptor is degraded by PCSK9
-
Holla O.L., et al. A chimeric LDL receptor containing the cytoplasmic domain of the transferrin receptor is degraded by PCSK9. Mol. Genet. Metab. 2010, 99:149-156.
-
(2010)
Mol. Genet. Metab.
, vol.99
, pp. 149-156
-
-
Holla, O.L.1
-
54
-
-
77955658614
-
Disrupted recycling of the low density lipoprotein receptor by PCSK9 is not mediated by residues of the cytoplasmic domain
-
Strom T.B., et al. Disrupted recycling of the low density lipoprotein receptor by PCSK9 is not mediated by residues of the cytoplasmic domain. Mol. Genet. Metab. 2010, 101:76-80.
-
(2010)
Mol. Genet. Metab.
, vol.101
, pp. 76-80
-
-
Strom, T.B.1
-
55
-
-
38349117118
-
The proprotein convertase PCSK9 induces the degradation of low density lipoprotein receptor (LDLR) and its closest family members VLDLR and ApoER2
-
Poirier S., et al. The proprotein convertase PCSK9 induces the degradation of low density lipoprotein receptor (LDLR) and its closest family members VLDLR and ApoER2. J. Biol. Chem. 2008, 283:2363-2372.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 2363-2372
-
-
Poirier, S.1
-
56
-
-
67650092919
-
LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor
-
Zelcer N., et al. LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor. Science 2009, 325:100-104.
-
(2009)
Science
, vol.325
, pp. 100-104
-
-
Zelcer, N.1
-
57
-
-
84861092119
-
Post-transcriptional regulation of lipoprotein receptors by the E3-ubiquitin ligase inducible degrader of the low-density lipoprotein receptor
-
Sorrentino V., Zelcer N. Post-transcriptional regulation of lipoprotein receptors by the E3-ubiquitin ligase inducible degrader of the low-density lipoprotein receptor. Curr. Opin. Lipidol. 2012, 23:213-219.
-
(2012)
Curr. Opin. Lipidol.
, vol.23
, pp. 213-219
-
-
Sorrentino, V.1
Zelcer, N.2
-
58
-
-
77953767546
-
The E3 ubiquitin ligase IDOL induces the degradation of the low density lipoprotein receptor family members VLDLR and ApoER2
-
Hong C., et al. The E3 ubiquitin ligase IDOL induces the degradation of the low density lipoprotein receptor family members VLDLR and ApoER2. J. Biol. Chem. 2010, 285:19720-19726.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 19720-19726
-
-
Hong, C.1
-
59
-
-
80051931966
-
Distinct functional domains contribute to degradation of the low density lipoprotein receptor (LDLR) by the E3 ubiquitin ligase inducible degrader of the LDLR (IDOL)
-
Sorrentino V., et al. Distinct functional domains contribute to degradation of the low density lipoprotein receptor (LDLR) by the E3 ubiquitin ligase inducible degrader of the LDLR (IDOL). J. Biol. Chem. 2011, 286:30190-30199.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 30190-30199
-
-
Sorrentino, V.1
-
60
-
-
84055187648
-
FERM-dependent E3 ligase recognition is a conserved mechanism for targeted degradation of lipoprotein receptors
-
Calkin A.C., et al. FERM-dependent E3 ligase recognition is a conserved mechanism for targeted degradation of lipoprotein receptors. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:20107-20112.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 20107-20112
-
-
Calkin, A.C.1
-
61
-
-
84881247296
-
The LXR-IDOL axis defines a clathrin-, caveolae-, and dynamin-independent endocytic route for LDLR internalization and lysosomal degradation
-
Sorrentino V., et al. The LXR-IDOL axis defines a clathrin-, caveolae-, and dynamin-independent endocytic route for LDLR internalization and lysosomal degradation. J. Lipid Res. 2013, 54:2174-2184.
-
(2013)
J. Lipid Res.
, vol.54
, pp. 2174-2184
-
-
Sorrentino, V.1
-
62
-
-
84876345363
-
IDOL stimulates clathrin-independent endocytosis and multivesicular body-mediated lysosomal degradation of the low-density lipoprotein receptor
-
Scotti E., et al. IDOL stimulates clathrin-independent endocytosis and multivesicular body-mediated lysosomal degradation of the low-density lipoprotein receptor. Mol. Cell. Biol. 2013, 33:1503-1514.
-
(2013)
Mol. Cell. Biol.
, vol.33
, pp. 1503-1514
-
-
Scotti, E.1
-
63
-
-
84878435406
-
Drug targets beyond HMG-CoA reductase: why venture beyond the statins?
-
Gelissen I.C., Brown A.J. Drug targets beyond HMG-CoA reductase: why venture beyond the statins?. Front. Biol. 2011, 6:197-205.
-
(2011)
Front. Biol.
, vol.6
, pp. 197-205
-
-
Gelissen, I.C.1
Brown, A.J.2
-
64
-
-
71749098578
-
New Idol for cholesterol reduction?
-
Sawamura T. New Idol for cholesterol reduction?. Clin. Chem. 2009, 55:2082-2084.
-
(2009)
Clin. Chem.
, vol.55
, pp. 2082-2084
-
-
Sawamura, T.1
-
65
-
-
84901365380
-
Hepatic overexpression of Idol increases circulating protein convertase subtilisin/kexin type 9 in mice and hamsters via dual mechanisms: sterol regulatory element-binding protein 2 and low-density lipoprotein receptor-dependent pathways
-
Sasaki M., et al. Hepatic overexpression of Idol increases circulating protein convertase subtilisin/kexin type 9 in mice and hamsters via dual mechanisms: sterol regulatory element-binding protein 2 and low-density lipoprotein receptor-dependent pathways. Atertioscler. Thromb. Vasc. Biol. 2014, 34:1171-1178.
-
(2014)
Atertioscler. Thromb. Vasc. Biol.
, vol.34
, pp. 1171-1178
-
-
Sasaki, M.1
-
66
-
-
84877246816
-
Identification of a loss-of-function inducible degrader of the low-density lipoprotein receptor variant in individuals with low circulating low-density lipoprotein
-
Sorrentino V., et al. Identification of a loss-of-function inducible degrader of the low-density lipoprotein receptor variant in individuals with low circulating low-density lipoprotein. Eur. Heart J. 2013, 34:1292-1297.
-
(2013)
Eur. Heart J.
, vol.34
, pp. 1292-1297
-
-
Sorrentino, V.1
-
67
-
-
84892913843
-
ATP-binding cassette transporters, atherosclerosis, and inflammation
-
Westerterp M., et al. ATP-binding cassette transporters, atherosclerosis, and inflammation. Circ. Res. 2014, 114:157-170.
-
(2014)
Circ. Res.
, vol.114
, pp. 157-170
-
-
Westerterp, M.1
-
68
-
-
0141844589
-
Phosphorylation of a pest sequence in ABCA1 promotes calpain degradation and is reversed by ApoA-I
-
Martinez L.O., et al. Phosphorylation of a pest sequence in ABCA1 promotes calpain degradation and is reversed by ApoA-I. J. Biol. Chem. 2003, 278:37368-37374.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 37368-37374
-
-
Martinez, L.O.1
-
69
-
-
0037253264
-
A PEST sequence in ABCA1 regulates degradation by calpain protease and stabilization of ABCA1 by apoA-I
-
Wang N., et al. A PEST sequence in ABCA1 regulates degradation by calpain protease and stabilization of ABCA1 by apoA-I. J. Clin. Invest. 2003, 111:99-107.
-
(2003)
J. Clin. Invest.
, vol.111
, pp. 99-107
-
-
Wang, N.1
-
70
-
-
53449094470
-
ApoA-I facilitates ABCA1 recycle/accumulation to cell surface by inhibiting its intracellular degradation and increases HDL generation
-
Lu R., et al. ApoA-I facilitates ABCA1 recycle/accumulation to cell surface by inhibiting its intracellular degradation and increases HDL generation. Atertioscler. Thromb. Vasc. Biol. 2008, 28:1820-1824.
-
(2008)
Atertioscler. Thromb. Vasc. Biol.
, vol.28
, pp. 1820-1824
-
-
Lu, R.1
-
71
-
-
2442476368
-
Effect of apolipoprotein A-I on ATP binding cassette transporter A1 degradation and cholesterol efflux in THP-1 macrophage-derived foam cells
-
Tang C.K., et al. Effect of apolipoprotein A-I on ATP binding cassette transporter A1 degradation and cholesterol efflux in THP-1 macrophage-derived foam cells. Acta Biochim. Biophys. Sin. 2004, 36:218-226.
-
(2004)
Acta Biochim. Biophys. Sin.
, vol.36
, pp. 218-226
-
-
Tang, C.K.1
-
72
-
-
79960727241
-
Ubiquitination is associated with lysosomal degradation of cell surface-resident ATP-binding cassette transporter A1 (ABCA1) through the endosomal sorting complex required for transport (ESCRT) pathway
-
Mizuno T., et al. Ubiquitination is associated with lysosomal degradation of cell surface-resident ATP-binding cassette transporter A1 (ABCA1) through the endosomal sorting complex required for transport (ESCRT) pathway. Hepatology 2011, 54:631-643.
-
(2011)
Hepatology
, vol.54
, pp. 631-643
-
-
Mizuno, T.1
-
73
-
-
80052147737
-
Proteasomal inhibition promotes ATP-binding cassette transporter A1 (ABCA1) and ABCG1 expression and cholesterol efflux from macrophages in vitro and in vivo
-
Ogura M., et al. Proteasomal inhibition promotes ATP-binding cassette transporter A1 (ABCA1) and ABCG1 expression and cholesterol efflux from macrophages in vitro and in vivo. Atertioscler. Thromb. Vasc. Biol. 2011, 31:1980-1987.
-
(2011)
Atertioscler. Thromb. Vasc. Biol.
, vol.31
, pp. 1980-1987
-
-
Ogura, M.1
-
74
-
-
84897594924
-
Inhibition of post-translational N-glycosylation by HRD1 that controls the fate of ABCG5/8 transporter
-
Suzuki S., et al. Inhibition of post-translational N-glycosylation by HRD1 that controls the fate of ABCG5/8 transporter. Sci. Rep. 2014, 4:4258.
-
(2014)
Sci. Rep.
, vol.4
, pp. 4258
-
-
Suzuki, S.1
-
75
-
-
84896276954
-
Cellular cholesterol regulates ubiquitination and degradation of the cholesterol export proteins ABCA1 and ABCG1
-
Hsieh V., et al. Cellular cholesterol regulates ubiquitination and degradation of the cholesterol export proteins ABCA1 and ABCG1. J. Biol. Chem. 2014, 289:7524-7536.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 7524-7536
-
-
Hsieh, V.1
-
76
-
-
68049084674
-
Breaking the chains: structure and function of the deubiquitinases
-
Komander D., et al. Breaking the chains: structure and function of the deubiquitinases. Nat. Rev. Mol. Cell Biol. 2009, 10:550-563.
-
(2009)
Nat. Rev. Mol. Cell Biol.
, vol.10
, pp. 550-563
-
-
Komander, D.1
-
77
-
-
84866006042
-
Governance of endocytic trafficking and signaling by reversible ubiquitylation
-
Clague M.J., et al. Governance of endocytic trafficking and signaling by reversible ubiquitylation. Dev. Cell 2012, 23:457-467.
-
(2012)
Dev. Cell
, vol.23
, pp. 457-467
-
-
Clague, M.J.1
-
78
-
-
80051733972
-
Ubiquitination of E3 ligases: self-regulation of the ubiquitin system via proteolytic and non-proteolytic mechanisms
-
de Bie P., Ciechanover A. Ubiquitination of E3 ligases: self-regulation of the ubiquitin system via proteolytic and non-proteolytic mechanisms. Cell Death Differ. 2011, 18:1393-1402.
-
(2011)
Cell Death Differ.
, vol.18
, pp. 1393-1402
-
-
de Bie, P.1
Ciechanover, A.2
-
79
-
-
84904171063
-
Endoplasmic reticulum-associated degradation of Niemann-Pick C1: evidence for the role of heat shock proteins and identification of lysine residues that accept ubiquitin
-
Nakasone N., et al. Endoplasmic reticulum-associated degradation of Niemann-Pick C1: evidence for the role of heat shock proteins and identification of lysine residues that accept ubiquitin. J. Biol. Chem. 2014, 289:19714-19725.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 19714-19725
-
-
Nakasone, N.1
-
80
-
-
79956050306
-
Ubiquitination regulates the assembly of VLDL in HepG2 cells and is the committing step of the apoB-100 ERAD pathway
-
Fisher E.A., et al. Ubiquitination regulates the assembly of VLDL in HepG2 cells and is the committing step of the apoB-100 ERAD pathway. J. Lipid Res. 2011, 52:1170-1180.
-
(2011)
J. Lipid Res.
, vol.52
, pp. 1170-1180
-
-
Fisher, E.A.1
-
81
-
-
84903845724
-
Ubiquitin ligases in cholesterol metabolism
-
Jiang W., Song B-L. Ubiquitin ligases in cholesterol metabolism. Diabetes Metab. J. 2014, 38:171-180.
-
(2014)
Diabetes Metab. J.
, vol.38
, pp. 171-180
-
-
Jiang, W.1
Song, B.-L.2
-
82
-
-
84896270715
-
Quality control: ER-associated degradation: protein quality control and beyond
-
Ruggiano A., et al. Quality control: ER-associated degradation: protein quality control and beyond. J. Cell Biol. 2014, 204:869-879.
-
(2014)
J. Cell Biol.
, vol.204
, pp. 869-879
-
-
Ruggiano, A.1
|