-
1
-
-
42949116365
-
Lipid accumulation in non-adipose tissue and lipotoxicity
-
DOI 10.1016/j.physbeh.2007.11.049, PII S0031938407004805
-
van Herpen NA, Schrauwen-Hinderling VB. Lipid accumulation in non-adipose tissue and lipotoxicity. Physiol Behav. 2008;94(2):231-241. (Pubitemid 351615422)
-
(2008)
Physiology and Behavior
, vol.94
, Issue.2
, pp. 231-241
-
-
Van Herpen, N.A.1
Schrauwen-Hinderling, V.B.2
-
2
-
-
33746377553
-
Obesity-related derangements in metabolic regulation
-
DOI 10.1146/annurev.biochem.75.103004.142512
-
Muoio DM, Newgard CB. Obesity-related derangements in metabolic regulation. Annu Rev Biochem. 2006;75:367-401. (Pubitemid 44118037)
-
(2006)
Annual Review of Biochemistry
, vol.75
, pp. 367-401
-
-
Muoio, D.M.1
Newgard, C.B.2
-
3
-
-
56649085036
-
Abnormalities of lipid metabolism in nonalcoholic fatty liver disease
-
Cheung O, Sanyal AJ. Abnormalities of lipid metabolism in nonalcoholic fatty liver disease. Semin Liver Dis. 2008;28(4):351-359.
-
(2008)
Semin Liver Dis
, vol.28
, Issue.4
, pp. 351-359
-
-
Cheung, O.1
Sanyal, A.J.2
-
4
-
-
80051748943
-
Insulin resistance: The link between obesity and cardiovascular disease
-
Reaven GM. Insulin resistance: the link between obesity and cardiovascular disease. Med Clin North Am. 2011;95(5):875-892.
-
(2011)
Med Clin North Am
, vol.95
, Issue.5
, pp. 875-892
-
-
Reaven, G.M.1
-
5
-
-
0033598749
-
Insulin selectively increases SREBP-1c mRNA in the livers of rats with streptozotocin-induced diabetes
-
Shimomura I, Bashmakov Y, Ikemoto S, Horton JD, Brown MS, Goldstein JL. Insulin selectively increases SREBP-1c mRNA in the livers of rats with streptozotocin-induced diabetes. Proc Natl Acad Sci U S A. 1999;96(24):13656- 13661.
-
(1999)
Proc Natl Acad Sci U S A
, vol.96
, Issue.24
, pp. 13656-13661
-
-
Shimomura, I.1
Bashmakov, Y.2
Ikemoto, S.3
Horton, J.D.4
Brown, M.S.5
Goldstein, J.L.6
-
6
-
-
0033544940
-
Sterol regulatory element-binding protein-1 as a key transcription factor for nutritional induction of lipogenic enzyme genes
-
Shimano H, et al. Sterol regulatory element-binding protein-1 as a key transcription factor for nutritional induction of lipogenic enzyme genes. J Biol Chem. 1999;274(50):35832-35839. (Pubitemid 129512888)
-
(1999)
Journal of Biological Chemistry
, vol.274
, Issue.50
, pp. 35832-35839
-
-
Shimano, H.1
Yahagi, N.2
Amemiya-Kudo, M.3
Hasty, A.H.4
Osuga, J.-I.5
Tamura, Y.6
Shionoiri, F.7
Iizuka, Y.8
Ohashi, K.9
Harada, K.10
Gotoda, T.11
Ishibashi, S.12
Yamada, N.13
-
7
-
-
0037088683
-
Diminished hepatic response to fasting/refeeding and liver X receptor agonists in mice with selective deficiency of sterol regulatory element-binding protein-1c
-
DOI 10.1074/jbc.M111421200
-
Liang G, Yang J, Horton JD, Hammer RE, Goldstein JL, Brown MS. Diminished hepatic response to fasting/refeeding and liver X receptor agonists in mice with selective deficiency of sterol regulatory element-binding protein-1c. J Biol Chem. 2002;277(11):9520-9528. (Pubitemid 34953041)
-
(2002)
Journal of Biological Chemistry
, vol.277
, Issue.11
, pp. 9520-9528
-
-
Liang, G.1
Yang, J.2
Horton, J.D.3
Hammer, R.E.4
Goldstein, J.L.5
Brown, M.S.6
-
8
-
-
0036690930
-
Transcriptional activities of nuclear SREBP-1a, -1c, and -2 to different target promoters of lipogenic and cholesterogenic genes
-
Amemiya-Kudo M, et al. Transcriptional activities of nuclear SREBP-1a, -1c, and -2 to different target promoters of lipogenic and cholesterogenic genes. J Lipid Res. 2002;43(8):1220-1235. (Pubitemid 34988170)
-
(2002)
Journal of Lipid Research
, vol.43
, Issue.8
, pp. 1220-1235
-
-
Amemiya-Kudo, M.1
Shimano, H.2
Hasty, A.H.3
Yahagi, N.4
Yoshikawa, T.5
Matsuzaka, T.6
Okazaki, H.7
Tamura, Y.8
Iizuka, Y.9
Ohashi, K.10
Osuga, J.-I.11
Harada, K.12
Gotoda, T.13
Sato, R.14
Kimura, S.15
Ishibashi, S.16
Yamada, N.17
-
9
-
-
84856471735
-
SREBPs: Metabolic integrators in physiology and metabolism
-
Jeon T-I, Osborne TF. SREBPs: metabolic integrators in physiology and metabolism. Trends Endocrinol Metab. 2012;23(2):65-72.
-
(2012)
Trends Endocrinol Metab
, vol.23
, Issue.2
, pp. 65-72
-
-
Jeon, T.-I.1
Osborne, T.F.2
-
10
-
-
72749086098
-
Evolutionary conservation and adaptation in the mechanism that regulates SREBP action: What a long, strange tRIP it's been
-
Osborne TF, Espenshade PJ. Evolutionary conservation and adaptation in the mechanism that regulates SREBP action: what a long, strange tRIP it's been. Genes Dev. 2009;23(22):2578-2591.
-
(2009)
Genes Dev
, vol.23
, Issue.22
, pp. 2578-2591
-
-
Osborne, T.F.1
Espenshade, P.J.2
-
11
-
-
0027139362
-
SREBP-2, a second basic-helix-loop-helix-leucine zipper protein that stimulates transcription by binding to a sterol regulatory element
-
DOI 10.1073/pnas.90.24.11603
-
Hua X, et al. SREBP-2, a second basic-helix-loop-helix-leucine zipper protein that stimulates transcription by binding to a sterol regulatory element. Proc Natl Acad Sci U S A. 1993;90(24):11603-11607. (Pubitemid 24008687)
-
(1993)
Proceedings of the National Academy of Sciences of the United States of America
, vol.90
, Issue.24
, pp. 11603-11607
-
-
Hua, X.1
Yokoyama, C.2
Wu, J.3
Briggs, M.R.4
Brown, M.S.5
Goldstein, J.L.6
Wang, X.7
-
12
-
-
0027490174
-
SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene
-
DOI 10.1016/0092-8674(93)90690-R
-
Yokoyama C, et al. SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell. 1993;75(1):187-197. (Pubitemid 23306032)
-
(1993)
Cell
, vol.75
, Issue.1
, pp. 187-197
-
-
Yokoyama, C.1
Wang, X.2
Briggs, M.R.3
Admon, A.4
Wu, J.5
Hua, X.6
Goldstein, J.L.7
Brown, M.S.8
-
13
-
-
0028225462
-
SREBP-1, a membrane-bound transcription factor released by sterol-regulated proteolysis
-
Wang X, Sato R, Brown MS, Hua X, Goldstein JL. SREBP-1, a membrane-bound transcription factor released by sterol-regulated proteolysis. Cell. 1994;77(1):53-62.
-
(1994)
Cell
, vol.77
, Issue.1
, pp. 53-62
-
-
Wang, X.1
Sato, R.2
Brown, M.S.3
Hua, X.4
Goldstein, J.L.5
-
14
-
-
34347406521
-
SREBP-1c transcription factor and lipid homeostasis: Clinical perspective
-
DOI 10.1159/000100426
-
Ferre P, Foufelle F. SREBP-1c transcription factor and lipid homeostasis: clinical perspective. Horm Res. 2007;68(2):72-82. (Pubitemid 47026704)
-
(2007)
Hormone Research
, vol.68
, Issue.2
, pp. 72-82
-
-
Ferre, P.1
Foufelle, F.2
-
15
-
-
0028960739
-
Structure of the human gene encoding sterol regulatory element binding protein-1 (SREBF1) and localization of SREBF1 and SREBF2 to chromosomes 17p11.2 and 22q13
-
Hua X, Wu J, Goldstein JL, Brown MS, Hobbs HH. Structure of the human gene encoding sterol regulatory element binding protein-1 (SREBF1) and localization of SREBF1 and SREBF2 to chromosomes 17p11.2 and 22q13. Genomics. 1995;25(3):667-673.
-
(1995)
Genomics
, vol.25
, Issue.3
, pp. 667-673
-
-
Hua, X.1
Wu, J.2
Goldstein, J.L.3
Brown, M.S.4
Hobbs, H.H.5
-
16
-
-
0030907175
-
Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells
-
Shimano H, Horton JD, Shimomura I, Hammer RE, Brown MS, Goldstein JL. Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells. J Clin Invest. 1997;99(5):846-854. (Pubitemid 27123620)
-
(1997)
Journal of Clinical Investigation
, vol.99
, Issue.5
, pp. 846-854
-
-
Shimano, H.1
Horton, J.D.2
Shimomura, I.3
Hammer, R.E.4
Brown, M.S.5
Goldstein, J.L.6
-
17
-
-
0030961960
-
Differential expression of exons 1a and 1c in mRNAs for sterol regulatory element binding protein-1 in human and mouse organs and cultured cells
-
Shimomura I, Shimano H, Horton JD, Goldstein JL, Brown MS. Differential expression of exons 1a and 1c in mRNAs for sterol regulatory element binding protein-1 in human and mouse organs and cultured cells. J Clin Invest. 1997;99(5):838-845. (Pubitemid 27123619)
-
(1997)
Journal of Clinical Investigation
, vol.99
, Issue.5
, pp. 838-845
-
-
Shimomura, I.1
Shimano, H.2
Horton, J.D.3
Goldstein, J.L.4
Brown, M.S.5
-
18
-
-
0040368298
-
Composite co-activator ARC mediates chromatin-directed transcriptional activation
-
Naar AM, Beaurang PA, Zhou S, Abraham S, Solomon W, Tjian R. Composite co-activator ARC mediates chromatin-directed transcriptional activation. Nature. 1999;398(6730):828-832.
-
(1999)
Nature
, vol.398
, Issue.6730
, pp. 828-832
-
-
Naar, A.M.1
Beaurang, P.A.2
Zhou, S.3
Abraham, S.4
Solomon, W.5
Tjian, R.6
-
19
-
-
0037039776
-
Structure, function, and activator-induced conformations of the CRSP coactivator
-
DOI 10.1126/science.1065249
-
Taatjes DJ, Naar AM, Andel F 3rd, Nogales E, Tjian R. Structure, function, and activator-induced conformations of the CRSP coactivator. Science. 2002;295(5557):1058-1062. (Pubitemid 34132233)
-
(2002)
Science
, vol.295
, Issue.5557
, pp. 1058-1062
-
-
Taatjes, D.J.1
Naar, A.M.2
Andel III, F.3
Nogales, E.4
Tjian, R.5
-
20
-
-
80054949798
-
Dysregulation of CDK8 and Cyclin C in tumorigenesis
-
Xu W, Ji JY. Dysregulation of CDK8 and Cyclin C in tumorigenesis. J Genet Genomics. 2011;38(10):439-452.
-
(2011)
J Genet Genomics
, vol.38
, Issue.10
, pp. 439-452
-
-
Xu, W.1
Ji, J.Y.2
-
21
-
-
80455164640
-
Origins and activity of the Mediator complex
-
Conaway RC, Conaway JW. Origins and activity of the Mediator complex. Semin Cell Dev Biol. 2011;22(7):729-734.
-
(2011)
Semin Cell Dev Biol
, vol.22
, Issue.7
, pp. 729-734
-
-
Conaway, R.C.1
Conaway, J.W.2
-
22
-
-
77958111633
-
The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation
-
Malik S, Roeder RG. The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation. Nat Rev Genet. 2011;11(11):761-772.
-
(2011)
Nat Rev Genet
, vol.11
, Issue.11
, pp. 761-772
-
-
Malik, S.1
Roeder, R.G.2
-
23
-
-
33847228720
-
Distinct roles for Mediator Cdk8 module subunits in Drosophila development
-
Loncle N, et al. Distinct roles for Mediator Cdk8 module subunits in Drosophila development. EMBO J. 2007;26(4):1045-1054.
-
(2007)
EMBO J
, vol.26
, Issue.4
, pp. 1045-1054
-
-
Loncle, N.1
-
24
-
-
59249093974
-
The human CDK8 subcomplex is a histone kinase that requires Med12 for activity and can function independently of mediator
-
Knuesel MT, Meyer KD, Donner AJ, Espinosa JM, Taatjes DJ. The human CDK8 subcomplex is a histone kinase that requires Med12 for activity and can function independently of mediator. Mol Cell Biol. 2009;29(3):650-661.
-
(2009)
Mol Cell Biol
, vol.29
, Issue.3
, pp. 650-661
-
-
Knuesel, M.T.1
Meyer, K.D.2
Donner, A.J.3
Espinosa, J.M.4
Taatjes, D.J.5
-
25
-
-
18844378166
-
The mammalian Mediator complex and its role in transcriptional regulation
-
DOI 10.1016/j.tibs.2005.03.002, PII S0968000405000605
-
Conaway RC, Sato S, Tomomori-Sato C, Yao T, Conaway JW. The mammalian Mediator complex and its role in transcriptional regulation. Trends Biochem Sci. 2005;30(5):250-255. (Pubitemid 40693868)
-
(2005)
Trends in Biochemical Sciences
, vol.30
, Issue.5
, pp. 250-255
-
-
Conaway, R.C.1
Sato, S.2
Tomomori-Sato, C.3
Yao, T.4
Conaway, J.W.5
-
26
-
-
77954759030
-
The human Mediator complex: A versatile, genome-wide regulator of transcription
-
Taatjes DJ. The human Mediator complex: a versatile, genome-wide regulator of transcription. Trends Biochem Sci. 2010;35(6):315-322.
-
(2010)
Trends Biochem Sci
, vol.35
, Issue.6
, pp. 315-322
-
-
Taatjes, D.J.1
-
27
-
-
52949093102
-
E2F1 represses beta-catenin transcription and is antagonized by both pRB and CDK8
-
Morris EJ, et al. E2F1 represses beta-catenin transcription and is antagonized by both pRB and CDK8. Nature. 2008;455(7212):552-556.
-
(2008)
Nature
, vol.455
, Issue.7212
, pp. 552-556
-
-
Morris, E.J.1
-
28
-
-
0142027805
-
Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes
-
DOI 10.1073/pnas.1534923100
-
Horton JD, et al. Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc Natl Acad Sci U S A. 2003;100(21):12027-12032. (Pubitemid 37271509)
-
(2003)
Proceedings of the National Academy of Sciences of the United States of America
, vol.100
, Issue.21
, pp. 12027-12032
-
-
Horton, J.D.1
Shah, N.A.2
Warrington, J.A.3
Anderson, N.N.4
Park, S.W.5
Brown, M.S.6
Goldstein, J.L.7
-
29
-
-
57049172674
-
Microarray analyses of SREBP-1a and SREBP-1c target genes identify new regulatory pathways in muscle
-
DOI 10.1152/physiolgenomics.90211.2008
-
Rome S, et al. Microarray analyses of SREBP-1a and SREBP-1c target genes identify new regulatory pathways in muscle. Physiol Genomics. 2008;34(3):327-337. (Pubitemid 352758847)
-
(2008)
Physiological Genomics
, vol.34
, Issue.3
, pp. 327-337
-
-
Rome, S.1
Lecomte, V.2
Meugnier, E.3
Rieusset, J.4
Debard, C.5
Euthine, V.6
Vidal, H.7
Lefai, E.8
-
30
-
-
0034681260
-
Regulated intramembrane proteolysis: A control mechanism conserved from bacteria to humans
-
Brown MS, Ye J, Rawson RB, Goldstein JL. Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell. 2000;100(4):391-398.
-
(2000)
Cell
, vol.100
, Issue.4
, pp. 391-398
-
-
Brown, M.S.1
Ye, J.2
Rawson, R.B.3
Goldstein, J.L.4
-
31
-
-
0043172415
-
The SREBP pathway - Insights from insigs and insects
-
DOI 10.1038/nrm1174
-
Rawson RB. The SREBP pathway - insights from Insigs and insects. Nat Rev Mol Cell Biol. 2003;4(8):631-640. (Pubitemid 36934965)
-
(2003)
Nature Reviews Molecular Cell Biology
, vol.4
, Issue.8
, pp. 631-640
-
-
Rawson, R.B.1
-
32
-
-
33747053907
-
An ARC/Mediator subunit required for SREBP control of cholesterol and lipid homeostasis
-
DOI 10.1038/nature04942, PII NATURE04942
-
Yang F, et al. An ARC/Mediator subunit required for SREBP control of cholesterol and lipid homeostasis. Nature. 2006;442(7103):700-704. (Pubitemid 44215326)
-
(2006)
Nature
, vol.442
, Issue.7103
, pp. 700-704
-
-
Yang, F.1
Vought, B.W.2
Satterlee, J.S.3
Walker, A.K.4
Jim, S.Z.-Y.5
Watts, J.L.6
DeBeaumont, R.7
Mako, S.R.8
Hyberts, S.G.9
Yang, S.10
Macol, C.11
Iyer, L.12
Tjian, R.13
Van Den, H.S.14
Hart, A.C.15
Wagner, G.16
Naar, A.M.17
-
33
-
-
0029880998
-
Drosophila Cdk8, a kinase partner of cyclin C that interacts with the large subunit of RNA polymerase II
-
Leclerc V, Tassan JP, O'Farrell PH, Nigg EA, Leopold P. Drosophila Cdk8, a kinase partner of cyclin C that interacts with the large subunit of RNA polymerase II. Mol Biol Cell. 1996;7(4):505-513. (Pubitemid 26112559)
-
(1996)
Molecular Biology of the Cell
, vol.7
, Issue.4
, pp. 505-513
-
-
Leclerc, V.1
Tassan, J.-P.2
O'Farrell, P.H.3
Nigg, E.A.4
Leopold, P.5
-
34
-
-
1442354965
-
The activator-recruited cofactor/Mediator coactivation subunit ARC92 is a functionally important target of the VP16 transcriptional activator
-
DOI 10.1073/pnas.0308676100
-
Yang F, DeBeaumont R, Zhou S, Naar AM. The activator-recruited cofactor/Mediator coactivator subunit ARC92 is a functionally important target of the VP16 transcriptional activator. Proc Natl Acad Sci U S A. 2004;101(8):2339-2344. (Pubitemid 38269313)
-
(2004)
Proceedings of the National Academy of Sciences of the United States of America
, vol.101
, Issue.8
, pp. 2339-2344
-
-
Yang, F.1
DeBeaumont, R.2
Zhou, S.3
Naar, A.M.4
-
35
-
-
23844530704
-
Fbw7
-
DOI 10.1016/j.cmet.2005.04.010, PII S155041310500118X
-
Sundqvist A, et al. Control of lipid metabolism by phosphorylation- dependent degradation of the SREBP family of transcription factors by SCF(Fbw7). Cell Metab. 2005;1(6):379-391. (Pubitemid 43960622)
-
(2005)
Cell Metabolism
, vol.1
, Issue.6
, pp. 379-391
-
-
Sundqvist, A.1
Bengoechea-Alonso, M.T.2
Ye, X.3
Lukiyanchuk, V.4
Jin, J.5
Harper, J.W.6
Ericsson, J.7
-
36
-
-
0029948789
-
Cyclin C/CDK8 is a novel CTD kinase associated with RNA polymerase II
-
Rickert P, Seghezzi W, Shanahan F, Cho H, Lees E. Cyclin C/CDK8 is a novel CTD kinase associated with RNA polymerase II. Oncogene. 1996;12(12):2631-2640. (Pubitemid 26237792)
-
(1996)
Oncogene
, vol.12
, Issue.12
, pp. 2631-2640
-
-
Rickert, P.1
Seghezzi, W.2
Shanahan, F.3
Cho, H.4
Lees, E.5
-
37
-
-
8844229536
-
Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover
-
DOI 10.1016/j.molcel.2004.10.014, PII S1097276504006409
-
Fryer CJ, White JB, Jones KA. Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol Cell. 2004;16(4):509-520. (Pubitemid 39531875)
-
(2004)
Molecular Cell
, vol.16
, Issue.4
, pp. 509-520
-
-
Fryer, C.J.1
White, J.B.2
Jones, K.A.3
-
38
-
-
70350780570
-
Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-beta pathways
-
Alarcon C, et al. Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-beta pathways. Cell. 2009;139(4):757-769.
-
(2009)
Cell
, vol.139
, Issue.4
, pp. 757-769
-
-
Alarcon, C.1
-
39
-
-
0035815612
-
Three RNA Polymerase II Carboxyl-terminal Domain Kinases Display Distinct Substrate Preferences
-
DOI 10.1074/jbc.M010975200
-
Ramanathan Y, et al. Three RNA polymerase II carboxyl-terminal domain kinases display distinct substrate preferences. J Biol Chem. 2001;276(14):10913-10920. (Pubitemid 38089269)
-
(2001)
Journal of Biological Chemistry
, vol.276
, Issue.14
, pp. 10913-10920
-
-
Ramanathan, Y.1
Rajpara, S.M.2
Reza, S.M.3
Lees, E.4
Shuman, S.5
Mathews, M.B.6
Pe'ery, T.7
-
41
-
-
0037178818
-
The role of SREBP-1c in nutritional regulation of lipogenic enzyme gene expression
-
DOI 10.1074/jbc.M202638200
-
Stoeckman AK, Towle HC. The role of SREBP-1c in nutritional regulation of lipogenic enzyme gene expression. J Biol Chem. 2002;277(30):27029-27035. (Pubitemid 34951715)
-
(2002)
Journal of Biological Chemistry
, vol.277
, Issue.30
, pp. 27029-27035
-
-
Stoeckman, A.K.1
Towle, H.C.2
-
42
-
-
8144229872
-
Carbohydrate response element binding protein directly promotes lipogenic enzyme gene transcription
-
DOI 10.1073/pnas.0405238101
-
Ishii S, Iizuka K, Miller BC, Uyeda K. Carbohydrate response element binding protein directly promotes lipogenic enzyme gene transcription. Proc Natl Acad Sci U S A. 2004;101(44):15597-15602. (Pubitemid 39473533)
-
(2004)
Proceedings of the National Academy of Sciences of the United States of America
, vol.101
, Issue.44
, pp. 15597-15602
-
-
Ishii, S.1
Ilzuka, K.2
Miller, B.C.3
Uyeda, K.4
-
43
-
-
2442435802
-
Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis
-
DOI 10.1073/pnas.0401516101
-
Iizuka K, Bruick RK, Liang G, Horton JD, Uyeda K. Deficiency of carbohydrate response elementbinding protein (ChREBP) reduces lipogenesis as well as glycolysis. Proc Natl Acad Sci U S A. 2004;101(19):7281-7286. (Pubitemid 38638024)
-
(2004)
Proceedings of the National Academy of Sciences of the United States of America
, vol.101
, Issue.19
, pp. 7281-7286
-
-
Iizuka, K.1
Bruick, R.K.2
Liang, G.3
Horton, J.D.4
Uyeda, K.5
-
44
-
-
0032568557
-
Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice
-
DOI 10.1073/pnas.95.11.5987
-
Horton JD, Bashmakov Y, Shimomura I, Shimano H. Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice. Proc Natl Acad Sci U S A. 1998;95(11):5987-5992. (Pubitemid 28248951)
-
(1998)
Proceedings of the National Academy of Sciences of the United States of America
, vol.95
, Issue.11
, pp. 5987-5992
-
-
Horton, J.D.1
Bashmakov, Y.2
Shimomura, I.3
Shimano, H.4
-
45
-
-
33751117989
-
Insulin activates human sterol-regulatory-element-binding protein-1c (SREBP-1c) promoter through SRE motifs
-
DOI 10.1042/BJ20060499
-
Dif N, Euthine V, Gonnet E, Laville M, Vidal H, Lefai E. Insulin activates human sterol-regulatory-element-binding protein-1c (SREBP-1c) promoter through SRE motifs. Biochem J. 2006;400(1):179-188. (Pubitemid 44763833)
-
(2006)
Biochemical Journal
, vol.400
, Issue.1
, pp. 179-188
-
-
Dif, N.1
Euthine, V.2
Gonnet, E.3
Laville, M.4
Vidal, H.5
Lefai, E.6
-
46
-
-
0037453007
-
Liver-specific mRNA for insig-2 down-regulated by insulin: Implications for fatty acid synthesis
-
DOI 10.1073/pnas.0130116100
-
Yabe D, Komuro R, Liang G, Goldstein JL, Brown MS. Liver-specific mRNA for Insig-2 down-regulated by insulin: implications for fatty acid synthesis. Proc Natl Acad Sci U S A. 2003;100(6):3155-3160. (Pubitemid 36356555)
-
(2003)
Proceedings of the National Academy of Sciences of the United States of America
, vol.100
, Issue.6
, pp. 3155-3160
-
-
Yabe, D.1
Komuro, R.2
Liang, G.3
Goldstein, J.L.4
Brown, M.S.5
-
47
-
-
70450283986
-
Insulin enhances the biogenesis of nuclear sterol regulatory element-binding protein (SREBP)-1c by posttranscriptional down-regulation of Insig-2A and its dissociation from SREBP cleavage-activating protein (SCAP).SREBP-1c complex
-
Yellaturu CR, Deng X, Park EA, Raghow R, Elam MB. Insulin enhances the biogenesis of nuclear sterol regulatory element-binding protein (SREBP)-1c by posttranscriptional down-regulation of Insig-2A and its dissociation from SREBP cleavage-activating protein (SCAP).SREBP-1c complex. J Biol Chem. 2009;284(46):31726-31734.
-
(2009)
J Biol Chem
, vol.284
, Issue.46
, pp. 31726-31734
-
-
Yellaturu, C.R.1
Deng, X.2
Park, E.A.3
Raghow, R.4
Elam, M.B.5
-
48
-
-
77958509990
-
Time of day and nutrients in feeding govern daily expression rhythms of the gene for sterol regulatory element-binding protein (SREBP)-1 in the mouse liver
-
Matsumoto E, et al. Time of day and nutrients in feeding govern daily expression rhythms of the gene for sterol regulatory element-binding protein (SREBP)-1 in the mouse liver. J Biol Chem. 2010;285(43):33028-33036.
-
(2010)
J Biol Chem
, vol.285
, Issue.43
, pp. 33028-33036
-
-
Matsumoto, E.1
-
49
-
-
0033570119
-
Increased levels of nuclear SREBP-1c associated with fatty livers in two mouse models of diabetes mellitus
-
Shimomura I, Bashmakov Y, Horton JD. Increased levels of nuclear SREBP-1c associated with fatty livers in two mouse models of diabetes mellitus. J Biol Chem. 1999;274(42):30028-30032.
-
(1999)
J Biol Chem
, vol.274
, Issue.42
, pp. 30028-30032
-
-
Shimomura, I.1
Bashmakov, Y.2
Horton, J.D.3
-
50
-
-
69249239041
-
SREBP-1c in nonalcoholic fatty liver disease induced by Western-type high-fat diet plus fructose in rats
-
Aragno M, et al. SREBP-1c in nonalcoholic fatty liver disease induced by Western-type high-fat diet plus fructose in rats. Free Radic Biol Med. 2009;47(7):1067-1074.
-
(2009)
Free Radic Biol Med.
, vol.47
, Issue.7
, pp. 1067-1074
-
-
Aragno, M.1
-
51
-
-
0037047284
-
Ethanol induces fatty acid synthesis pathways by activation of sterol regulatory element-binding protein (SREBP)
-
You M, Fischer M, Deeg MA, Crabb DW. Ethanol induces fatty acid synthesis pathways by activation of sterol regulatory element-binding protein (SREBP). J Biol Chem. 2002;277(32):29342-29347.
-
(2002)
J Biol Chem
, vol.277
, Issue.32
, pp. 29342-29347
-
-
You, M.1
Fischer, M.2
Deeg, M.A.3
Crabb, D.W.4
-
52
-
-
18244382304
-
Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease
-
DOI 10.1172/JCI200523621
-
Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest. 2005;115(5):1343-1351. (Pubitemid 40629054)
-
(2005)
Journal of Clinical Investigation
, vol.115
, Issue.5
, pp. 1343-1351
-
-
Donnelly, K.L.1
Smith, C.I.2
Schwarzenberg, S.J.3
Jessurun, J.4
Boldt, M.D.5
Parks, E.J.6
-
53
-
-
70450204007
-
An emerging role of mTOR in lipid biosynthesis
-
Laplante M, Sabatini DM. An emerging role of mTOR in lipid biosynthesis. Curr Biol. 2009;19(22):R1046-R1052.
-
(2009)
Curr Biol
, vol.19
, Issue.22
-
-
Laplante, M.1
Sabatini, D.M.2
-
54
-
-
62749188867
-
The role of the lipogenic pathway in the development of hepatic steatosis
-
Postic C, Girard J. The role of the lipogenic pathway in the development of hepatic steatosis. Diabetes Metab. 2008;34(6 pt 2):643-648.
-
(2008)
Diabetes Metab
, vol.34
, Issue.6 PART 2
, pp. 643-648
-
-
Postic, C.1
Girard, J.2
-
55
-
-
65549140251
-
A phosphorylation cascade controls the degradation of active SREBP1
-
Bengoechea-Alonso MT, Ericsson J. A phosphorylation cascade controls the degradation of active SREBP1. J Biol Chem. 2009;284(9):5885-5895.
-
(2009)
J Biol Chem
, vol.284
, Issue.9
, pp. 5885-5895
-
-
Bengoechea-Alonso, M.T.1
Ericsson, J.2
-
56
-
-
52949111487
-
CDK8 is a colorectal cancer oncogene that regulates beta-catenin activity
-
Firestein R, et al. CDK8 is a colorectal cancer oncogene that regulates beta-catenin activity. Nature. 2008;455(7212):547-551.
-
(2008)
Nature
, vol.455
, Issue.7212
, pp. 547-551
-
-
Firestein, R.1
-
57
-
-
78650816688
-
The histone variant macroH2A suppresses melanoma progression through regulation of CDK8
-
Kapoor A, et al. The histone variant macroH2A suppresses melanoma progression through regulation of CDK8. Nature. 2010;468(7327):1105-1109.
-
(2010)
Nature
, vol.468
, Issue.7327
, pp. 1105-1109
-
-
Kapoor, A.1
-
58
-
-
37749006118
-
Vector and parameters for targeted transgenic RNA interference in Drosophila melanogaster
-
Ni JQ, et al. Vector and parameters for targeted transgenic RNA interference in Drosophila melanogaster. Nat Methods. 2008;5(1):49-51.
-
(2008)
Nat Methods
, vol.5
, Issue.1
, pp. 49-51
-
-
Ni, J.Q.1
-
59
-
-
79955594279
-
A genome-scale shRNA resource for transgenic RNAi in Drosophila
-
Ni JQ, et al. A genome-scale shRNA resource for transgenic RNAi in Drosophila. Nat Methods. 2011;8(5):405-407.
-
(2011)
Nat Methods
, vol.8
, Issue.5
, pp. 405-407
-
-
Ni, J.Q.1
|