메뉴 건너뛰기




Volumn 90, Issue , 2015, Pages 150-172

Applications of artificial neural networks for thermal analysis of heat exchangers - A review

Author keywords

Artificial neural networks; Heat exchangers; Modeling; Thermal analysis

Indexed keywords

MODELS; NEURAL NETWORKS; THERMOANALYSIS;

EID: 84920721046     PISSN: 12900729     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijthermalsci.2014.11.030     Document Type: Short Survey
Times cited : (264)

References (230)
  • 3
    • 56449112462 scopus 로고    scopus 로고
    • Artificial neural networks (ANN): A new paradigm for thermal science and engineering
    • K.-T. Yang, Artificial neural networks (ANN): a new paradigm for thermal science and engineering, ASME J. Heat Transfer 130 (2008) 1-18.
    • (2008) ASME J. Heat Transfer , vol.130 , pp. 1-18
    • Yang, K.-T.1
  • 5
    • 0026205389 scopus 로고
    • Neural network methodology for heat transfer data analysis
    • J. Thibault, B.P.A. Grandjean, Neural network methodology for heat transfer data analysis, Int. J. Heat Mass Transfer 34 (1991) 2063-2070.
    • (1991) Int. J. Heat Mass Transfer , vol.34 , pp. 2063-2070
    • Thibault, J.1    Grandjean, B.P.A.2
  • 6
    • 84858249515 scopus 로고    scopus 로고
    • Plate heat exchangers: Recent advances
    • M.M. Abu-Khader, Plate heat exchangers: recent advances, Renew. Sustain. Energy Rev. 16 (2012) 1883-1891.
    • (2012) Renew. Sustain. Energy Rev. , vol.16 , pp. 1883-1891
    • Abu-Khader, M.M.1
  • 7
    • 77951138404 scopus 로고    scopus 로고
    • Ceramics and ceramic matrix composites for heat exchangers in advanced thermal systems e a review
    • A. Sommers, Q. Wang, X. Han, C. T'Joen, Y. Park, A. Jacobi, Ceramics and ceramic matrix composites for heat exchangers in advanced thermal systems e a review, Appl. Therm. Eng. 30 (2010) 1277-1291.
    • (2010) Appl. Therm. Eng. , vol.30 , pp. 1277-1291
    • Sommers, A.1    Wang, Q.2    Han, X.3    T'Joen, C.4    Park, Y.5    Jacobi, A.6
  • 8
    • 81855191897 scopus 로고    scopus 로고
    • Compact heat exchangers: A review and future applications for a new generation of high temperature solar receivers
    • Q. Li, G. Flamant, X. Yuan, P. Neveu, L. Luo, Compact heat exchangers: a review and future applications for a new generation of high temperature solar receivers, Renew. Sustain. Energy Rev. 15 (2011) 4855-4875.
    • (2011) Renew. Sustain. Energy Rev. , vol.15 , pp. 4855-4875
    • Li, Q.1    Flamant, G.2    Yuan, X.3    Neveu, P.4    Luo, L.5
  • 9
    • 67349225705 scopus 로고    scopus 로고
    • A review of heat exchanger fouling in the context of aircraft air-conditioning systems, and the potential for electrostatic filtering
    • S. Wright, G. Andrews, H. Sabir, A review of heat exchanger fouling in the context of aircraft air-conditioning systems, and the potential for electrostatic filtering, Appl. Therm. Eng. 29 (2009) 2596-2609.
    • (2009) Appl. Therm. Eng. , vol.29 , pp. 2596-2609
    • Wright, S.1    Andrews, G.2    Sabir, H.3
  • 10
    • 84864501423 scopus 로고    scopus 로고
    • Application of nanofluids in heat exchangers: A review
    • G. Huminic, A. Humimic, Application of nanofluids in heat exchangers: a review, Renew. Sustain. Energy Rev. 16 (2012) 5625-5638.
    • (2012) Renew. Sustain. Energy Rev. , vol.16 , pp. 5625-5638
    • Huminic, G.1    Humimic, A.2
  • 12
    • 84855279889 scopus 로고    scopus 로고
    • Applications of artificial neural networks for refrigeration, air conditioning and heat pump systems e a review
    • M. Mohanraj, S. Jayaraj, C. Muraleedharan, Applications of artificial neural networks for refrigeration, air conditioning and heat pump systems e a review, Renew. Sustain. Energy Rev. 16 (2012) 1340-1358.
    • (2012) Renew. Sustain. Energy Rev. , vol.16 , pp. 1340-1358
    • Mohanraj, M.1    Jayaraj, S.2    Muraleedharan, C.3
  • 13
    • 84867818145 scopus 로고    scopus 로고
    • Applications of ANN in fluid flow and heat transfer problems in nuclear engineering: A review work
    • T. Cong, G. Su, S. Qiu, W. Tian, Applications of ANN in fluid flow and heat transfer problems in nuclear engineering: a review work, Prog. Nucl. Energy 62 (2013) 54-71.
    • (2013) Prog. Nucl. Energy , vol.62 , pp. 54-71
    • Cong, T.1    Su, G.2    Qiu, S.3    Tian, W.4
  • 14
    • 47149095417 scopus 로고    scopus 로고
    • Artificial intelligence techniques for photovoltaic applications: A review
    • A. Mellit, S.A. Kalogirou, Artificial intelligence techniques for photovoltaic applications: a review, Prog. Energy Combust. Sci. 34 (2008) 574-632.
    • (2008) Prog. Energy Combust. Sci. , vol.34 , pp. 574-632
    • Mellit, A.1    Kalogirou, S.A.2
  • 15
    • 0242269356 scopus 로고    scopus 로고
    • Artificial intelligence for the modeling and control of combustion processes: A review
    • S.A. Kalogirou, Artificial intelligence for the modeling and control of combustion processes: a review, Prog. Energy Combust. Sci. 29 (2003) 515-566.
    • (2003) Prog. Energy Combust. Sci. , vol.29 , pp. 515-566
    • Kalogirou, S.A.1
  • 16
    • 0033686465 scopus 로고    scopus 로고
    • Applications of artificial neural networks for energy systems
    • S.A. Kalogirou, Applications of artificial neural networks for energy systems, Appl. Energy 67 (2000) 17-35.
    • (2000) Appl. Energy , vol.67 , pp. 17-35
    • Kalogirou, S.A.1
  • 17
    • 0034963531 scopus 로고    scopus 로고
    • Artificial neural networks in renewable energy systems applications: A review
    • S.A. Kalogirou, Artificial neural networks in renewable energy systems applications: a review, Renew. Sustain. Energy Rev. 5 (2001) 373-401.
    • (2001) Renew. Sustain. Energy Rev. , vol.5 , pp. 373-401
    • Kalogirou, S.A.1
  • 18
    • 0032735194 scopus 로고    scopus 로고
    • Review of the applications of neural networks in chemical process control e simulation and online implementation
    • M.A. Hussain, Review of the applications of neural networks in chemical process control e simulation and online implementation, Artif. Intell. Eng. 13 (1999) 55-68.
    • (1999) Artif. Intell. Eng. , vol.13 , pp. 55-68
    • Hussain, M.A.1
  • 19
    • 0003397084 scopus 로고    scopus 로고
    • ninth ed., Mc Graw Hill, New York
    • J.P. Holman, Heat Transfer, ninth ed., Mc Graw Hill, New York, 2002.
    • (2002) Heat Transfer
    • Holman, J.P.1
  • 20
    • 33846000685 scopus 로고    scopus 로고
    • Influence of special attributes of zeotropic refrigerant mixtures on design and operation of vapour compression refrigeration and heat pump systems
    • L. Rajapaksha, Influence of special attributes of zeotropic refrigerant mixtures on design and operation of vapour compression refrigeration and heat pump systems, Energy Convers. Manage. 48 (2007) 539-545.
    • (2007) Energy Convers. Manage. , vol.48 , pp. 539-545
    • Rajapaksha, L.1
  • 21
    • 0033165384 scopus 로고    scopus 로고
    • Simulation of heat exchanger performance using artificial neural networks
    • G. Diaz, M. Sen, Simulation of heat exchanger performance using artificial neural networks, HVAC&R Res. 5 (1999) 195-208.
    • (1999) HVAC&R Res. , vol.5 , pp. 195-208
    • Diaz, G.1    Sen, M.2
  • 22
    • 0037289569 scopus 로고    scopus 로고
    • A new approach for the prediction of the heat transfer rate of the wire-on-tube type heat exchangerduse of an artificial neural network model
    • Y. Islamoglu, A new approach for the prediction of the heat transfer rate of the wire-on-tube type heat exchangerduse of an artificial neural network model, Appl. Therm. Eng. 23 (2003) 243-249.
    • (2003) Appl. Therm. Eng. , vol.23 , pp. 243-249
    • Islamoglu, Y.1
  • 23
    • 70349978357 scopus 로고    scopus 로고
    • Prediction of the heat transfer rate of a single layer wire-on-tube type heat exchanger using ANFIS
    • M. Hayati, A. Rezaei, M. Seifi, Prediction of the heat transfer rate of a single layer wire-on-tube type heat exchanger using ANFIS, Int. J. Refrig. 32 (2009) 1914-1917.
    • (2009) Int. J. Refrig. , vol.32 , pp. 1914-1917
    • Hayati, M.1    Rezaei, A.2    Seifi, M.3
  • 24
    • 55249108068 scopus 로고    scopus 로고
    • Comparative analysis of an evaporative condenser using artificial neural network and adaptive neuro-fuzzy inference system
    • H.M. Ertunc, M. Hosoz, Comparative analysis of an evaporative condenser using artificial neural network and adaptive neuro-fuzzy inference system, Int. J. Refrig. 31 (2008) 1426-1436.
    • (2008) Int. J. Refrig. , vol.31 , pp. 1426-1436
    • Ertunc, H.M.1    Hosoz, M.2
  • 25
    • 69949144837 scopus 로고    scopus 로고
    • Exergy analysis of direct expansion solar assisted heat pumps using artificial neural networks
    • M. Mohanraj, S. Jayaraj, C. Muraleedharan, Exergy analysis of direct expansion solar assisted heat pumps using artificial neural networks, Int. J. Energy Res. 33 (2009) 1005-1020.
    • (2009) Int. J. Energy Res. , vol.33 , pp. 1005-1020
    • Mohanraj, M.1    Jayaraj, S.2    Muraleedharan, C.3
  • 26
    • 76249133472 scopus 로고    scopus 로고
    • Exergy assessment of a direct expansion solar assisted heat pump working with R22 and R407C/LPG mixture
    • M. Mohanraj, S. Jayaraj, C. Muraleedharan, Exergy assessment of a direct expansion solar assisted heat pump working with R22 and R407C/LPG mixture, Int. J. Green Energy 7 (2010) 65-83.
    • (2010) Int. J. Green Energy , vol.7 , pp. 65-83
    • Mohanraj, M.1    Jayaraj, S.2    Muraleedharan, C.3
  • 27
    • 76849099462 scopus 로고    scopus 로고
    • Fin-and-tube condenser performance evaluation using neural networks
    • L.-X. Zhao, C.-L. Zhang, Fin-and-tube condenser performance evaluation using neural networks, Int. J. Refrig. 33 (2010) 625-634.
    • (2010) Int. J. Refrig. , vol.33 , pp. 625-634
    • Zhao, L.-X.1    Zhang, C.-L.2
  • 28
    • 84890535411 scopus 로고    scopus 로고
    • Performance prediction for al parallel flow condenser based on artificial neural network
    • Z. Tian, B. Gu, L. Yang, F. Liu, Performance prediction for al parallel flow condenser based on artificial neural network, Appl. Therm. Eng. 63 (2014) 459-467.
    • (2014) Appl. Therm. Eng. , vol.63 , pp. 459-467
    • Tian, Z.1    Gu, B.2    Yang, L.3    Liu, F.4
  • 29
    • 84908402844 scopus 로고    scopus 로고
    • Model-based dimensionless neural networks for fin-and-tube condenser performance evaluation
    • L. Yang, Z.-Y. Li, L.-L. Shao, C.-L. Zhang, Model-based dimensionless neural networks for fin-and-tube condenser performance evaluation, Int. J. Refrig. 48 (2014) 1-9.
    • (2014) Int. J. Refrig. , vol.48 , pp. 1-9
    • Yang, L.1    Li, Z.-Y.2    Shao, L.-L.3    Zhang, C.-L.4
  • 30
    • 79957466983 scopus 로고    scopus 로고
    • Performance analysis of single-stage refrigeration system with internal heat exchanger using neural network and neuro-fuzzy
    • A.S. Sahin, Performance analysis of single-stage refrigeration system with internal heat exchanger using neural network and neuro-fuzzy, Renew. Energy 36 (2011) 2747-2752.
    • (2011) Renew. Energy , vol.36 , pp. 2747-2752
    • Sahin, A.S.1
  • 31
    • 4644327028 scopus 로고    scopus 로고
    • Performance prediction for nonadiabatic capillary tube suction line heat exchanger: An artificial neural network approach
    • Y. Islamoglu, A. Kurt, C. Parmaksizoglu, Performance prediction for nonadiabatic capillary tube suction line heat exchanger: an artificial neural network approach, Energy Convers. Manage. 46 (2005) 223-232.
    • (2005) Energy Convers. Manage. , vol.46 , pp. 223-232
    • Islamoglu, Y.1    Kurt, A.2    Parmaksizoglu, C.3
  • 32
    • 84894629818 scopus 로고    scopus 로고
    • Performance prediction using artificial neural networks for isobutene flow in non-adiabatic capillary tubes
    • M. Heimel, W. Lang, R. Almbauer, Performance prediction using artificial neural networks for isobutene flow in non-adiabatic capillary tubes, Int. J. Refrig. 38 (2014) 281-289.
    • (2014) Int. J. Refrig. , vol.38 , pp. 281-289
    • Heimel, M.1    Lang, W.2    Almbauer, R.3
  • 33
    • 84864433727 scopus 로고    scopus 로고
    • Investigation of design parameters of a domestic refrigerator by artificial neural networks and numerical simulations
    • D. Kumlutas, Z.H. Karadeniz, H. Avci, M. Ozsen, Investigation of design parameters of a domestic refrigerator by artificial neural networks and numerical simulations, Int. J. Refrig. 35 (2012) 1678-1689.
    • (2012) Int. J. Refrig. , vol.35 , pp. 1678-1689
    • Kumlutas, D.1    Karadeniz, Z.H.2    Avci, H.3    Ozsen, M.4
  • 34
    • 33745594305 scopus 로고    scopus 로고
    • Prediction of the air temperature and humidity at the outlet of a cooling coil using neural networks
    • K.S. Yigit, H.M. Ertunc, Prediction of the air temperature and humidity at the outlet of a cooling coil using neural networks, Int. Commun. Heat Mass Transfer 33 (2006) 898-907.
    • (2006) Int. Commun. Heat Mass Transfer , vol.33 , pp. 898-907
    • Yigit, K.S.1    Ertunc, H.M.2
  • 35
    • 79751529852 scopus 로고    scopus 로고
    • Prediction of frost deposition on a horizontal circular cylinder under natural convection using artificial neural networks
    • A.R. Tahavvor, M. Yaghoubi, Prediction of frost deposition on a horizontal circular cylinder under natural convection using artificial neural networks, Int. J. Refrig. 34 (2001) 560-566.
    • (2001) Int. J. Refrig. , vol.34 , pp. 560-566
    • Tahavvor, A.R.1    Yaghoubi, M.2
  • 37
    • 84355166779 scopus 로고    scopus 로고
    • Application of neural networks to predict the steady state performance of a runaround membrane energy exchanger
    • S. Akbari, H.B. Hemingson, D. Beriault, C.J. Simonson, R.W. Besant, Application of neural networks to predict the steady state performance of a runaround membrane energy exchanger, Int. J. Heat Mass Transfer 55 (2012) 1628-1641.
    • (2012) Int. J. Heat Mass Transfer , vol.55 , pp. 1628-1641
    • Akbari, S.1    Hemingson, H.B.2    Beriault, D.3    Simonson, C.J.4    Besant, R.W.5
  • 38
    • 84864278245 scopus 로고    scopus 로고
    • Application of neural networks to predict the transient performance of a run-around membrane energy exchanger for yearly non-stop operation
    • S. Akbari, C.J. Simonson, R.W. Besant, Application of neural networks to predict the transient performance of a run-around membrane energy exchanger for yearly non-stop operation, Int. J. Heat Mass Transfer 55 (2012) 5403-5416.
    • (2012) Int. J. Heat Mass Transfer , vol.55 , pp. 5403-5416
    • Akbari, S.1    Simonson, C.J.2    Besant, R.W.3
  • 39
    • 69449097733 scopus 로고    scopus 로고
    • Artificial neural network modelling of the thermal performance of a compact heat exchanger
    • C.K. Tan, J. Ward, S.J. Wilcox, R. Payne, Artificial neural network modelling of the thermal performance of a compact heat exchanger, Appl. Therm. Eng. 29 (2009) 3609-3617.
    • (2009) Appl. Therm. Eng. , vol.29 , pp. 3609-3617
    • Tan, C.K.1    Ward, J.2    Wilcox, S.J.3    Payne, R.4
  • 40
    • 44149087881 scopus 로고    scopus 로고
    • ANN modeling of compact heat exchangers
    • K. Ermis, ANN modeling of compact heat exchangers, Int. J. Energy Res. 32 (2008) 581-594.
    • (2008) Int. J. Energy Res. , vol.32 , pp. 581-594
    • Ermis, K.1
  • 41
    • 57049111060 scopus 로고    scopus 로고
    • Alternative approach in thermal analysis of plate heat exchangers
    • R. Selbas, A. Sencan, B. Kilic, Alternative approach in thermal analysis of plate heat exchangers, Heat Mass Transfer 45 (2009) 323-329.
    • (2009) Heat Mass Transfer , vol.45 , pp. 323-329
    • Selbas, R.1    Sencan, A.2    Kilic, B.3
  • 42
    • 38349111472 scopus 로고    scopus 로고
    • Optimal design approach for the plate-fin heat exchangers using neural networks cooperated with genetic algorithms
    • H. Peng, X. Ling, Optimal design approach for the plate-fin heat exchangers using neural networks cooperated with genetic algorithms, Appl. Therm. Eng. 28 (2008) 642-650.
    • (2008) Appl. Therm. Eng. , vol.28 , pp. 642-650
    • Peng, H.1    Ling, X.2
  • 43
    • 64749088633 scopus 로고    scopus 로고
    • Neural networks analysis of thermal characteristics on plate-fin heat exchangers with limited experimental data
    • H. Peng, X. Ling, Neural networks analysis of thermal characteristics on plate-fin heat exchangers with limited experimental data, Appl. Therm. Eng. 29 (2009) 2251-2256.
    • (2009) Appl. Therm. Eng. , vol.29 , pp. 2251-2256
    • Peng, H.1    Ling, X.2
  • 44
    • 69749122270 scopus 로고    scopus 로고
    • A heat exchanger model for air-torefrigerant fin-and-tube heat exchanger with arbitrary fin sheet
    • V. Singh, V. Aute, R. Radermacher, A heat exchanger model for air-torefrigerant fin-and-tube heat exchanger with arbitrary fin sheet, Int. J. Refrig. 32 (2009) 1724-1735.
    • (2009) Int. J. Refrig. , vol.32 , pp. 1724-1735
    • Singh, V.1    Aute, V.2    Radermacher, R.3
  • 45
    • 0035300295 scopus 로고    scopus 로고
    • Heat rate predictions in humid airewater heat exchangers using correlations and neural networks
    • A. Pacheco-Vega, G. Diaz, M. Sen, K.T. Yang, R.L. McClain, Heat rate predictions in humid airewater heat exchangers using correlations and neural networks, ASME J. Heat Transfer 123 (2001) 348-354.
    • (2001) ASME J. Heat Transfer , vol.123 , pp. 348-354
    • Pacheco-Vega, A.1    Diaz, G.2    Sen, M.3    Yang, K.T.4    McClain, R.L.5
  • 46
    • 0035129451 scopus 로고    scopus 로고
    • Neural network analysis of an-tube refrigerating heat exchanger with limited experimental data
    • A. Pacheco-Vega, M. Sen, K.T. Yang, R.L. McClain, Neural network analysis of an-tube refrigerating heat exchanger with limited experimental data, Int. J. Heat Mass Transfer 44 (2001) 763-770.
    • (2001) Int. J. Heat Mass Transfer , vol.44 , pp. 763-770
    • Pacheco-Vega, A.1    Sen, M.2    Yang, K.T.3    McClain, R.L.4
  • 47
    • 2442691361 scopus 로고    scopus 로고
    • An approximate integral model with an artificial neural network for heat exchangers
    • G.-L. Ding, C.-L. Zhang, T. Zhan, An approximate integral model with an artificial neural network for heat exchangers, Heat TransferdAsian Res. 33 (2004) 153-160.
    • (2004) Heat TransferdAsian Res. , vol.33 , pp. 153-160
    • Ding, G.-L.1    Zhang, C.-L.2    Zhan, T.3
  • 48
    • 51349117213 scopus 로고    scopus 로고
    • Application of artificial neural network method for performance prediction of a gas cooler in a CO2 heat pump
    • Z.G. Wu, J.Z. Zhang, Y.B. Tao, Y.L. He, W.Q. Tao, Application of artificial neural network method for performance prediction of a gas cooler in a CO2 heat pump, Int. J. Heat Mass Transfer 51 (2008) 5459-5464.
    • (2008) Int. J. Heat Mass Transfer , vol.51 , pp. 5459-5464
    • Wu, Z.G.1    Zhang, J.Z.2    Tao, Y.B.3    He, Y.L.4    Tao, W.Q.5
  • 49
    • 33750217137 scopus 로고    scopus 로고
    • Prediction of heat transfer rates for shelland-tube heat exchangers by artificial neural networks approach
    • Q. Wang, G. Xie, M. Zeng, L. Luo, Prediction of heat transfer rates for shelland-tube heat exchangers by artificial neural networks approach, J. Therm. Sci. 15 (2006) 257-262.
    • (2006) J. Therm. Sci. , vol.15 , pp. 257-262
    • Wang, Q.1    Xie, G.2    Zeng, M.3    Luo, L.4
  • 50
    • 33845500526 scopus 로고    scopus 로고
    • Heat transfer analysis for shell-andtube heat exchangers with experimental data by artificial neural networks approach
    • G.N. Xie, Q.W. Wang, M. Zeng, L.Q. Luo, Heat transfer analysis for shell-andtube heat exchangers with experimental data by artificial neural networks approach, Appl. Therm. Eng. 27 (2007) 1096-1104.
    • (2007) Appl. Therm. Eng. , vol.27 , pp. 1096-1104
    • Xie, G.N.1    Wang, Q.W.2    Zeng, M.3    Luo, L.Q.4
  • 51
    • 33847160363 scopus 로고    scopus 로고
    • Application of optimum ANN architecture for heat exchanger modeling
    • S.A. Mandavgane, S.L. Pandharipande, Application of optimum ANN architecture for heat exchanger modeling, Indian J. Chem. Technol. 13 (2006) 634-639.
    • (2006) Indian J. Chem. Technol. , vol.13 , pp. 634-639
    • Mandavgane, S.A.1    Pandharipande, S.L.2
  • 53
    • 84862317127 scopus 로고    scopus 로고
    • Dynamic crude oil fouling prediction in industrial preheaters using optimized ANN based moving window technique
    • M.N. Kashani, J. Aminian, S. Shahhosseini, M. Farrokhi, Dynamic crude oil fouling prediction in industrial preheaters using optimized ANN based moving window technique, Chem. Eng. Res. Des. 90 (2012) 938-949.
    • (2012) Chem. Eng. Res. Des. , vol.90 , pp. 938-949
    • Kashani, M.N.1    Aminian, J.2    Shahhosseini, S.3    Farrokhi, M.4
  • 54
    • 60249102805 scopus 로고    scopus 로고
    • Neural networks for cost estimation of shell and tube heat exchangers
    • O. Duran, N. Rodriguez, L.A. Consalter, Neural networks for cost estimation of shell and tube heat exchangers, Expert Syst. Appl. 36 (2009) 7435-7440.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 7435-7440
    • Duran, O.1    Rodriguez, N.2    Consalter, L.A.3
  • 55
    • 79959597944 scopus 로고    scopus 로고
    • Artificial neural network modeling of heat transfer in a staggered cross-flow tube-type heat exchanger
    • D.A. Fadare, A.S. Fatona, Artificial neural network modeling of heat transfer in a staggered cross-flow tube-type heat exchanger, Pacific J. Sci. Technol. 9 (2008) 317-323.
    • (2008) Pacific J. Sci. Technol. , vol.9 , pp. 317-323
    • Fadare, D.A.1    Fatona, A.S.2
  • 56
    • 2342469952 scopus 로고    scopus 로고
    • Solar thermal collectors and applications
    • S.A. Kalogirou, Solar thermal collectors and applications, Prog. Energy Combust. Sci. 30 (2004) 231-295.
    • (2004) Prog. Energy Combust. Sci. , vol.30 , pp. 231-295
    • Kalogirou, S.A.1
  • 57
    • 0032682090 scopus 로고    scopus 로고
    • Artificial neural networks used for the performance prediction of a thermosiphon solar water heater
    • S.A. Kalogirou, S. Panteliou, A. Dentsoras, Artificial neural networks used for the performance prediction of a thermosiphon solar water heater, Renew. Energy 18 (1999) 87-99.
    • (1999) Renew. Energy , vol.18 , pp. 87-99
    • Kalogirou, S.A.1    Panteliou, S.2    Dentsoras, A.3
  • 58
    • 0034192268 scopus 로고    scopus 로고
    • Long-term performance prediction of forced circulation solar domestic water heating system using artificial neural networks
    • S.A. Kalogirou, Long-term performance prediction of forced circulation solar domestic water heating system using artificial neural networks, Appl. Energy 66 (2000) 63-74.
    • (2000) Appl. Energy , vol.66 , pp. 63-74
    • Kalogirou, S.A.1
  • 59
    • 38349002414 scopus 로고    scopus 로고
    • Development of a neural network-based fault diagnostic system for solar thermal applications
    • S.A. Kalogirou, S. Lalot, G. Florides, B. Desmet, Development of a neural network-based fault diagnostic system for solar thermal applications, Solar Energy 82 (2008) 164-172.
    • (2008) Solar Energy , vol.82 , pp. 164-172
    • Kalogirou, S.A.1    Lalot, S.2    Florides, G.3    Desmet, B.4
  • 60
    • 84884571934 scopus 로고    scopus 로고
    • Artificial neural networks for the performance prediction of large solar systems
    • S.A. Kalogirou, E. Mathioulakis, V. Belessiotis, Artificial neural networks for the performance prediction of large solar systems, Renew. Energy 63 (2014) 90-97.
    • (2014) Renew. Energy , vol.63 , pp. 90-97
    • Kalogirou, S.A.1    Mathioulakis, E.2    Belessiotis, V.3
  • 61
    • 22944462131 scopus 로고    scopus 로고
    • Evaluation of the use of artificial neural networks for the simulation of hybrid solar collectors
    • J. Facao, S. Varga, A.C. Oliveira, Evaluation of the use of artificial neural networks for the simulation of hybrid solar collectors, Int. J. Green Energy 4 (2004) 337-352.
    • (2004) Int. J. Green Energy , vol.4 , pp. 337-352
    • Facao, J.1    Varga, S.2    Oliveira, A.C.3
  • 62
    • 48749106719 scopus 로고    scopus 로고
    • Determination of efficiency of flat-plate solar collectors using neural network approach
    • A. Sozen, T. Menlik, S. Unvar, Determination of efficiency of flat-plate solar collectors using neural network approach, Expert Syst. Appl. 35 (2008) 1533-1539.
    • (2008) Expert Syst. Appl. , vol.35 , pp. 1533-1539
    • Sozen, A.1    Menlik, T.2    Unvar, S.3
  • 63
    • 13444274596 scopus 로고    scopus 로고
    • Generating hot water by solar energy and application of neural network
    • C. Cetiner, F. Halici, H. Cacur, I. Taymaz, Generating hot water by solar energy and application of neural network, Appl. Therm. Eng. 25 (2005) 1337-1348.
    • (2005) Appl. Therm. Eng. , vol.25 , pp. 1337-1348
    • Cetiner, C.1    Halici, F.2    Cacur, H.3    Taymaz, I.4
  • 64
    • 84898810315 scopus 로고    scopus 로고
    • Estimation and optimization of thermal performance of evacuated tube solar collector system
    • E. Dikmen, M. Ayaz, H.H. Ezen, E.U. Kucuksille, A.S. Sahin, Estimation and optimization of thermal performance of evacuated tube solar collector system, Heat Mass Transfer 50 (2014) 711-719.
    • (2014) Heat Mass Transfer , vol.50 , pp. 711-719
    • Dikmen, E.1    Ayaz, M.2    Ezen, H.H.3    Kucuksille, E.U.4    Sahin, A.S.5
  • 65
    • 0042740601 scopus 로고    scopus 로고
    • Neural network modelling of flat-plate solar collectors
    • I. Farkas, P. Geczy-Vig, Neural network modelling of flat-plate solar collectors, Comput. Electron. Agric. 40 (2003) 87-102.
    • (2003) Comput. Electron. Agric. , vol.40 , pp. 87-102
    • Farkas, I.1    Geczy-Vig, P.2
  • 66
    • 78049529905 scopus 로고    scopus 로고
    • Investigation on thermal performance calculation of two type solar air collectors using artificial neural network
    • M. Caner, E. Gedik, A. Kecebas, Investigation on thermal performance calculation of two type solar air collectors using artificial neural network, Expert Syst. Appl. 38 (2011) 1668-1674.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 1668-1674
    • Caner, M.1    Gedik, E.2    Kecebas, A.3
  • 67
    • 67349110515 scopus 로고    scopus 로고
    • Artificial neural network and wavelet neural network approaches for modelling of a solar air heater
    • H. Esen, F. Ozgen, M. Esen, A. Sengur, Artificial neural network and wavelet neural network approaches for modelling of a solar air heater, Expert Syst. Appl. 36 (2009) 11240-11248.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 11240-11248
    • Esen, H.1    Ozgen, F.2    Esen, M.3    Sengur, A.4
  • 68
    • 84872283763 scopus 로고    scopus 로고
    • Determination of thermal performance calculation of two different types solar air collectors with the use of artificial neural networks
    • H. Benli, Determination of thermal performance calculation of two different types solar air collectors with the use of artificial neural networks, Int. J. Heat Mass Transfer 60 (2013) 1-7.
    • (2013) Int. J. Heat Mass Transfer , vol.60 , pp. 1-7
    • Benli, H.1
  • 69
    • 84859089595 scopus 로고    scopus 로고
    • Formation, potential and abatement of plume from wet cooling towers: A review
    • S.K. Tyagi, A.K. Pandey, P.C. Pant, V.V. Tyagi, Formation, potential and abatement of plume from wet cooling towers: a review, Renew. Sustain. Energy Rev. 16 (2012) 3409-3429.
    • (2012) Renew. Sustain. Energy Rev. , vol.16 , pp. 3409-3429
    • Tyagi, S.K.1    Pandey, A.K.2    Pant, P.C.3    Tyagi, V.V.4
  • 70
    • 33847092498 scopus 로고    scopus 로고
    • Performance prediction of a cooling tower using artificial neural network
    • M. Hosoz, H.M. Ertunc, H. Bulgurcu, Performance prediction of a cooling tower using artificial neural network, Energy Convers. Manage. 48 (2007) 1349-1359.
    • (2007) Energy Convers. Manage. , vol.48 , pp. 1349-1359
    • Hosoz, M.1    Ertunc, H.M.2    Bulgurcu, H.3
  • 71
    • 58149139421 scopus 로고    scopus 로고
    • Performance prediction of wet cooling tower using artificial neural network under crosswind conditions
    • M. Gao, F.-Z. Sun, S.-J. Zhou, Y.-T. Shi, Y.-B. Zhao, N.-H. Wang, Performance prediction of wet cooling tower using artificial neural network under crosswind conditions, Int. J. Therm. Sci. 48 (2009) 583-589.
    • (2009) Int. J. Therm. Sci. , vol.48 , pp. 583-589
    • Gao, M.1    Sun, F.-Z.2    Zhou, S.-J.3    Shi, Y.-T.4    Zhao, Y.-B.5    Wang, N.-H.6
  • 72
    • 84871772792 scopus 로고    scopus 로고
    • Artificial neural network model research on effects of cross-wind to performance parameters of wet cooling tower based on level Froude number
    • M. Gao, Y.-T. Shi, N.-N. Wang, Y.-B. Zhao, F.-Z. Sun, Artificial neural network model research on effects of cross-wind to performance parameters of wet cooling tower based on level Froude number, Appl. Therm. Eng. 51 (2013) 1226-1234.
    • (2013) Appl. Therm. Eng. , vol.51 , pp. 1226-1234
    • Gao, M.1    Shi, Y.-T.2    Wang, N.-N.3    Zhao, Y.-B.4    Sun, F.-Z.5
  • 73
    • 17444383138 scopus 로고    scopus 로고
    • Modeling of thermal performance of a cooling tower using an artificial neural network
    • Y. Islamoglu, Modeling of thermal performance of a cooling tower using an artificial neural network, Heat. Transfer Eng. 26 (2005) 73-76.
    • (2005) Heat. Transfer Eng. , vol.26 , pp. 73-76
    • Islamoglu, Y.1
  • 74
    • 43049144652 scopus 로고    scopus 로고
    • Numerical simulation of shower cooling tower based on artificial neural network
    • X. Qi, Z. Liu, D. Li, Numerical simulation of shower cooling tower based on artificial neural network, Energy Convers. Manage. 49 (2008) 724-732.
    • (2008) Energy Convers. Manage. , vol.49 , pp. 724-732
    • Qi, X.1    Liu, Z.2    Li, D.3
  • 75
    • 79956372189 scopus 로고    scopus 로고
    • Artificial neural network analysis of the performance characteristics of a reversibly used cooling tower under cross flow conditions for heat pump heating system in winter
    • J. Wu, G. Zhang, Q. Zhang, J. Zhou, Y. Wang, Artificial neural network analysis of the performance characteristics of a reversibly used cooling tower under cross flow conditions for heat pump heating system in winter, Energy Build. 43 (2011) 1685-1693.
    • (2011) Energy Build. , vol.43 , pp. 1685-1693
    • Wu, J.1    Zhang, G.2    Zhang, Q.3    Zhou, J.4    Wang, Y.5
  • 76
    • 54949118774 scopus 로고    scopus 로고
    • Modelling of a direct evaporative air cooler using artificial neural network
    • M. Hosoz, H.M. Ertun, A.F. Ozguc, Modelling of a direct evaporative air cooler using artificial neural network, Int. J. Energy Res. 32 (2008) 83-89.
    • (2008) Int. J. Energy Res. , vol.32 , pp. 83-89
    • Hosoz, M.1    Ertun, H.M.2    Ozguc, A.F.3
  • 77
    • 79954582425 scopus 로고    scopus 로고
    • An effectiveness model for an indirect evaporative cooling (IEC) system: Comparison of artificial neural networks (ANN), adaptive neuro-fuzzy inference system (ANFIS) and fuzzy inference system (FIS) approach
    • R.T. Kiran, S.P.S. Rajput, An effectiveness model for an indirect evaporative cooling (IEC) system: comparison of artificial neural networks (ANN), adaptive neuro-fuzzy inference system (ANFIS) and fuzzy inference system (FIS) approach, Appl. Soft Comput. 11 (2011) 3525-3533.
    • (2011) Appl. Soft Comput. , vol.11 , pp. 3525-3533
    • Kiran, R.T.1    Rajput, S.P.S.2
  • 78
    • 84870719915 scopus 로고    scopus 로고
    • Experimental and analytical studies of eartheair heat exchanger (EAHE) systems in India: A review
    • T.S. Bisoniya, A. Kumar, P. Baredar, Experimental and analytical studies of eartheair heat exchanger (EAHE) systems in India: a review, Renew. Sustain. Energy Rev. 19 (2013) 238-246.
    • (2013) Renew. Sustain. Energy Rev. , vol.19 , pp. 238-246
    • Bisoniya, T.S.1    Kumar, A.2    Baredar, P.3
  • 79
    • 32044469460 scopus 로고    scopus 로고
    • Heating and cooling potential of an earthto-air heat exchanger using artificial neural network
    • R. Kumar, S.C. Kaushik, S.N. Garg, Heating and cooling potential of an earthto-air heat exchanger using artificial neural network, Renew. Energy 31 (2006) 1139-1155.
    • (2006) Renew. Energy , vol.31 , pp. 1139-1155
    • Kumar, R.1    Kaushik, S.C.2    Garg, S.N.3
  • 80
    • 64049095592 scopus 로고    scopus 로고
    • Convective heat transfer prediction in large rectangular cross-sectional area earth-to-air heat exchangers
    • J. Zhang, F. Haghighat, Convective heat transfer prediction in large rectangular cross-sectional area earth-to-air heat exchangers, Build. Environ. 44 (2009) 1892-1898.
    • (2009) Build. Environ. , vol.44 , pp. 1892-1898
    • Zhang, J.1    Haghighat, F.2
  • 81
    • 77649183955 scopus 로고    scopus 로고
    • Development of artificial neural network based heat convection algorithm for thermal simulation of large rectangular crosssectional area earth-to-air heat exchangers
    • J. Zhang, F. Haghighat, Development of artificial neural network based heat convection algorithm for thermal simulation of large rectangular crosssectional area earth-to-air heat exchangers, Energy Build. 42 (2010) 435-440.
    • (2010) Energy Build. , vol.42 , pp. 435-440
    • Zhang, J.1    Haghighat, F.2
  • 82
    • 84884206343 scopus 로고    scopus 로고
    • Predictive ANN models of ground heat exchanger for the control of hybrid ground source heat pump systems
    • J.W. Gang, J. Wang, Predictive ANN models of ground heat exchanger for the control of hybrid ground source heat pump systems, Appl. Energy 112 (2013) 1146-1153.
    • (2013) Appl. Energy , vol.112 , pp. 1146-1153
    • Gang, J.W.1    Wang, J.2
  • 83
    • 84861529407 scopus 로고    scopus 로고
    • Modeling of heat transfer coefficient in the furnace of CFB boilers by artificial neural network approach
    • J. Krzywanski, W. Nowak, Modeling of heat transfer coefficient in the furnace of CFB boilers by artificial neural network approach, Int. J. Heat Mass Transfer 55 (2012) 4246-4253.
    • (2012) Int. J. Heat Mass Transfer , vol.55 , pp. 4246-4253
    • Krzywanski, J.1    Nowak, W.2
  • 84
    • 44449152009 scopus 로고    scopus 로고
    • Prediction of temperature profiles using artificial neural networks in a vertical thermosiphon reboiler
    • M.A. Hakeem, M. Kamil, I. Arman, Prediction of temperature profiles using artificial neural networks in a vertical thermosiphon reboiler, Appl. Therm. Eng. 28 (2008) 1572-1579.
    • (2008) Appl. Therm. Eng. , vol.28 , pp. 1572-1579
    • Hakeem, M.A.1    Kamil, M.2    Arman, I.3
  • 85
    • 0035045820 scopus 로고    scopus 로고
    • Power plant condenser performance forecasting using a nonfully connected artificial neural network
    • M.M. Prieto, E. Montanes, O. Menendez, Power plant condenser performance forecasting using a nonfully connected artificial neural network, Energy 26 (2001) 65-79.
    • (2001) Energy , vol.26 , pp. 65-79
    • Prieto, M.M.1    Montanes, E.2    Menendez, O.3
  • 86
    • 33746791956 scopus 로고    scopus 로고
    • An experimental study on the design parameters of a counter-flow vortex tube
    • O. Aydin, M. Baki, An experimental study on the design parameters of a counter-flow vortex tube, Energy 31 (2006) 2763-2772.
    • (2006) Energy , vol.31 , pp. 2763-2772
    • Aydin, O.1    Baki, M.2
  • 87
    • 77955231039 scopus 로고    scopus 로고
    • Modeling of heating and cooling performance of counter flow type vortex tube by using artificial neural network
    • F. Kocabas, M. Korkmaz, U. Sorgucu, S. Donmez, Modeling of heating and cooling performance of counter flow type vortex tube by using artificial neural network, Int. J. Refrig. 33 (2010) 963-972.
    • (2010) Int. J. Refrig. , vol.33 , pp. 963-972
    • Kocabas, F.1    Korkmaz, M.2    Sorgucu, U.3    Donmez, S.4
  • 88
    • 69249205468 scopus 로고    scopus 로고
    • Using the artificial neural network model for modeling the performance of the counter flow vortex tube
    • O. Uluer, V. Kirmaci, S. Atas, Using the artificial neural network model for modeling the performance of the counter flow vortex tube, Expert Syst. Appl. 36 (2009) 12256-12263.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 12256-12263
    • Uluer, O.1    Kirmaci, V.2    Atas, S.3
  • 89
    • 48849104204 scopus 로고    scopus 로고
    • Modeling of the effects of length to diameter ratio and nozzle number on the performance of counterflow RanqueeHilsch vortex tubes using artificial neural networks
    • K. Dincer, S. Tasdemir, S. Baskaya, B.Z. Uysal, Modeling of the effects of length to diameter ratio and nozzle number on the performance of counterflow RanqueeHilsch vortex tubes using artificial neural networks, Appl. Therm. Eng. 28 (2008) 2380-2390.
    • (2008) Appl. Therm. Eng. , vol.28 , pp. 2380-2390
    • Dincer, K.1    Tasdemir, S.2    Baskaya, S.3    Uysal, B.Z.4
  • 90
    • 36249031629 scopus 로고    scopus 로고
    • Modeling and pareto optimization of heat transfer and flow coefficients in microchannel using GMDH types of neural networks and genetic algorithm
    • N. Amanifard, N.-Z. Narima, M. Borji, A. Khalkhali, A. Habidoust, Modeling and pareto optimization of heat transfer and flow coefficients in microchannel using GMDH types of neural networks and genetic algorithm, Energy Convers. Manage. 49 (2008) 311-325.
    • (2008) Energy Convers. Manage. , vol.49 , pp. 311-325
    • Amanifard, N.1    Narima, N.-Z.2    Borji, M.3    Khalkhali, A.4    Habidoust, A.5
  • 91
    • 79958110380 scopus 로고    scopus 로고
    • Optimal artificial neural network architecture selection for performance prediction of compact heat exchanger with the EBaLM-OTR technique
    • D. Wijayasekara, M. Manic, P. Sabharwall, V. Utgikar, Optimal artificial neural network architecture selection for performance prediction of compact heat exchanger with the EBaLM-OTR technique, Nucl. Eng. Des. 241 (2011) 2549-2557.
    • (2011) Nucl. Eng. Des. , vol.241 , pp. 2549-2557
    • Wijayasekara, D.1    Manic, M.2    Sabharwall, P.3    Utgikar, V.4
  • 93
    • 1542336970 scopus 로고    scopus 로고
    • Improved heat transfer correlation in the transition region for a circular tube with three inlet configurations using artificial neural networks
    • A.J. Ghajar, L.M. Tam, S.C. Tam, Improved heat transfer correlation in the transition region for a circular tube with three inlet configurations using artificial neural networks, Heat. Transfer Eng. 25 (2004) 30-40.
    • (2004) Heat. Transfer Eng. , vol.25 , pp. 30-40
    • Ghajar, A.J.1    Tam, L.M.2    Tam, S.C.3
  • 94
    • 0346056640 scopus 로고    scopus 로고
    • Heat transfer analysis using ANN with experimental data for air flowing in corrugated channels
    • Y. Islamoglu, A. Kurt, Heat transfer analysis using ANN with experimental data for air flowing in corrugated channels, Int. J. Heat Mass Transfer 47 (2004) 1361-1365.
    • (2004) Int. J. Heat Mass Transfer , vol.47 , pp. 1361-1365
    • Islamoglu, Y.1    Kurt, A.2
  • 95
    • 79551533305 scopus 로고    scopus 로고
    • Heat transfer using a correlation by neural network for natural convection from vertical helical coil in oil and glycerol/water solution
    • D. Colorado, M.E. Ali, O. García-Valladares, J.A. Hernandez, Heat transfer using a correlation by neural network for natural convection from vertical helical coil in oil and glycerol/water solution, Energy 36 (2011) 854-863.
    • (2011) Energy , vol.36 , pp. 854-863
    • Colorado, D.1    Ali, M.E.2    García-Valladares, O.3    Hernandez, J.A.4
  • 96
    • 79952195568 scopus 로고    scopus 로고
    • Modeling of heat transfer and fluid flow characteristics of helicoidal double-pipe heat exchangers using adaptive neuro-fuzzy inference system (ANFIS)
    • M. Mehrabi, S.M. Pesteei, T. Pashaee, Modeling of heat transfer and fluid flow characteristics of helicoidal double-pipe heat exchangers using adaptive neuro-fuzzy inference system (ANFIS), Int. Commun. Heat Mass Transfer 38 (2011) 525-532.
    • (2011) Int. Commun. Heat Mass Transfer , vol.38 , pp. 525-532
    • Mehrabi, M.1    Pesteei, S.M.2    Pashaee, T.3
  • 97
    • 84890502657 scopus 로고    scopus 로고
    • Experimental investigation of horizontal tube immersed in gasesolid fluidized bed of large particles using artificial neural network
    • L.V. Kamble, D.R. Pangavhane, T.P. Singh, Experimental investigation of horizontal tube immersed in gasesolid fluidized bed of large particles using artificial neural network, Int. J. Heat Mass Transfer 70 (2014) 719-724.
    • (2014) Int. J. Heat Mass Transfer , vol.70 , pp. 719-724
    • Kamble, L.V.1    Pangavhane, D.R.2    Singh, T.P.3
  • 98
    • 84904301268 scopus 로고    scopus 로고
    • Performance predictions of laminar heat transfer and pressure drop in an in-line flat tube bundle using an adaptive neuro-fuzzy inference system (ANFIS) model
    • T.A. Tahseen, M. Ishak, M.M. Rahman, Performance predictions of laminar heat transfer and pressure drop in an in-line flat tube bundle using an adaptive neuro-fuzzy inference system (ANFIS) model, Int. Commun. Heat Mass Transfer 50 (2014) 85-97.
    • (2014) Int. Commun. Heat Mass Transfer , vol.50 , pp. 85-97
    • Tahseen, T.A.1    Ishak, M.2    Rahman, M.M.3
  • 99
    • 84871514224 scopus 로고    scopus 로고
    • Modeling of heat transfer in an air cooler equipped with classic twisted tape insert using ANFIS
    • A. Karami, E. Rezaei, M. Rahimi, S. Khani, Modeling of heat transfer in an air cooler equipped with classic twisted tape insert using ANFIS, Chem. Eng. Commun. 200 (2013) 532-542.
    • (2013) Chem. Eng. Commun. , vol.200 , pp. 532-542
    • Karami, A.1    Rezaei, E.2    Rahimi, M.3    Khani, S.4
  • 100
    • 63049087932 scopus 로고    scopus 로고
    • Experimental investigation of heat transfer in oscillating annular flow
    • U. Akdag, A.F. Ozguc, Experimental investigation of heat transfer in oscillating annular flow, Int. J. Heat Mass Transfer 52 (2009) 2667-2672.
    • (2009) Int. J. Heat Mass Transfer , vol.52 , pp. 2667-2672
    • Akdag, U.1    Ozguc, A.F.2
  • 101
    • 75149190349 scopus 로고    scopus 로고
    • Use of oscillating heat pipe technique as extended surface in wire-on-tube heat exchanger for heat transfer enhancement
    • A. Nuntaphan, S. Vithayasai, N. Vorayos, N. Vorayos, T. Kiatsiriroat, Use of oscillating heat pipe technique as extended surface in wire-on-tube heat exchanger for heat transfer enhancement, Int. Commun. Heat Mass Transfer 37 (2010) 287-292.
    • (2010) Int. Commun. Heat Mass Transfer , vol.37 , pp. 287-292
    • Nuntaphan, A.1    Vithayasai, S.2    Vorayos, N.3    Vorayos, N.4    Kiatsiriroat, T.5
  • 102
    • 67349174989 scopus 로고    scopus 로고
    • Estimation of heat transfer in oscillating annular flow using artificial neural networks
    • U. Akdag, M.A. Komur, A.F. Ozguc, Estimation of heat transfer in oscillating annular flow using artificial neural networks, Adv. Eng. Softw. 40 (2009) 864-870.
    • (2009) Adv. Eng. Softw. , vol.40 , pp. 864-870
    • Akdag, U.1    Komur, M.A.2    Ozguc, A.F.3
  • 103
    • 0008367920 scopus 로고    scopus 로고
    • Cooling-water fouling in heat exchangers
    • H. Muller-Steinhagen, Cooling-water fouling in heat exchangers, Adv. Heat Transfer 33 (1999) 415-496.
    • (1999) Adv. Heat Transfer , vol.33 , pp. 415-496
    • Muller-Steinhagen, H.1
  • 104
    • 18044385337 scopus 로고    scopus 로고
    • Estimation of fouling in a plate heat exchanger through the application of neural networks
    • C. Riverol, V. Napolitano, Estimation of fouling in a plate heat exchanger through the application of neural networks, J. Chem. Technol. Biotechnol. 80 (2005) 594-600.
    • (2005) J. Chem. Technol. Biotechnol. , vol.80 , pp. 594-600
    • Riverol, C.1    Napolitano, V.2
  • 105
    • 0038330469 scopus 로고    scopus 로고
    • Online fouling detection in electrical circulation heaters using neural networks
    • S. Lalot, S. Lecoeuche, Online fouling detection in electrical circulation heaters using neural networks, Int. J. Heat Mass Transfer 46 (2003) 2445-2457.
    • (2003) Int. J. Heat Mass Transfer , vol.46 , pp. 2445-2457
    • Lalot, S.1    Lecoeuche, S.2
  • 107
    • 38949129019 scopus 로고    scopus 로고
    • Evaluation of ANN modeling for prediction of crude oil fouling behavior
    • J. Aminian, S. Shahhosseini, Evaluation of ANN modeling for prediction of crude oil fouling behavior, Appl. Therm. Eng. 28 (2008) 668-674.
    • (2008) Appl. Therm. Eng. , vol.28 , pp. 668-674
    • Aminian, J.1    Shahhosseini, S.2
  • 108
    • 67349198590 scopus 로고    scopus 로고
    • Neuro-based formulation to predict fouling threshold in crude pre heaters
    • J. Aminian, S. Shahhosseini, Neuro-based formulation to predict fouling threshold in crude pre heaters, Int. Commun. Heat Mass Transfer 36 (2009) 525-531.
    • (2009) Int. Commun. Heat Mass Transfer , vol.36 , pp. 525-531
    • Aminian, J.1    Shahhosseini, S.2
  • 109
    • 75049083166 scopus 로고    scopus 로고
    • Detection of fouling in a cross-flow heat exchanger using a neural network based technique
    • S. Lalot, H. Palsson, Detection of fouling in a cross-flow heat exchanger using a neural network based technique, Int. J. Therm. Sci. 49 (2010) 675-679.
    • (2010) Int. J. Therm. Sci. , vol.49 , pp. 675-679
    • Lalot, S.1    Palsson, H.2
  • 110
    • 80255123804 scopus 로고    scopus 로고
    • Improving heat exchanger supervision using neural networks and rule based techniques
    • R.F. Garcia, Improving heat exchanger supervision using neural networks and rule based techniques, Expert Syst. Appl. 39 (2012) 3012-3021.
    • (2012) Expert Syst. Appl. , vol.39 , pp. 3012-3021
    • Garcia, R.F.1
  • 111
    • 33751058457 scopus 로고    scopus 로고
    • Hybrid system for fouling control in biomass boilers
    • L.M. Romeo, R. Gareta, Hybrid system for fouling control in biomass boilers, Eng. Appl. Artif. Intell. 19 (2006) 915-925.
    • (2006) Eng. Appl. Artif. Intell. , vol.19 , pp. 915-925
    • Romeo, L.M.1    Gareta, R.2
  • 112
    • 84865367885 scopus 로고    scopus 로고
    • Prediction of heat transfer and flow characteristics in helically coiled tubes using artificial neural networks
    • R. Beigzadeh, M. Rahimi, Prediction of heat transfer and flow characteristics in helically coiled tubes using artificial neural networks, Int. Commun. Heat Mass Transfer 39 (2012) 1279-1285.
    • (2012) Int. Commun. Heat Mass Transfer , vol.39 , pp. 1279-1285
    • Beigzadeh, R.1    Rahimi, M.2
  • 113
    • 84869180849 scopus 로고    scopus 로고
    • Prediction of thermal and fluid flow characteristics in helically coiled tubes using ANFIS and GA based correlations
    • R. Beigzadeh, M. Rahimi, Prediction of thermal and fluid flow characteristics in helically coiled tubes using ANFIS and GA based correlations, Int. Commun. Heat Mass Transfer 39 (2012) 1647-1653.
    • (2012) Int. Commun. Heat Mass Transfer , vol.39 , pp. 1647-1653
    • Beigzadeh, R.1    Rahimi, M.2
  • 114
    • 34748865475 scopus 로고    scopus 로고
    • Correlating heat transfer and friction in helically-finned tubes using artificial neural networks
    • G.J. Zdaniuk, L.M. Chamra, D.K. Walters, Correlating heat transfer and friction in helically-finned tubes using artificial neural networks, Int. J. Heat Mass Transfer 50 (2007) 4713-4723.
    • (2007) Int. J. Heat Mass Transfer , vol.50 , pp. 4713-4723
    • Zdaniuk, G.J.1    Chamra, L.M.2    Walters, D.K.3
  • 115
    • 63049128665 scopus 로고    scopus 로고
    • Performance predictions of laminar and turbulent heat transfer and fluid flow of heat exchangers having large tubediameter and large tube-row by artificial neural networks
    • G. Xie, B. Sunden, Q. Wang, L. Tang, Performance predictions of laminar and turbulent heat transfer and fluid flow of heat exchangers having large tubediameter and large tube-row by artificial neural networks, Int. J. Heat Mass Transfer 52 (2009) 2484-2497.
    • (2009) Int. J. Heat Mass Transfer , vol.52 , pp. 2484-2497
    • Xie, G.1    Sunden, B.2    Wang, Q.3    Tang, L.4
  • 116
    • 74249103769 scopus 로고    scopus 로고
    • Modeling of heat transfer enhancement by wire coil inserts using artificial neural network analysis
    • M.R.J. Nasr, A.H. Khalaj, S.H. Mozaffari, Modeling of heat transfer enhancement by wire coil inserts using artificial neural network analysis, Appl. Therm. Eng. 30 (2010) 143-151.
    • (2010) Appl. Therm. Eng. , vol.30 , pp. 143-151
    • Nasr, M.R.J.1    Khalaj, A.H.2    Mozaffari, S.H.3
  • 117
    • 77649244481 scopus 로고    scopus 로고
    • Heat transfer coefficient and friction factor prediction of corrugated tubes combined with twisted tape inserts using artificial neural network
    • M.R.J. Nasr, A.H. Khalaj, Heat transfer coefficient and friction factor prediction of corrugated tubes combined with twisted tape inserts using artificial neural network, Heat. Transfer Eng. 31 (2010) 59-69.
    • (2010) Heat. Transfer Eng. , vol.31 , pp. 59-69
    • Nasr, M.R.J.1    Khalaj, A.H.2
  • 118
    • 84885081783 scopus 로고    scopus 로고
    • Thermo-hydraulic behavior modeling of passive heat transfer enhancement techniques using a soft computation approach
    • A.H. Khalaj, A. Chaibakhsh, H. Sayyaadi, M.R.J. Nasr, Thermo-hydraulic behavior modeling of passive heat transfer enhancement techniques using a soft computation approach, Chem. Eng. Commun. 201 (2014) 53-71.
    • (2014) Chem. Eng. Commun. , vol.201 , pp. 53-71
    • Khalaj, A.H.1    Chaibakhsh, A.2    Sayyaadi, H.3    Nasr, M.R.J.4
  • 119
    • 84905405737 scopus 로고    scopus 로고
    • Prediction methods for pool boiling heat transfer: A state-of-the art review
    • D. Gorenflo, E. Baumhogger, G. Herres, S. Kotthoff, Prediction methods for pool boiling heat transfer: a state-of-the art review, Int. J. Refrig. 43 (2014) 203-226.
    • (2014) Int. J. Refrig. , vol.43 , pp. 203-226
    • Gorenflo, D.1    Baumhogger, E.2    Herres, G.3    Kotthoff, S.4
  • 120
    • 84873323153 scopus 로고    scopus 로고
    • In-tube condensation of zeotropic fluid mixtures: A review
    • B.M. Fronk, S. Garimella, In-tube condensation of zeotropic fluid mixtures: a review, Int. J. Refrig. 36 (2013) 534-561.
    • (2013) Int. J. Refrig. , vol.36 , pp. 534-561
    • Fronk, B.M.1    Garimella, S.2
  • 121
    • 84858794772 scopus 로고    scopus 로고
    • Investigation of pool boiling of nanofluids using artificial neural networks and correlation development techniques
    • M. Balcilar, A.S. Dalkilic, A. Suriyawong, T. Yiamsawas, S. Wongwises, Investigation of pool boiling of nanofluids using artificial neural networks and correlation development techniques, Int. Commun. Heat Mass Transfer 39 (2012) 424-431.
    • (2012) Int. Commun. Heat Mass Transfer , vol.39 , pp. 424-431
    • Balcilar, M.1    Dalkilic, A.S.2    Suriyawong, A.3    Yiamsawas, T.4    Wongwises, S.5
  • 122
    • 33747430554 scopus 로고    scopus 로고
    • Generalized neural network correlation for flow boiling heat transfer of R22 and its alternative refrigerants inside horizontal smooth tubes
    • W.-J. Wang, L.-X. Zhao, C.-L. Zhang, Generalized neural network correlation for flow boiling heat transfer of R22 and its alternative refrigerants inside horizontal smooth tubes, Int. J. Heat Mass Transfer 49 (2006) 2458-2465.
    • (2006) Int. J. Heat Mass Transfer , vol.49 , pp. 2458-2465
    • Wang, W.-J.1    Zhao, L.-X.2    Zhang, C.-L.3
  • 123
    • 33646428348 scopus 로고    scopus 로고
    • Modeling flow boiling heat transfer of pure fluids through artificial neural networks
    • G. Scalabrin, M. Condosta, P. Marchi, Modeling flow boiling heat transfer of pure fluids through artificial neural networks, Int. J. Therm. Sci. 45 (2006) 643-663.
    • (2006) Int. J. Therm. Sci. , vol.45 , pp. 643-663
    • Scalabrin, G.1    Condosta, M.2    Marchi, P.3
  • 124
    • 33646387155 scopus 로고    scopus 로고
    • Mixtures flow boiling: Modeling heat transfer through artificial neural networks
    • G. Scalabrin, M. Condosta, P. Marchi, Mixtures flow boiling: modeling heat transfer through artificial neural networks, Int. J. Therm. Sci. 45 (2006) 664-680.
    • (2006) Int. J. Therm. Sci. , vol.45 , pp. 664-680
    • Scalabrin, G.1    Condosta, M.2    Marchi, P.3
  • 125
    • 33744518330 scopus 로고    scopus 로고
    • Flow boiling of pure fluids: Local heat transfer and flow pattern modeling through artificial neural networks
    • G. Scalabrin, M. Condosta, P. Marchi, Flow boiling of pure fluids: local heat transfer and flow pattern modeling through artificial neural networks, Int. J. Therm. Sci. 45 (2006) 739-751.
    • (2006) Int. J. Therm. Sci. , vol.45 , pp. 739-751
    • Scalabrin, G.1    Condosta, M.2    Marchi, P.3
  • 126
    • 0036882493 scopus 로고    scopus 로고
    • Neural network analysis of boiling heat transfer enhancement using additives
    • T. Liu, X. Sun, X. Li, H. Wang, Neural network analysis of boiling heat transfer enhancement using additives, Int. J. Heat Mass Transfer 45 (2002) 5083-5089.
    • (2002) Int. J. Heat Mass Transfer , vol.45 , pp. 5083-5089
    • Liu, T.1    Sun, X.2    Li, X.3    Wang, H.4
  • 129
    • 77953535804 scopus 로고    scopus 로고
    • Study on the onset of nucleate boiling in narrow annular channel by genetic neural network
    • H. Wei, G.H. Su, W.X. Tian, S.Z. Qiu, X.B. Yang, Study on the onset of nucleate boiling in narrow annular channel by genetic neural network, Int. Commun. Heat Mass Transfer 37 (2010) 596-599.
    • (2010) Int. Commun. Heat Mass Transfer , vol.37 , pp. 596-599
    • Wei, H.1    Su, G.H.2    Tian, W.X.3    Qiu, S.Z.4    Yang, X.B.5
  • 130
    • 84863242180 scopus 로고    scopus 로고
    • Prediction model of flow boiling heat transfer for R407C inside horizontal smooth tubes based on RBF neural network
    • X.-L. Wen, H.-T. Wang, H. Wang, Prediction model of flow boiling heat transfer for R407C inside horizontal smooth tubes based on RBF neural network, Procedia Eng. 31 (2012) 233-239.
    • (2012) Procedia Eng. , vol.31 , pp. 233-239
    • Wen, X.-L.1    Wang, H.-T.2    Wang, H.3
  • 131
    • 0343134569 scopus 로고    scopus 로고
    • Critical heat flux (CHF) for water flow in tubes I. Comparison and assessment of world CHF data
    • D. David, I. Mudawar, Critical heat flux (CHF) for water flow in tubes I. Comparison and assessment of world CHF data, Int. J. Heat Mass Transfer 43 (2000) 2573-2604.
    • (2000) Int. J. Heat Mass Transfer , vol.43 , pp. 2573-2604
    • David, D.1    Mudawar, I.2
  • 132
    • 0001022365 scopus 로고    scopus 로고
    • Integrating artificial neural networks and empirical correlations for the prediction of water-subcooled critical heat flux
    • A. Mazzola, Integrating artificial neural networks and empirical correlations for the prediction of water-subcooled critical heat flux, Rev. Gen. Therm. 36 (1997) 799-806.
    • (1997) Rev. Gen. Therm. , vol.36 , pp. 799-806
    • Mazzola, A.1
  • 133
    • 33846447425 scopus 로고    scopus 로고
    • Critical heat flux prediction by using radial basis function and multilayer perceptron neural networks: A comparison study
    • N. Vaziri, A. Hojabri, A. Erfani, M. Monsefi, B. Nilforooshan, Critical heat flux prediction by using radial basis function and multilayer perceptron neural networks: a comparison study, Nucl. Eng. Des. 237 (2007) 377-385.
    • (2007) Nucl. Eng. Des. , vol.237 , pp. 377-385
    • Vaziri, N.1    Hojabri, A.2    Erfani, A.3    Monsefi, M.4    Nilforooshan, B.5
  • 134
    • 70349765710 scopus 로고    scopus 로고
    • Neural network based correlation for critical heat flux in steamwater flows in pipes
    • A.S. Nafey, Neural network based correlation for critical heat flux in steamwater flows in pipes, Int. J. Therm. Sci. 48 (2009) 2264-2270.
    • (2009) Int. J. Therm. Sci. , vol.48 , pp. 2264-2270
    • Nafey, A.S.1
  • 135
    • 80052565752 scopus 로고    scopus 로고
    • Analysis of CHF in saturated forced convective boiling on a heated surface with impinging jets using artificial neural network and genetic algorithm
    • T. Cong, R. Chen, G. Su, S. Qiu, W. Tian, Analysis of CHF in saturated forced convective boiling on a heated surface with impinging jets using artificial neural network and genetic algorithm, Nucl. Eng. Des. 241 (2011) 3945-3951.
    • (2011) Nucl. Eng. Des. , vol.241 , pp. 3945-3951
    • Cong, T.1    Chen, R.2    Su, G.3    Qiu, S.4    Tian, W.5
  • 137
    • 77952009580 scopus 로고    scopus 로고
    • Prediction of CHF in concentric-tube open thermosiphon using artificial neural network and genetic algorithm
    • R.H. Chen, G.H. Su, S.Z. Qiu, K. Fukuda, Prediction of CHF in concentric-tube open thermosiphon using artificial neural network and genetic algorithm, Heat Mass Transfer 46 (2010) 345-353.
    • (2010) Heat Mass Transfer , vol.46 , pp. 345-353
    • Chen, R.H.1    Su, G.H.2    Qiu, S.Z.3    Fukuda, K.4
  • 138
    • 71849106687 scopus 로고    scopus 로고
    • Applications of genetic neural network for prediction of critical heat flux
    • H. Wei, G.H. Su, S.Z. Qiu, W. Ni, X. Yang, Applications of genetic neural network for prediction of critical heat flux, Int. J. Therm. Sci. 49 (2010) 143-152.
    • (2010) Int. J. Therm. Sci. , vol.49 , pp. 143-152
    • Wei, H.1    Su, G.H.2    Qiu, S.Z.3    Ni, W.4    Yang, X.5
  • 140
    • 0028761466 scopus 로고
    • Classification and prediction of the critical heat flux using fuzzy theory and artificial neural networks
    • S.K. Moon, S.H. Chang, Classification and prediction of the critical heat flux using fuzzy theory and artificial neural networks, Nucl. Eng. Des. 150 (1994) 151-161.
    • (1994) Nucl. Eng. Des. , vol.150 , pp. 151-161
    • Moon, S.K.1    Chang, S.H.2
  • 141
    • 0002060271 scopus 로고    scopus 로고
    • Parametric trends analysis of the critical heat flux based on artificial neural networks
    • S.K. Moon, W.-P. Back, S.H. Chang, Parametric trends analysis of the critical heat flux based on artificial neural networks, Nucl. Eng. Des. 163 (1996) 29-49.
    • (1996) Nucl. Eng. Des. , vol.163 , pp. 29-49
    • Moon, S.K.1    Back, W.-P.2    Chang, S.H.3
  • 142
    • 0037333125 scopus 로고    scopus 로고
    • Analysis of the critical heat flux in round vertical tubes under low pressure and flow oscillation conditions: Applications of artificial neural network
    • S. Guanghui, K. Morita, K. Fukuda, M. Pidduck, J. Dounan, J. Miettinen, Analysis of the critical heat flux in round vertical tubes under low pressure and flow oscillation conditions: applications of artificial neural network, Nucl. Eng. Des. 220 (2003) 17-35.
    • (2003) Nucl. Eng. Des. , vol.220 , pp. 17-35
    • Guanghui, S.1    Morita, K.2    Fukuda, K.3    Pidduck, M.4    Dounan, J.5    Miettinen, J.6
  • 143
    • 84857915080 scopus 로고    scopus 로고
    • A new void fraction correlation inferred from artificial neural networks for modeling two phase flows in geothermal well
    • A. Castillo, E. Santoyo, O. Garcia-Valladares, A new void fraction correlation inferred from artificial neural networks for modeling two phase flows in geothermal well, Comput. Geosciences 41 (2012) 25-39.
    • (2012) Comput. Geosciences , vol.41 , pp. 25-39
    • Castillo, A.1    Santoyo, E.2    Garcia-Valladares, O.3
  • 144
    • 71749089425 scopus 로고    scopus 로고
    • Correlations of two-phase frictional pressure drop and void fraction in mini-channel
    • W. Zhang, T. Hibiki, K. Mishima, Correlations of two-phase frictional pressure drop and void fraction in mini-channel, Int. J. Heat Mass Transfer 53 (2010) 453-465.
    • (2010) Int. J. Heat Mass Transfer , vol.53 , pp. 453-465
    • Zhang, W.1    Hibiki, T.2    Mishima, K.3
  • 145
    • 0037908845 scopus 로고    scopus 로고
    • Neural network analysis of void fraction in air/water two-phase flows at elevated temperatures
    • M.P. Malayeri, H. Muller-Steinhagen, J.M. Smith, Neural network analysis of void fraction in air/water two-phase flows at elevated temperatures, Chem. Eng. Process. 42 (2003) 589-597.
    • (2003) Chem. Eng. Process. , vol.42 , pp. 589-597
    • Malayeri, M.P.1    Muller-Steinhagen, H.2    Smith, J.M.3
  • 146
    • 84894099281 scopus 로고    scopus 로고
    • Indentification of flow regime in vertical upward air-water pipe flow using differential pressure signals and elastic map
    • H. Shaban, S. Tavoularis, Indentification of flow regime in vertical upward air-water pipe flow using differential pressure signals and elastic map, Int. J. Multiph. Flow 61 (2004) 62-72.
    • (2004) Int. J. Multiph. Flow , vol.61 , pp. 62-72
    • Shaban, H.1    Tavoularis, S.2
  • 147
    • 0037332971 scopus 로고    scopus 로고
    • X-ray investigate of a domestic refrigerator: Observations at 25 °C ambient temperature
    • C. Inan, T. Gonul, M.Y. Tanes, X-ray investigate of a domestic refrigerator: observations at 25 °C ambient temperature, Int. J. Refrig. 26 (2003) 205-213.
    • (2003) Int. J. Refrig. , vol.26 , pp. 205-213
    • Inan, C.1    Gonul, T.2    Tanes, M.Y.3
  • 148
  • 150
    • 0032474929 scopus 로고    scopus 로고
    • Vertical two-phase flow identification using advanced instrumentation and neural networks
    • Y. Mi, M. Ishii, L.H. Tsoukalas, Vertical two-phase flow identification using advanced instrumentation and neural networks, Nucl. Eng. Des. 184 (1998) 409-420.
    • (1998) Nucl. Eng. Des. , vol.184 , pp. 409-420
    • Mi, Y.1    Ishii, M.2    Tsoukalas, L.H.3
  • 151
    • 0035248514 scopus 로고    scopus 로고
    • Flow regime identification methodology with neural networks and two-phase flow models
    • Y. Mi, M. Ishii, L.H. Tsoukalas, Flow regime identification methodology with neural networks and two-phase flow models, Nucl. Eng. Des. 204 (2001) 87-100.
    • (2001) Nucl. Eng. Des. , vol.204 , pp. 87-100
    • Mi, Y.1    Ishii, M.2    Tsoukalas, L.H.3
  • 152
    • 62649143675 scopus 로고    scopus 로고
    • Non-invasive on-line two phase flow regime identification employing artificial neural networks
    • T. Tambouratzis, I. Pazsit, Non-invasive on-line two phase flow regime identification employing artificial neural networks, Ann. Nucl. Energy 36 (2009) 464-469.
    • (2009) Ann. Nucl. Energy , vol.36 , pp. 464-469
    • Tambouratzis, T.1    Pazsit, I.2
  • 153
    • 77950297180 scopus 로고    scopus 로고
    • A general regression artificial neural network for two phase flow regime identification
    • T. Tambouratzis, I. Pazsit, A general regression artificial neural network for two phase flow regime identification, Ann. Nucl. Energy 37 (2010) 672-680.
    • (2010) Ann. Nucl. Energy , vol.37 , pp. 672-680
    • Tambouratzis, T.1    Pazsit, I.2
  • 154
    • 84873621142 scopus 로고    scopus 로고
    • Prediction of flow pattern of gaseliquid flow through circular microchannel using probabilistic neural network
    • S. Timung, T. Mandal, Prediction of flow pattern of gaseliquid flow through circular microchannel using probabilistic neural network, Appl. Soft Comput. 13 (2013) 1674-1683.
    • (2013) Appl. Soft Comput. , vol.13 , pp. 1674-1683
    • Timung, S.1    Mandal, T.2
  • 155
    • 84894048185 scopus 로고    scopus 로고
    • Precise volume fraction prediction in oilewateregas multiphase flows by means of gamma-ray attenuation and artificial neural networks using one detector
    • G.H. Roshani, S.A.H. Feghhi, A. Mahmoudi-Aznaveh, E. Nazemi, A. Adineh-Vand, Precise volume fraction prediction in oilewateregas multiphase flows by means of gamma-ray attenuation and artificial neural networks using one detector, Measurement 51 (2014) 34-41.
    • (2014) Measurement , vol.51 , pp. 34-41
    • Roshani, G.H.1    Feghhi, S.A.H.2    Mahmoudi-Aznaveh, A.3    Nazemi, E.4    Adineh-Vand, A.5
  • 156
    • 67649185199 scopus 로고    scopus 로고
    • Generalized neural network model of alternative refrigerant (R600a) inside a smooth tube
    • H. Demir, O. Agra, O. Atayilmaz, Generalized neural network model of alternative refrigerant (R600a) inside a smooth tube, Int. Commun. Heat Mass Transfer 36 (2009) 744-749.
    • (2009) Int. Commun. Heat Mass Transfer , vol.36 , pp. 744-749
    • Demir, H.1    Agra, O.2    Atayilmaz, O.3
  • 157
    • 78650292738 scopus 로고    scopus 로고
    • Artificial neural network techniques for the determination of condensation heat transfer characteristics during downward annular flow of R134a inside a vertical smooth tube
    • M. Balcilar, A.S. Dalkilic, S. Wongwises, Artificial neural network techniques for the determination of condensation heat transfer characteristics during downward annular flow of R134a inside a vertical smooth tube, Int. Commun. Heat Mass Transfer 38 (2011) 75-84.
    • (2011) Int. Commun. Heat Mass Transfer , vol.38 , pp. 75-84
    • Balcilar, M.1    Dalkilic, A.S.2    Wongwises, S.3
  • 158
    • 84863873859 scopus 로고    scopus 로고
    • A correlation development for predicting the pressure drop of various refrigerants during condensation and evaporation in horizontal smooth and micro-fin tubes
    • M. Balcilar, A.S. Dalkilic, O. Agra, S.O. Atayilmaz, S. Wongwises, A correlation development for predicting the pressure drop of various refrigerants during condensation and evaporation in horizontal smooth and micro-fin tubes, Int. Commun. Heat Mass Transfer 39 (2012) 937-944.
    • (2012) Int. Commun. Heat Mass Transfer , vol.39 , pp. 937-944
    • Balcilar, M.1    Dalkilic, A.S.2    Agra, O.3    Atayilmaz, S.O.4    Wongwises, S.5
  • 159
    • 34247497156 scopus 로고    scopus 로고
    • Heat transfer analysis of phase change process in a finned-tube thermal energy storage system using artificial neural network
    • K. Ermis, A. Erek, I. Dincer, Heat transfer analysis of phase change process in a finned-tube thermal energy storage system using artificial neural network, Int. J. Heat Mass Transfer 50 (2007) 3163-3175.
    • (2007) Int. J. Heat Mass Transfer , vol.50 , pp. 3163-3175
    • Ermis, K.1    Erek, A.2    Dincer, I.3
  • 160
    • 0030826840 scopus 로고    scopus 로고
    • Nonlinear identification and control of a heat exchanger: A neural network approach
    • S. Bittanti, L. Piroddi, Nonlinear identification and control of a heat exchanger: a neural network approach, J. Frankl. Inst. 334 (1997) 135-153.
    • (1997) J. Frankl. Inst. , vol.334 , pp. 135-153
    • Bittanti, S.1    Piroddi, L.2
  • 161
    • 0034315035 scopus 로고    scopus 로고
    • Use of neural networks as a tuning method for an adaptive PID: Application in a heat exchanger
    • C. Riverol, V. Napolitano, Use of neural networks as a tuning method for an adaptive PID: application in a heat exchanger, Chem. Eng. Res. Des. 78 (2000) 1115-1119.
    • (2000) Chem. Eng. Res. Des. , vol.78 , pp. 1115-1119
    • Riverol, C.1    Napolitano, V.2
  • 163
    • 0035916802 scopus 로고    scopus 로고
    • Dynamic prediction and control of heat exchangers using artificial neural networks
    • G. Diaz, M. Sen, K.T. Yang, R.L. McClain, Dynamic prediction and control of heat exchangers using artificial neural networks, Int. J. Heat Mass Transfer 44 (2001) 1671-1679.
    • (2001) Int. J. Heat Mass Transfer , vol.44 , pp. 1671-1679
    • Diaz, G.1    Sen, M.2    Yang, K.T.3    McClain, R.L.4
  • 164
    • 18844416618 scopus 로고    scopus 로고
    • Artificial neural network control of a heat exchanger in a closed flow air circuit
    • K. Varshney, P.K. Panigrahi, Artificial neural network control of a heat exchanger in a closed flow air circuit, Appl. Soft Comput. 5 (2005) 441-465.
    • (2005) Appl. Soft Comput. , vol.5 , pp. 441-465
    • Varshney, K.1    Panigrahi, P.K.2
  • 165
    • 23844458613 scopus 로고    scopus 로고
    • Application of neural network for the modeling and control of evaporative condenser cooling load
    • A. Abbassi, L. Bahar, Application of neural network for the modeling and control of evaporative condenser cooling load, Appl. Therm. Eng. 25 (2005) 3176-3186.
    • (2005) Appl. Therm. Eng. , vol.25 , pp. 3176-3186
    • Abbassi, A.1    Bahar, L.2
  • 166
    • 0036713669 scopus 로고    scopus 로고
    • Evolutionary design of dynamic neural networks for evaporator control
    • V.K. Nanayakkara, Y. Ikegami, H. Uehara, Evolutionary design of dynamic neural networks for evaporator control, Int. J. Refrig. 25 (2002) 813-826.
    • (2002) Int. J. Refrig. , vol.25 , pp. 813-826
    • Nanayakkara, V.K.1    Ikegami, Y.2    Uehara, H.3
  • 168
    • 25844445994 scopus 로고    scopus 로고
    • Development of ANN based models to predict the static and dynamic response of a heat exchanger in a real MVAC system
    • Q. Hu, A.T.P. So, W.L. Tse, Q. Ren, Development of ANN based models to predict the static and dynamic response of a heat exchanger in a real MVAC system, J. Phys. Conf. Ser. 23 (2005) 110-121.
    • (2005) J. Phys. Conf. Ser. , vol.23 , pp. 110-121
    • Hu, Q.1    So, A.T.P.2    Tse, W.L.3    Ren, Q.4
  • 169
    • 80755184642 scopus 로고    scopus 로고
    • Dynamic modeling and control of a direct expansion air conditioning system using artificial neural network
    • N. Li, L. Xia, D. Shiming, X. Xu, M.-Y. Chan, Dynamic modeling and control of a direct expansion air conditioning system using artificial neural network, Appl. Energy 91 (2012) 290-300.
    • (2012) Appl. Energy , vol.91 , pp. 290-300
    • Li, N.1    Xia, L.2    Shiming, D.3    Xu, X.4    Chan, M.-Y.5
  • 170
    • 84873696375 scopus 로고    scopus 로고
    • On-line adaptive control of a direct expansion air conditioning system using artificial neural network
    • N. Li, L. Xia, D. Shiming, X. Xu, M.-Y. Chan, On-line adaptive control of a direct expansion air conditioning system using artificial neural network, Appl. Therm. Eng. 53 (2013) 96-107.
    • (2013) Appl. Therm. Eng. , vol.53 , pp. 96-107
    • Li, N.1    Xia, L.2    Shiming, D.3    Xu, X.4    Chan, M.-Y.5
  • 171
    • 80155214383 scopus 로고    scopus 로고
    • Wavelet based artificial neural networks applied for energy efficiency enhancement of decoupled HVAC system
    • G. Jahedi, M.M. Ardehali, Wavelet based artificial neural networks applied for energy efficiency enhancement of decoupled HVAC system, Energy Convers. Manage. 54 (2012) 47-56.
    • (2012) Energy Convers. Manage. , vol.54 , pp. 47-56
    • Jahedi, G.1    Ardehali, M.M.2
  • 172
    • 84909579576 scopus 로고    scopus 로고
    • Performance analysis of hybrid ground source heat pump systems based on ANN predictive control
    • W. Gang, J. Wang, S. Wang, Performance analysis of hybrid ground source heat pump systems based on ANN predictive control, Appl. Energy 136 (2014) 1138-1144.
    • (2014) Appl. Energy , vol.136 , pp. 1138-1144
    • Gang, W.1    Wang, J.2    Wang, S.3
  • 173
    • 48749097894 scopus 로고    scopus 로고
    • Performance prediction of a groundcoupled heat pump using neural networks
    • H. Esen, M. Inalli, A. Sengur, M. Esen, Performance prediction of a groundcoupled heat pump using neural networks, Expert Syst. Appl. 35 (2008) 1940-1948.
    • (2008) Expert Syst. Appl. , vol.35 , pp. 1940-1948
    • Esen, H.1    Inalli, M.2    Sengur, A.3    Esen, M.4
  • 174
    • 63449103012 scopus 로고    scopus 로고
    • Performance prediction of direct expansion solar assisted heat pump using artificial neural networks
    • M. Mohanraj, S. Jayaraj, C. Muraleedharan, Performance prediction of direct expansion solar assisted heat pump using artificial neural networks, Appl. Energy 86 (2009) 1442-1449.
    • (2009) Appl. Energy , vol.86 , pp. 1442-1449
    • Mohanraj, M.1    Jayaraj, S.2    Muraleedharan, C.3
  • 175
    • 84920192047 scopus 로고    scopus 로고
    • Performance prediction of solar thermal energy system using artificial neural networks
    • W. Yaici, E. Entchev, Performance prediction of solar thermal energy system using artificial neural networks, Appl. Therm. Eng. 73 (2014) 1348-1359.
    • (2014) Appl. Therm. Eng. , vol.73 , pp. 1348-1359
    • Yaici, W.1    Entchev, E.2
  • 177
    • 0032146239 scopus 로고    scopus 로고
    • Artificial neural networks: The multilayer perceptron e a review of application in atmospheric sciences
    • M.W. Garder, S.R. Dorling, Artificial neural networks: the multilayer perceptron e a review of application in atmospheric sciences, Atmos. Environ. 32 (1998) 2627-2636.
    • (1998) Atmos. Environ. , vol.32 , pp. 2627-2636
    • Garder, M.W.1    Dorling, S.R.2
  • 178
    • 24744467172 scopus 로고    scopus 로고
    • Vehicular pollution modeling using artificial neural network technique: A review
    • N. Sharma, K.K. Chaudhry, C.V. Chalapati Rao, Vehicular pollution modeling using artificial neural network technique: a review, J. Sci. Ind. Res. 64 (2005) 637-647.
    • (2005) J. Sci. Ind. Res. , vol.64 , pp. 637-647
    • Sharma, N.1    Chaudhry, K.K.2    Chalapati Rao, C.V.3
  • 179
    • 84903824684 scopus 로고    scopus 로고
    • Fouling analysis of a shell and tube heat exchanger using local linear wavelet neural network
    • D.K. Mohanthy, P.M. Singru, Fouling analysis of a shell and tube heat exchanger using local linear wavelet neural network, Int. J. Heat Mass Transfer 77 (2014) 946-955.
    • (2014) Int. J. Heat Mass Transfer , vol.77 , pp. 946-955
    • Mohanthy, D.K.1    Singru, P.M.2
  • 180
    • 0035015680 scopus 로고    scopus 로고
    • Three learning phases for radial-basisfunction networks
    • F. Schwenker, H.A. Kestler, G. Palm, Three learning phases for radial-basisfunction networks, Neural Netw. 14 (2001) 439-458.
    • (2001) Neural Netw. , vol.14 , pp. 439-458
    • Schwenker, F.1    Kestler, H.A.2    Palm, G.3
  • 181
    • 0026899193 scopus 로고
    • Using radial basis functions to approximate a function and its error bounds
    • J.A. Leonard, M.A. Kramer, L.G. Ungar, Using radial basis functions to approximate a function and its error bounds, IEEE Trans. Neural Netw. 3 (1992) 624-627.
    • (1992) IEEE Trans. Neural Netw. , vol.3 , pp. 624-627
    • Leonard, J.A.1    Kramer, M.A.2    Ungar, L.G.3
  • 183
    • 0345688978 scopus 로고    scopus 로고
    • Determination of the spread parameter in the Gaussian kernel for classification and regression
    • W. Wanga, Z. Xua, W. Luc, X. Zhang, Determination of the spread parameter in the Gaussian kernel for classification and regression, Neurocomputing 55 (2003) 643-663.
    • (2003) Neurocomputing , vol.55 , pp. 643-663
    • Wanga, W.1    Xua, Z.2    Luc, W.3    Zhang, X.4
  • 184
    • 28844464693 scopus 로고    scopus 로고
    • Genetic algorithm-trained radial basis function neural networks for modelling photovoltaic panels
    • L. Zhang, Y.F. Bai, Genetic algorithm-trained radial basis function neural networks for modelling photovoltaic panels, Eng. Appl. Artif. Intell. 18 (2005) 833-844.
    • (2005) Eng. Appl. Artif. Intell. , vol.18 , pp. 833-844
    • Zhang, L.1    Bai, Y.F.2
  • 185
    • 70449528756 scopus 로고    scopus 로고
    • Time series prediction using RBF neural networks with a nonlinear time-varying evolution PSO algorithm
    • C.-M. Lee, C.-N. Ko, Time series prediction using RBF neural networks with a nonlinear time-varying evolution PSO algorithm, Neurocomputing 73 (2009) 449-460.
    • (2009) Neurocomputing , vol.73 , pp. 449-460
    • Lee, C.-M.1    Ko, C.-N.2
  • 186
    • 84873637949 scopus 로고    scopus 로고
    • Wavelet neural networks: A practical guide
    • A.K. Alexandridis, A.D. Zapranis, Wavelet neural networks: a practical guide, Neural Netw. 42 (2013) 1-27.
    • (2013) Neural Netw. , vol.42 , pp. 1-27
    • Alexandridis, A.K.1    Zapranis, A.D.2
  • 187
    • 84906696725 scopus 로고    scopus 로고
    • A novel approach to fuzzy wavelet neural network modeling and optimization
    • R. Cheng, Y. Bai, A novel approach to fuzzy wavelet neural network modeling and optimization, Electr. Power Energy Syst. 64 (2015) 671-678.
    • (2015) Electr. Power Energy Syst. , vol.64 , pp. 671-678
    • Cheng, R.1    Bai, Y.2
  • 188
    • 0026254768 scopus 로고
    • General regression neural network
    • D.F. Specht, General regression neural network, IEEE Trans. Neural Netw. 2 (1991) 568-576.
    • (1991) IEEE Trans. Neural Netw. , vol.2 , pp. 568-576
    • Specht, D.F.1
  • 189
    • 2542525075 scopus 로고    scopus 로고
    • Adaptive probabilistic neural networks for pattern classification in time-varying environment
    • L. Rutkowski, Adaptive probabilistic neural networks for pattern classification in time-varying environment, IEEE Trans. Neural Netw. 15 (2004) 811-827.
    • (2004) IEEE Trans. Neural Netw. , vol.15 , pp. 811-827
    • Rutkowski, L.1
  • 190
    • 84872194773 scopus 로고    scopus 로고
    • Generalized classifier neural network
    • B.M. Ozyildirim, M. Avci, Generalized classifier neural network, Neural Netw. 39 (2013) 18-26.
    • (2013) Neural Netw. , vol.39 , pp. 18-26
    • Ozyildirim, B.M.1    Avci, M.2
  • 191
    • 0030283939 scopus 로고    scopus 로고
    • Learning experiments with genetic optimization of a generalized regression neural network
    • J.V. Hansen, R.D. Meservy, Learning experiments with genetic optimization of a generalized regression neural network, Decision Support Syst. 18 (1996) 317-325.
    • (1996) Decision Support Syst. , vol.18 , pp. 317-325
    • Hansen, J.V.1    Meservy, R.D.2
  • 192
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy interface system
    • J.-S.R. Jang, ANFIS: adaptive-network-based fuzzy interface system, IEEE Trans. Syst. Man Cybern. 23 (1993) 665-685.
    • (1993) IEEE Trans. Syst. Man Cybern. , vol.23 , pp. 665-685
    • Jang, J.-S.R.1
  • 193
    • 77957854962 scopus 로고    scopus 로고
    • ANN and ANFIS models for performance evaluation of a vertical ground source heat pump system
    • H. Esen, M. Inalli, ANN and ANFIS models for performance evaluation of a vertical ground source heat pump system, Expert Syst. Appl. 37 (2010) 8134-8147.
    • (2010) Expert Syst. Appl. , vol.37 , pp. 8134-8147
    • Esen, H.1    Inalli, M.2
  • 194
    • 36749065047 scopus 로고    scopus 로고
    • Modeling ground source heat pump system using adaptive neuro-fuzzy interface systems
    • H. Esen, M. Inalli, A. Sengur, M. Esen, Modeling ground source heat pump system using adaptive neuro-fuzzy interface systems, Int. J. Refrig. 31 (2008) 65-74.
    • (2008) Int. J. Refrig. , vol.31 , pp. 65-74
    • Esen, H.1    Inalli, M.2    Sengur, A.3    Esen, M.4
  • 196
    • 78049524148 scopus 로고    scopus 로고
    • A hybrid PSO-ANFIS approach for short-term wind power prediction in Portugal
    • H.M.I. Pousinho, V.M.F. Mendes, J.P.S. Catalao, A hybrid PSO-ANFIS approach for short-term wind power prediction in Portugal, Energy Convers. Manage. 52 (2011) 397-402.
    • (2011) Energy Convers. Manage. , vol.52 , pp. 397-402
    • Pousinho, H.M.I.1    Mendes, V.M.F.2    Catalao, J.P.S.3
  • 197
    • 49149096916 scopus 로고    scopus 로고
    • Predicting performance of a ground source heat pump system using fuzzy weighted pre-processing based ANFIS
    • H. Esen, M. Inalli, A. Sengur, M. Esen, Predicting performance of a ground source heat pump system using fuzzy weighted pre-processing based ANFIS, Build. Environ. 43 (2008) 2178-2187.
    • (2008) Build. Environ. , vol.43 , pp. 2178-2187
    • Esen, H.1    Inalli, M.2    Sengur, A.3    Esen, M.4
  • 198
    • 1642400386 scopus 로고    scopus 로고
    • Methods to improve prediction performance of ANN models
    • C. Yin, L. Rosendahl, Z. Luo, Methods to improve prediction performance of ANN models, Simul. Model. Pract. Theory 11 (2003) 211-222.
    • (2003) Simul. Model. Pract. Theory , vol.11 , pp. 211-222
    • Yin, C.1    Rosendahl, L.2    Luo, Z.3
  • 199
    • 0028209684 scopus 로고
    • Using artificial neural networks for solving chemical problems: Part I. Multi-layer feed-forward networks
    • J.R.M. Smits, W.J. Melssen, L.M.C. Buydens, G. Kateman, Using artificial neural networks for solving chemical problems: part I. Multi-layer feed-forward networks, Chemom. Intell. Lab. Syst. 22 (1994) 165-189.
    • (1994) Chemom. Intell. Lab. Syst. , vol.22 , pp. 165-189
    • Smits, J.R.M.1    Melssen, W.J.2    Buydens, L.M.C.3    Kateman, G.4
  • 200
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: The state of the art
    • G. Zhang, B.E. Patuwo, M.Y. Hu, Forecasting with artificial neural networks: the state of the art, Int. J. Forecast. 14 (1998) 35-62.
    • (1998) Int. J. Forecast. , vol.14 , pp. 35-62
    • Zhang, G.1    Patuwo, B.E.2    Hu, M.Y.3
  • 201
    • 0028319326 scopus 로고
    • A procedure for determining the topology of multilayer feed forward neural networks
    • Z. Wang, C.D. Massimo, M.T. Tham, A.J. Morris, A procedure for determining the topology of multilayer feed forward neural networks, Neural Netw. 7 (1994) 291-300.
    • (1994) Neural Netw. , vol.7 , pp. 291-300
    • Wang, Z.1    Massimo, C.D.2    Tham, M.T.3    Morris, A.J.4
  • 202
    • 0033879856 scopus 로고    scopus 로고
    • Artificial neural networks for the prediction of the energy consumption of a passive solar building
    • S.A. Kalogirou, M. Bojic, Artificial neural networks for the prediction of the energy consumption of a passive solar building, Energy 25 (2000) 479-491.
    • (2000) Energy , vol.25 , pp. 479-491
    • Kalogirou, S.A.1    Bojic, M.2
  • 203
    • 55249106188 scopus 로고    scopus 로고
    • A neural network for predicting saturated liquid density using genetic algorithm for pure and mixed refrigerants
    • A. Mohebbi, M. Taheri, A. Soltani, A neural network for predicting saturated liquid density using genetic algorithm for pure and mixed refrigerants, Int. J. Refrig. 31 (2008) 1317-1327.
    • (2008) Int. J. Refrig. , vol.31 , pp. 1317-1327
    • Mohebbi, A.1    Taheri, M.2    Soltani, A.3
  • 205
    • 79952807915 scopus 로고    scopus 로고
    • An improved hybrid algorithm based on PSO and BP for feed forward neural networks
    • F. Han, T.-Y. Gu, S.-G. Ju, An improved hybrid algorithm based on PSO and BP for feed forward neural networks, Int. J. Digital Content Technol. Appl. 5 (2011) 106-115.
    • (2011) Int. J. Digital Content Technol. Appl. , vol.5 , pp. 106-115
    • Han, F.1    Gu, T.-Y.2    Ju, S.-G.3
  • 206
    • 78049276362 scopus 로고    scopus 로고
    • A PSO based weighting method for linear combination of neural networks
    • S.H. Nabavi-Kerizi, M. Abadi, E. Kabir, A PSO based weighting method for linear combination of neural networks, Comput. Electr. Eng. 36 (2010) 886-894.
    • (2010) Comput. Electr. Eng. , vol.36 , pp. 886-894
    • Nabavi-Kerizi, S.H.1    Abadi, M.2    Kabir, E.3
  • 207
    • 81855195351 scopus 로고    scopus 로고
    • A hybrid particle swarm optimization and its application in neural networks
    • S.Y.S. Leung, Y. Tang, W.K. Wong, A hybrid particle swarm optimization and its application in neural networks, Expert Syst. Appl. 39 (2012) 395-405.
    • (2012) Expert Syst. Appl. , vol.39 , pp. 395-405
    • Leung, S.Y.S.1    Tang, Y.2    Wong, W.K.3
  • 208
    • 0033130747 scopus 로고    scopus 로고
    • Optimization of neural networks: A comparative analysis of the genetic algorithm and simulated annealing
    • R.S. Sexton, R.E. Dorsey, J.D. Johnson, Optimization of neural networks: a comparative analysis of the genetic algorithm and simulated annealing, Eur. J. Oper. Res. 114 (1999) 589-601.
    • (1999) Eur. J. Oper. Res. , vol.114 , pp. 589-601
    • Sexton, R.S.1    Dorsey, R.E.2    Johnson, J.D.3
  • 209
    • 33845621875 scopus 로고    scopus 로고
    • A hybrid approach for feature subset selection using neural networks and ant colony optimization
    • R.K. Sivagaminathan, S. Ramakrishnan, A hybrid approach for feature subset selection using neural networks and ant colony optimization, Expert Syst. Appl. 33 (2007) 49-60.
    • (2007) Expert Syst. Appl. , vol.33 , pp. 49-60
    • Sivagaminathan, R.K.1    Ramakrishnan, S.2
  • 210
    • 12144252495 scopus 로고    scopus 로고
    • An improved PSO-based ANN with simulated annealing technique
    • Y. Da, X.R. Ge, An improved PSO-based ANN with simulated annealing technique, Neurocomput. Lett. 63 (2005) 527-533.
    • (2005) Neurocomput. Lett. , vol.63 , pp. 527-533
    • Da, Y.1    Ge, X.R.2
  • 212
    • 74149090502 scopus 로고    scopus 로고
    • Data splitting for artificial neural networks using SOM-based stratified sampling
    • R.J. May, H.R. Maier, G.C. Dandy, Data splitting for artificial neural networks using SOM-based stratified sampling, Neural Netw. 23 (2010) 283-294.
    • (2010) Neural Netw. , vol.23 , pp. 283-294
    • May, R.J.1    Maier, H.R.2    Dandy, G.C.3
  • 213
    • 84873535500 scopus 로고    scopus 로고
    • Artificial neural network training using a new efficient optimization algorithm
    • A. Askarzadeh, A. Rezazadeh, Artificial neural network training using a new efficient optimization algorithm, Appl. Soft Comput. 13 (2013) 1206-1213.
    • (2013) Appl. Soft Comput. , vol.13 , pp. 1206-1213
    • Askarzadeh, A.1    Rezazadeh, A.2
  • 215
    • 38749092234 scopus 로고    scopus 로고
    • Forecasting of a ground-coupled heat pump performance using neural networks with statistical data weighting pre-processing
    • H. Esen, M. Inalli, A. Sengur, M. Esen, Forecasting of a ground-coupled heat pump performance using neural networks with statistical data weighting pre-processing, Int. J. Therm. Sci. 47 (2008) 431-441.
    • (2008) Int. J. Therm. Sci. , vol.47 , pp. 431-441
    • Esen, H.1    Inalli, M.2    Sengur, A.3    Esen, M.4
  • 216
    • 84894637129 scopus 로고    scopus 로고
    • The impact of fouling on the condenser of a vapour compression refrigeration system: An experimental observation
    • B.A. Quresh, S.M. Zubair, The impact of fouling on the condenser of a vapour compression refrigeration system: an experimental observation, Int. J. Refrig. 38 (2014) 260-266.
    • (2014) Int. J. Refrig. , vol.38 , pp. 260-266
    • Quresh, B.A.1    Zubair, S.M.2
  • 217
    • 3042739419 scopus 로고    scopus 로고
    • Flow geometry optimization of channels with baffles using neural networks and second law of thermodynamics
    • T. Ayhan, B. Karlik, A. Tandiroglu, Flow geometry optimization of channels with baffles using neural networks and second law of thermodynamics, Comput. Mech. 33 (2004) 139-143.
    • (2004) Comput. Mech. , vol.33 , pp. 139-143
    • Ayhan, T.1    Karlik, B.2    Tandiroglu, A.3
  • 220
    • 70349601563 scopus 로고    scopus 로고
    • Numerical analysis of film wise condensation in a plate fin-and-tube heat exchanger in presence of noncondensable gas
    • R. Benelmir, S. Mokraoui, A. Souayed, Numerical analysis of film wise condensation in a plate fin-and-tube heat exchanger in presence of noncondensable gas, Heat Mass Transfer 45 (2009) 1561-1573.
    • (2009) Heat Mass Transfer , vol.45 , pp. 1561-1573
    • Benelmir, R.1    Mokraoui, S.2    Souayed, A.3
  • 221
    • 24344494341 scopus 로고    scopus 로고
    • Experimental investigation of oil retention in air conditioning systems
    • L.C.Y. Hwang, R. Radermacher, Experimental investigation of oil retention in air conditioning systems, Int. J. Refrig. 28 (2005) 1018-1028.
    • (2005) Int. J. Refrig. , vol.28 , pp. 1018-1028
    • Hwang, L.C.Y.1    Radermacher, R.2
  • 223
    • 79955855241 scopus 로고    scopus 로고
    • A review on recent developments in new refrigerant mixtures for vapour compression based refrigeration, air conditioning and heat pump units
    • M. Mohanraj, C. Muraleedharan, S. Jayaraj, A review on recent developments in new refrigerant mixtures for vapour compression based refrigeration, air conditioning and heat pump units, Int. J. Energy Res. 35 (2011) 647-669.
    • (2011) Int. J. Energy Res. , vol.35 , pp. 647-669
    • Mohanraj, M.1    Muraleedharan, C.2    Jayaraj, S.3
  • 225
    • 67349145473 scopus 로고    scopus 로고
    • An expert system for the humidity and temperature control in HVAC systems using ANFIS and optimization with fuzzy modeling approach
    • S. Soyguder, H. Alli, An expert system for the humidity and temperature control in HVAC systems using ANFIS and optimization with fuzzy modeling approach, Energy Build. 41 (2009) 814-822.
    • (2009) Energy Build. , vol.41 , pp. 814-822
    • Soyguder, S.1    Alli, H.2
  • 226
    • 0028461826 scopus 로고
    • Framework for enhancing fault diagnosis capabilities of artificial neural networks
    • A.E. Farell, S.D. Roat, Framework for enhancing fault diagnosis capabilities of artificial neural networks, Comput. Chem. Eng. 18 (1994) 613-635.
    • (1994) Comput. Chem. Eng. , vol.18 , pp. 613-635
    • Farell, A.E.1    Roat, S.D.2
  • 227
    • 0028379050 scopus 로고
    • Artificial neural networks in fault diagnosis and control
    • H.N. Kolvo, Artificial neural networks in fault diagnosis and control, Control Eng. Pract. 2 (1994) 89-101.
    • (1994) Control Eng. Pract. , vol.2 , pp. 89-101
    • Kolvo, H.N.1
  • 229
    • 84865610462 scopus 로고    scopus 로고
    • Application of adaptive resonance theory neural networks to monitor solar hot water systems and detect existing or developing faults
    • H. He, T.P. Caudell, D.F. Menicucci, A.A. Mammoli, Application of adaptive resonance theory neural networks to monitor solar hot water systems and detect existing or developing faults, Solar Energy 86 (2012) 2318-2333.
    • (2012) Solar Energy , vol.86 , pp. 2318-2333
    • He, H.1    Caudell, T.P.2    Menicucci, D.F.3    Mammoli, A.A.4
  • 230
    • 67349154400 scopus 로고    scopus 로고
    • Modeling of a new solar air heater through least square support vector machines
    • H. Esen, F. Ozen, M. Esen, A. Sengur, Modeling of a new solar air heater through least square support vector machines, Expert Syst. Appl. 36 (2009) 10673-10682.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 10673-10682
    • Esen, H.1    Ozen, F.2    Esen, M.3    Sengur, A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.