메뉴 건너뛰기




Volumn 13, Issue 2, 2013, Pages 1206-1213

Artificial neural network training using a new efficient optimization algorithm

Author keywords

Artificial neural network; Bird mating optimizer; Fuel cell; Weight training

Indexed keywords

CELL ENGINEERING; DATA MINING; DEEP NEURAL NETWORKS; FUEL CELLS; NEURAL NETWORKS;

EID: 84873535500     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2012.10.023     Document Type: Article
Times cited : (75)

References (27)
  • 2
    • 0022471098 scopus 로고
    • Learning representations by backpropagating errors
    • D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by backpropagating errors, Nature 323 (1986) 533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 3
    • 0000743347 scopus 로고
    • Training feedforward neural networks using genetic algorithms
    • D.J. Montana, L. Davis, Training feedforward neural networks using genetic algorithms, Machine Learning (1989) 762-767.
    • (1989) Machine Learning , pp. 762-767
    • Montana, D.J.1    Davis, L.2
  • 4
    • 84942134374 scopus 로고    scopus 로고
    • Comparison of particle swarm optimization and backpropagation as training algorithms for neural networks, in: Proceedings of the
    • 2003. SIS '03 2003
    • V.G. Gudise, G.K. Venayagamoorthy, Comparison of particle swarm optimization and backpropagation as training algorithms for neural networks, in: Proceedings of the 2003 IEEE, Swarm Intelligence Symposium, 2003. SIS '03, 2003, pp. 110-117.
    • (2003) IEEE Swarm Intelligence Symposium , pp. 110-117
    • Gudise, V.G.1    Venayagamoorthy, G.K.2
  • 5
    • 34547535038 scopus 로고    scopus 로고
    • An ant colony optimization algorithm for continuous optimization: Application to feed-forward neural network training
    • K. Socha, C. Blum, An ant colony optimization algorithm for continuous optimization: application to feed-forward neural network training, Neural Computing &Applications 16 (2007) 235-247.
    • (2007) Neural Computing &Applications , vol.16 , pp. 235-247
    • Socha, K.1    Blum, C.2
  • 7
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • Y. Xin, Evolving artificial neural networks, Proceedings of the IEEE 87 (1999) 1423-1447.
    • (1999) Proceedings of the IEEE , vol.87 , pp. 1423-1447
    • Xin, Y.1
  • 8
    • 0027574256 scopus 로고
    • A review of evolutionary artificial neural networks
    • X. Yao, A review of evolutionary artificial neural networks, International Journal of Intelligent Systems 8 (1993) 539-567.
    • (1993) International Journal of Intelligent Systems , vol.8 , pp. 539-567
    • Yao, X.1
  • 9
    • 26844480248 scopus 로고    scopus 로고
    • An empirical comparison of combinations of evolutionary algorithms and neural networks for classification problems
    • DOI 10.1109/TSMCB.2005.847740
    • E. Cant?Paz, C. Kamath, An empirical comparison of combinations of evolutionary algorithms and neural networks for classification problems, IEEE Transactions on Systems, Man, and Cybernetics, Part-B 35 (2005) 915-927. (Pubitemid 41444577)
    • (2005) IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics , vol.35 , Issue.5 , pp. 915-927
    • Cantu-Paz, E.1    Kamath, C.2
  • 10
    • 84881484236 scopus 로고    scopus 로고
    • A new heuristic optimization algorithm for modeling of proton exchange membrane fuel cell: Bird mating optimizer
    • in press
    • A. Askarzadeh, A. Rezazadeh, A new heuristic optimization algorithm for modeling of proton exchange membrane fuel cell: bird mating optimizer, International Journal of Energy Research, in press
    • International Journal of Energy Research
    • Askarzadeh, A.1    Rezazadeh, A.2
  • 11
    • 84881518144 scopus 로고    scopus 로고
    • in press
    • http://en.wikipedia.org/wiki/Bird. in press.
  • 12
    • 84881538826 scopus 로고    scopus 로고
    • in press
    • http://www.stanford.edu/group/stanfordbirds/text/essays/Monogamy.html. in press.
  • 13
    • 84881487804 scopus 로고    scopus 로고
    • in press
    • http://www.paulnoll.com/Oregon/Birds/courtship-systems.html. in press.
  • 14
    • 0242288903 scopus 로고    scopus 로고
    • Benchmarking least squares support vector machine classifiers
    • T. Van Gestel, Benchmarking least squares support vector machine classifiers, Machine Learning 54 (2004) 5-32.
    • (2004) Machine Learning , vol.54 , pp. 5-32
    • Van Gestel, T.1
  • 15
    • 12144288329 scopus 로고    scopus 로고
    • Is combining classifiers with stacking better than selecting the best one?
    • S. D?zeroski, B. Zenko, Is combining classifiers with stacking better than selecting the best one? Machine Learning 54 (2004) 255-273.
    • (2004) Machine Learning , vol.54 , pp. 255-273
    • Dzeroski, S.1    Zenko, B.2
  • 16
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging
    • T.G. Dietterich, An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization, Machine Learning 40 (2000) 139-157.
    • (2000) Boosting, and Randomization, Machine Learning , vol.40 , pp. 139-157
    • Dietterich, T.G.1
  • 19
    • 21044454599 scopus 로고    scopus 로고
    • Cooperative coevolution of artificial neural network ensembles for pattern classification
    • DOI 10.1109/TEVC.2005.844158
    • N. Garcia-Pedrajas, C. Hervas-Martinez, D. Ortiz-Boyer, Cooperative coevolution of artificial neural network ensembles for pattern classification, IEEE Abbreviations for Transactions, Journals, Letters, and Magazines 9 (2005) 271-302. (Pubitemid 40871133)
    • (2005) IEEE Transactions on Evolutionary Computation , vol.9 , Issue.3 , pp. 271-302
    • Garcia-Pedrajas, N.1    Hervas-Martinez, C.2    Ortiz-Boyer, D.3
  • 20
    • 0042525838 scopus 로고    scopus 로고
    • A constructive algorithm for training cooperative neural network ensembles
    • M. Islam, X. Yao, K. Murase, A constructive algorithm for training cooperative neural network ensembles, IEEE Transactions on Neural Networks 14 (2003) 820-834.
    • (2003) IEEE Transactions on Neural Networks , vol.14 , pp. 820-834
    • Islam, M.1    Yao, X.2    Murase, K.3
  • 22
    • 79953669499 scopus 로고    scopus 로고
    • A grouping-based global harmony search algorithm for modeling of proton exchange membrane fuel cell
    • A. Askarzadeh, A. Rezazadeh, A grouping-based global harmony search algorithm for modeling of proton exchange membrane fuel cell, International Journal of Hydrogen Energy 36 (2011) 5047-5053.
    • (2011) International Journal of Hydrogen Energy , vol.36 , pp. 5047-5053
    • Askarzadeh, A.1    Rezazadeh, A.2
  • 24
    • 58549105309 scopus 로고    scopus 로고
    • Parameter identification for proton exchange membrane fuel cell model using particle swarm optimization
    • M. Ye, X. Wang, Y. Xu, Parameter identification for proton exchange membrane fuel cell model using particle swarm optimization, International Journal of Hydrogen Energy 34 (2009) 981-989.
    • (2009) International Journal of Hydrogen Energy , vol.34 , pp. 981-989
    • Ye, M.1    Wang, X.2    Xu, Y.3
  • 25
    • 33749510453 scopus 로고    scopus 로고
    • Unified mathematical modelling of steady-state and dynamic voltage-current characteristics for PEM fuel cells
    • DOI 10.1016/j.electacta.2006.07.011, PII S0013468606007419
    • X.D. Xue, et al., Unified mathematical modelling of steady-state and dynamic voltage-current characteristics for PEM fuel cells, Electrochimica Acta 52 (2006) 1135-1144. (Pubitemid 44528448)
    • (2006) Electrochimica Acta , vol.52 , Issue.3 , pp. 1135-1144
    • Xue, X.D.1    Cheng, K.W.E.2    Sutanto, D.3
  • 26
    • 33748426624 scopus 로고    scopus 로고
    • Modeling a PEMFC by a support vector machine
    • DOI 10.1016/j.jpowsour.2006.01.040, PII S0378775306000966
    • Z.-D. Zhong, X.-J. Zhu, G.-Y. Cao, Modeling a PEMFC by a support vector machine, Journal of Power Sources 160 (2006) 293-298. (Pubitemid 44344377)
    • (2006) Journal of Power Sources , vol.160 , Issue.1 , pp. 293-298
    • Zhong, Z.-D.1    Zhu, X.-J.2    Cao, G.-Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.