메뉴 건너뛰기




Volumn 13, Issue 1, 1999, Pages 55-68

Review of the applications of neural networks in chemical process control - simulation and online implementation

Author keywords

[No Author keywords available]

Indexed keywords

ADAPTIVE CONTROL SYSTEMS; COMPUTER SIMULATION; DATA REDUCTION; NEURAL NETWORKS; NONLINEAR CONTROL SYSTEMS; ONLINE SYSTEMS; PREDICTIVE CONTROL SYSTEMS;

EID: 0032735194     PISSN: 09541810     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0954-1810(98)00011-9     Document Type: Article
Times cited : (352)

References (100)
  • 1
    • 0024861871 scopus 로고
    • Approximation by superposition of a sigmoidal function
    • G. Cybenko Approximation by superposition of a sigmoidal function Math Contr Signals Syst 2 1989 303 314
    • (1989) Math Contr Signals Syst , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 2
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik M. Stinchcombe H. White Multilayer feedforward networks are universal approximators Neural Networks 2 1989 359
    • (1989) Neural Networks , vol.2 , pp. 359
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 3
    • 85120135235 scopus 로고    scopus 로고
    • Bulsari A. Neural networks for chemical engineers — computer-aided chemical engineering series, vol. 6. London: Elsevier, 1995.
  • 4
    • 85120115377 scopus 로고    scopus 로고
    • Lisboa PG. Neural networks — current applications. London: Chapman Hall, 1995.
  • 5
    • 0026954775 scopus 로고
    • Neural networks for control systems — a survey
    • L. Hunt D. Sbarbaro A. Zbibowski P. Gawthrop Neural networks for control systems — a survey Automatica 28 6 1992 1083 1111
    • (1992) Automatica , vol.28 , Issue.6 , pp. 1083-1111
    • Hunt, L.1    Sbarbaro, D.2    Zbibowski, A.3    Gawthrop, P.4
  • 6
    • 0025488663 scopus 로고
    • Thirty years of adaptive neural networks, perceptrons, madaline and backpropagation
    • B. Widrow M. Lehr Thirty years of adaptive neural networks, perceptrons, madaline and backpropagation Proc IEEE 78 9 1990 1415 1442
    • (1990) Proc IEEE , vol.78 , Issue.9 , pp. 1415-1442
    • Widrow, B.1    Lehr, M.2
  • 7
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • T. Poggio F. Girosi Networks for approximation and learning Proc IEEE 78 9 1990 1481 1497
    • (1990) Proc IEEE , vol.78 , Issue.9 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 8
    • 85120121644 scopus 로고    scopus 로고
    • Moran AJ, Harston CT, Pap RM. Handbook of neural computing applications. London: Academic Press, 1990.
  • 9
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • R.P. Lipmann An introduction to computing with neural nets IEEE ASSP Mag 4 1987 4 22
    • (1987) IEEE ASSP Mag , vol.4 , pp. 4-22
    • Lipmann, R.P.1
  • 10
    • 85120112498 scopus 로고    scopus 로고
    • Haykin S. Neural networks — a comprehensive foundation. New York: MacMillan, 1994.
  • 11
    • 85120127696 scopus 로고    scopus 로고
    • Caudill M, Butler C. Understanding neural nets: computing explorations, vol II. Cambridge, MA: MIT, 1992.
  • 12
    • 85120127374 scopus 로고    scopus 로고
    • Mammone RJ, Zeevi Y. Neural networks, theory and applications. New York: Academic Press, 1993.
  • 13
    • 0028543466 scopus 로고
    • Dynamic data reconcilation by recurrent neural networks vs traditional methods
    • T. Karjala D.M. Himmeblau Dynamic data reconcilation by recurrent neural networks vs traditional methods AIChE J 40 1994 1865 1875
    • (1994) AIChE J , vol.40 , pp. 1865-1875
    • Karjala, T.1    Himmeblau, D.M.2
  • 14
    • 85120094120 scopus 로고    scopus 로고
    • Karim MN, Rivera SL. Comparison of feedforward and recurrent neural networks for bioprocess state estimation. Comput Chem Engng Suppl 1992:S369–S377.
  • 16
    • 85120124597 scopus 로고    scopus 로고
    • Weigand AS, Rumelhart DE, Huberman BA. Backpropagation, weight elimination and time series prediction. Proc. of Summer School, Colarado, 1990:105–116.
  • 17
    • 21844526503 scopus 로고
    • Direct training method for a continuous-time nonlinear optimal feedback controller
    • N.J. Edwards C.J. Goh Direct training method for a continuous-time nonlinear optimal feedback controller J Optimization Theory Applications 84 3 1995 509 528
    • (1995) J Optimization Theory Applications , vol.84 , Issue.3 , pp. 509-528
    • Edwards, N.J.1    Goh, C.J.2
  • 18
    • 0025669403 scopus 로고
    • Practical identification of NARMAX models using radial basis functions
    • S. Chen S. Billing C. Cowen P. Gren Practical identification of NARMAX models using radial basis functions Int J Contr 52 1990 1327 1350
    • (1990) Int J Contr , vol.52 , pp. 1327-1350
    • Chen, S.1    Billing, S.2    Cowen, C.3    Gren, P.4
  • 19
    • 85120144897 scopus 로고    scopus 로고
    • Perry JH, editor. The chemical engineers's handbook. New York: McGraw-Hill, 1974.
  • 20
    • 85120104204 scopus 로고    scopus 로고
    • Douglas JM. Process dynamics and control: analysis of dynamic systems, vol. 1. Englewood Cliffs, NJ: Prentice-Hall, 1972.
  • 21
    • 85120118444 scopus 로고    scopus 로고
    • Luyben WL. Process modeling, simulation and control for chemical engineers. New York: McGraw-Hill, 1973.
  • 22
    • 85120117239 scopus 로고    scopus 로고
    • Stephanopoulos G. Chemical process control — an introduction to theory and practice. Englewood Cliffs, NJ: Prentice-Hall, 1984.
  • 23
    • 85120142988 scopus 로고    scopus 로고
    • Seborg DE, Edgar TM, Mellichamp DA. Process dynamics and control. New York: Wiley, 1989.
  • 25
    • 85120126447 scopus 로고    scopus 로고
    • Brown M, Harris C. Neurofuzzy adaptive modelling and control. Englewood Cliffs, NJ: Prentice-Hall, 1994.
  • 26
    • 84909843658 scopus 로고
    • Backpropagation neural-network based fuzzy controller with a self-tuning teacher
    • D.A. Linkens J. Nie Backpropagation neural-network based fuzzy controller with a self-tuning teacher Int J Contr 60 1 1994 17 39
    • (1994) Int J Contr , vol.60 , Issue.1 , pp. 17-39
    • Linkens, D.A.1    Nie, J.2
  • 27
    • 0026153906 scopus 로고
    • Artificial neural networks in process engineering
    • M.J. Willis Artificial neural networks in process engineering IEE Proc. — Part D 138 1991 256 266
    • (1991) IEE Proc. — Part D , vol.138 , pp. 256-266
    • Willis, M.J.1
  • 28
    • 0026367993 scopus 로고
    • Neural net based model predictive control
    • A. Saint-Donat N. Bhat T.J. McAvoy Neural net based model predictive control Int J Contr 54 1991 1453 1468
    • (1991) Int J Contr , vol.54 , pp. 1453-1468
    • Saint-Donat, A.1    Bhat, N.2    McAvoy, T.J.3
  • 29
    • 0023310961 scopus 로고
    • Generalised predictive control — Part 1. The basic algorithm
    • D.W. Clarke C. Mohtadi P.S. Tuffs Generalised predictive control — Part 1. The basic algorithm Automatica 23 2 1987 137 148
    • (1987) Automatica , vol.23 , Issue.2 , pp. 137-148
    • Clarke, D.W.1    Mohtadi, C.2    Tuffs, P.S.3
  • 30
    • 85120102854 scopus 로고    scopus 로고
    • Cutler CR, Ramaker BL. Dynamic matrix control — a computer control algorithm. American Institute Chemical Engineers Meeting Proc. Houston, TX, 1979.
  • 31
    • 0025462720 scopus 로고
    • Receding horizon control of nonlinear systems
    • D.Q. Mayne H. Michalska Receding horizon control of nonlinear systems IEEE Trans Auto Contr 35 7 1990 814 824
    • (1990) IEEE Trans Auto Contr , vol.35 , Issue.7 , pp. 814-824
    • Mayne, D.Q.1    Michalska, H.2
  • 32
    • 0026403834 scopus 로고
    • Direct and indirect model based control using artificial neural networks
    • D.M. Psichogios L.H. Ungar Direct and indirect model based control using artificial neural networks Ind Engng Chem Res 30 1991 2564 2573
    • (1991) Ind Engng Chem Res , vol.30 , pp. 2564-2573
    • Psichogios, D.M.1    Ungar, L.H.2
  • 33
    • 0026954989 scopus 로고
    • Artificial neural networks in process estimation and control
    • M.J. Willis G.A. Montague A.J. Morris Artificial neural networks in process estimation and control Automatica 28 6 1992 1181 1187
    • (1992) Automatica , vol.28 , Issue.6 , pp. 1181-1187
    • Willis, M.J.1    Montague, G.A.2    Morris, A.J.3
  • 34
    • 85120121164 scopus 로고    scopus 로고
    • Turner P, Montague GA, Morris AJ. Neural networks in dynamic process state estimation and nonlinear predictive control. Fourth Int Conf Artificial Neural Networks. Cambridge, 1995:284–289.
  • 35
    • 85120141561 scopus 로고    scopus 로고
    • Hunt KJ, Sbarbaro D. Studies in neural network based control. IEE Control Engineering Series, London, 1992.
  • 36
    • 0029490457 scopus 로고
    • A comparison of advanced distillation control techniques for a propylene–propane splitter
    • V. Gokhale S. Horuwitz J.B. Riggs A comparison of advanced distillation control techniques for a propylene–propane splitter Ind Engng Chem Res 34 1995 4413 4419
    • (1995) Ind Engng Chem Res , vol.34 , pp. 4413-4419
    • Gokhale, V.1    Horuwitz, S.2    Riggs, J.B.3
  • 37
    • 0042538707 scopus 로고    scopus 로고
    • Identification and control of anaerobic digesters using adaptive, online trained neural networks
    • C. Emmanouilides L. Petrou Identification and control of anaerobic digesters using adaptive, online trained neural networks Comput Chem Engng 21 1 1997 113 143
    • (1997) Comput Chem Engng , vol.21 , Issue.1 , pp. 113-143
    • Emmanouilides, C.1    Petrou, L.2
  • 38
    • 0025536559 scopus 로고
    • Neural network modelling and an extended DMC algorithm to control nonlinear systems
    • E. Hernandez Y. Arkun Neural network modelling and an extended DMC algorithm to control nonlinear systems Am Contr Conf, Boston 1 1990 2454 2459
    • (1990) Am Contr Conf, Boston , vol.1 , pp. 2454-2459
    • Hernandez, E.1    Arkun, Y.2
  • 39
    • 0026819616 scopus 로고
    • A new scheme combining neural feedforward control with model predictive control
    • M. Lee S. Park A new scheme combining neural feedforward control with model predictive control AIChE J 38 2 1992 193 200
    • (1992) AIChE J , vol.38 , Issue.2 , pp. 193-200
    • Lee, M.1    Park, S.2
  • 40
    • 0029379924 scopus 로고
    • Modelling and control of a packed distillation column using artificial neural networks
    • J.C. MacMurray D.M. Himmelblau Modelling and control of a packed distillation column using artificial neural networks Comput Chem Engng 19 10 1995 1077 1088
    • (1995) Comput Chem Engng , vol.19 , Issue.10 , pp. 1077-1088
    • MacMurray, J.C.1    Himmelblau, D.M.2
  • 41
    • 0030033669 scopus 로고    scopus 로고
    • Optimization techniques for the design of a neural predictive controller
    • Y. Tan A.R. VanCauwenberghe Optimization techniques for the design of a neural predictive controller Neurocomputing 10 1996 83 96
    • (1996) Neurocomputing , vol.10 , pp. 83-96
    • Tan, Y.1    VanCauwenberghe, A.R.2
  • 42
    • 3743105850 scopus 로고
    • A neural network strategy for disturbance pattern classification and adaptive multivariable control
    • L. Megan D.J. Cooper A neural network strategy for disturbance pattern classification and adaptive multivariable control Comput Chem Engng 19 2 1995 171 186
    • (1995) Comput Chem Engng , vol.19 , Issue.2 , pp. 171-186
    • Megan, L.1    Cooper, D.J.2
  • 43
    • 0021412027 scopus 로고
    • Vector quantization
    • R.M. Gray Vector quantization IEEE ASSP Mag 1 1984 4 29
    • (1984) IEEE ASSP Mag , vol.1 , pp. 4-29
    • Gray, R.M.1
  • 44
    • 85120109531 scopus 로고    scopus 로고
    • Abut H, editor. Vector quantization. New York: IEEE Press, 1990.
  • 45
    • 0003049327 scopus 로고
    • Neural net computing and the intelligent control of systems
    • Y.H. Pao S.M. Phillips D.J. Sobajic Neural net computing and the intelligent control of systems Int J Contr 56 2 1992 263 289
    • (1992) Int J Contr , vol.56 , Issue.2 , pp. 263-289
    • Pao, Y.H.1    Phillips, S.M.2    Sobajic, D.J.3
  • 47
    • 85120111608 scopus 로고    scopus 로고
    • Rall LB. Computational solution of nonlinear operator equations. New York: Wiley, 1979.
  • 48
    • 0027007477 scopus 로고
    • Nonlinear internal model control strategy for neural network models
    • E.P. Nahas M.A. Henson D.E. Seborg Nonlinear internal model control strategy for neural network models Comput Chem Engng 16 2 1992 1039 1057
    • (1992) Comput Chem Engng , vol.16 , Issue.2 , pp. 1039-1057
    • Nahas, E.P.1    Henson, M.A.2    Seborg, D.E.3
  • 49
    • 0028671267 scopus 로고
    • The design of experiments, training and implementation of nonlinear controllers based on neural network
    • B.S. Dayal P.A. Taylor J.F. MacGregor The design of experiments, training and implementation of nonlinear controllers based on neural network Can J Chem Engng 72 1994 1067 1079
    • (1994) Can J Chem Engng , vol.72 , pp. 1067-1079
    • Dayal, B.S.1    Taylor, P.A.2    MacGregor, J.F.3
  • 51
    • 0029291914 scopus 로고
    • A very simple structure for neural network control of distillation
    • S. Ramchandran R.R. Rhinehart A very simple structure for neural network control of distillation J Process Contr 5 2 1995 115 128
    • (1995) J Process Contr , vol.5 , Issue.2 , pp. 115-128
    • Ramchandran, S.1    Rhinehart, R.R.2
  • 53
    • 0030082252 scopus 로고    scopus 로고
    • Control affine neural network approach for non-minimum phase nonlinear process control
    • A. Aoyama F.J. Doyle V. Venkatasubramaniam Control affine neural network approach for non-minimum phase nonlinear process control J Process Contr 6 1 1996 17 26
    • (1996) J Process Contr , vol.6 , Issue.1 , pp. 17-26
    • Aoyama, A.1    Doyle, F.J.2    Venkatasubramaniam, V.3
  • 54
    • 85120141924 scopus 로고    scopus 로고
    • Basualdo MS, Ceccatto HA. Predictive control methods for distillation columns using neural networks. DYCORD Int. Fed. Auto. Cont. (IFAC) Symp. 95. 1995:171–176
  • 55
    • 85120138488 scopus 로고    scopus 로고
    • Piovoso MJ et al. A comparison of three nonlinear controller design applied to a non-adiabatic first-order exothermic reaction in a CSTR. Proc Am Control Conf 1992:490–493.
  • 56
    • 85120104135 scopus 로고    scopus 로고
    • Lightbody G, Irwin GW. A novel neural internal model control structure. Proc Am Control Conf 1995:350–354.
  • 57
    • 85120113490 scopus 로고    scopus 로고
    • Shah MA, Meckl PH. On-line control of a nonlinear system using radial basis function neural networks. Proc Am Control Conf 1995:4265–4269.
  • 58
    • 84987423405 scopus 로고
    • Control of nonlinear dynamical systems modeled by recurrent neural networks
    • M. Nikolaou V. Hanagandi Control of nonlinear dynamical systems modeled by recurrent neural networks AIChE J 39 11 1993 1890 1894
    • (1993) AIChE J , vol.39 , Issue.11 , pp. 1890-1894
    • Nikolaou, M.1    Hanagandi, V.2
  • 59
    • 0043273083 scopus 로고
    • Experiences with model-based controllers based on neural network process models
    • G.M. Scott W.H. Ray Experiences with model-based controllers based on neural network process models J Process Contr 3 3 1993 179 196
    • (1993) J Process Contr , vol.3 , Issue.3 , pp. 179-196
    • Scott, G.M.1    Ray, W.H.2
  • 60
    • 85120116901 scopus 로고    scopus 로고
    • Lightbody C. et al. Control Applications for Feed Forward Networks, IEE Control Engineering Series no. 46. IEE, UK, 1992:51–71.
  • 61
    • 0025399567 scopus 로고
    • Identification and control of dynamical systems using neural networks
    • K.S. Narendra K. Parthasarathy Identification and control of dynamical systems using neural networks IEE Proc Neural Networks 1 1990 4 27
    • (1990) IEE Proc Neural Networks , vol.1 , pp. 4-27
    • Narendra, K.S.1    Parthasarathy, K.2
  • 62
    • 0026954302 scopus 로고
    • Gaussian networks for direct adaptive control
    • R.M. Sanner J.J. Slotine Gaussian networks for direct adaptive control IEEE Trans Neural Networks 3 6 1992 1299 1317
    • (1992) IEEE Trans Neural Networks , vol.3 , Issue.6 , pp. 1299-1317
    • Sanner, R.M.1    Slotine, J.J.2
  • 63
    • 0025415732 scopus 로고
    • Forecasting and control using adaptive connectionist networks
    • B.E. Ydstie Forecasting and control using adaptive connectionist networks Comput Chem Engng 14 1990 583 599
    • (1990) Comput Chem Engng , vol.14 , pp. 583-599
    • Ydstie, B.E.1
  • 65
    • 0029322568 scopus 로고
    • Comparison of linear, nonlinear and neural-network-based adaptive controllers for a class of fed-batch fermentation process
    • J.D. Boslovic K.S. Narendra Comparison of linear, nonlinear and neural-network-based adaptive controllers for a class of fed-batch fermentation process Automatica 31 6 1995 817 840
    • (1995) Automatica , vol.31 , Issue.6 , pp. 817-840
    • Boslovic, J.D.1    Narendra, K.S.2
  • 66
    • 0030081211 scopus 로고    scopus 로고
    • Neural network architecture for process control based on the RTRL algorithm
    • T. Chovan T. Catfolis K. Meert Neural network architecture for process control based on the RTRL algorithm AIChE J 42 2 1996 493 502
    • (1996) AIChE J , vol.42 , Issue.2 , pp. 493-502
    • Chovan, T.1    Catfolis, T.2    Meert, K.3
  • 67
    • 58149319587 scopus 로고
    • Neural network modeling and control strategies for a pH process
    • A.P. Loh K.O. Looi K.F. Fong Neural network modeling and control strategies for a pH process J Process Contr 5 6 1995 355 362
    • (1995) J Process Contr , vol.5 , Issue.6 , pp. 355-362
    • Loh, A.P.1    Looi, K.O.2    Fong, K.F.3
  • 68
    • 0028496536 scopus 로고
    • Adaptive neural-network-based approach for the control of continuously stirred tank reactor
    • Y.Y. Yang D.A. Linkens Adaptive neural-network-based approach for the control of continuously stirred tank reactor IEE Proc — Contr Theory Applications 141 5 1994 341 349
    • (1994) IEE Proc — Contr Theory Applications , vol.141 , Issue.5 , pp. 341-349
    • Yang, Y.Y.1    Linkens, D.A.2
  • 69
    • 85120121190 scopus 로고    scopus 로고
    • Watanabe N. A comparison of neural network based control strategies for a CSTR. Adv. Cont. Chem. Process (ADCHEM) 94 Symp. 1994:391–396.
  • 70
    • 0029215491 scopus 로고
    • Design of a neural controller by inverse modelling
    • L. Dirion Design of a neural controller by inverse modelling Comput Chem Engng 19S 1995 S797 S802
    • (1995) Comput Chem Engng , vol.19S , pp. S797-S802
    • Dirion, L.1
  • 71
    • 85120098717 scopus 로고    scopus 로고
    • Khalid M, Omatu S. A neural network controller for a temperature control system. IEEE Contr. Syst. Mag., 1992:58–64.
  • 73
    • 0029347256 scopus 로고
    • Design and real time testing of a neural model predictive controller for a nonlinear system
    • H.J. VanCan H.A. Bracke Design and real time testing of a neural model predictive controller for a nonlinear system Chem Engng Sci 50 15 1995 2419 2430
    • (1995) Chem Engng Sci , vol.50 , Issue.15 , pp. 2419-2430
    • VanCan, H.J.1    Bracke, H.A.2
  • 74
    • 33751165671 scopus 로고
    • An online application of a neural network based predictive control strategy
    • J.T. Evans An online application of a neural network based predictive control strategy Proc IEE Colloqium Nonlinear Contr 12 1993 1 4
    • (1993) Proc IEE Colloqium Nonlinear Contr , vol.12 , pp. 1-4
    • Evans, J.T.1
  • 75
    • 85120110567 scopus 로고    scopus 로고
    • Langonet P., Neural nets for process control. Conf. on Precision Processing Technology. Netherlands, 1993:631–640.
  • 76
    • 85120096014 scopus 로고    scopus 로고
    • Sheppard CP, Gant CR, Ward RM. A neural network based furnace control system. Proc Am Control Conf 1992:500–504.
  • 77
    • 85120113404 scopus 로고    scopus 로고
    • Baratti R, Vacca G, Servido A. Neural networks modelling: application in inferential control strategies. Am Inst Chem Eng Annual Nov. Meeting. Miami, FL, 1995.
  • 78
    • 85120101424 scopus 로고    scopus 로고
    • Wormsley C, Henry J. A study of model predictive control for a distillation column. Am Inst Chem Eng Annual Nov Meeting San Francisco, CA, 1994.
  • 79
    • 85120131189 scopus 로고    scopus 로고
    • Doherty SK, Williams D, Gomm JB. Neural network identification and predictive control of an in-line pH process. Inst. Chem. Eng. — Advances in Process Control 4 Meeting. 1995:57–64.
  • 80
    • 85120098486 scopus 로고    scopus 로고
    • Dubois O, Nicolas J, Billat A. Adaptive neural network control of the temperature in an oven. Colloqium on Advances in Neural Network for Control and Systems, Vol. 8. Germany, 1994:1–3.
  • 81
    • 85120115258 scopus 로고    scopus 로고
    • Dutta P, Rhinehart RR. Experimental comparison of a novel, simple, neural network controller and linear model based controllers. Proc Am Control Conf 1995:1787–1789.
  • 82
    • 85120113449 scopus 로고    scopus 로고
    • Seborg DE. Experience with nonlinear control and identification strategies. IEE Control 94 Conf. 1994:879–886.
  • 83
    • 85120113579 scopus 로고    scopus 로고
    • Noriega JR, Wang H. A direct adaptive neural network control for unknown nonlinear systems and its application. Proc Am Control Conf 1995:4285–4289.
  • 84
    • 85120122189 scopus 로고    scopus 로고
    • Draeger A, Engell S, Ranke H. Model predictive control using neural networks. IEEE Control Systems 1995:61–66.
  • 85
    • 0030083646 scopus 로고    scopus 로고
    • Predictive control of quality in Batch polymerization using hybrid ANN models
    • A.Y. Tsen Predictive control of quality in Batch polymerization using hybrid ANN models AIChE J 42 2 1996 455 465
    • (1996) AIChE J , vol.42 , Issue.2 , pp. 455-465
    • Tsen, A.Y.1
  • 86
    • 85120104070 scopus 로고    scopus 로고
    • Hussain MA, Kershenbaum LS, Allwright JC. Online implementation of inverse-model-based control strategy using neural networks on partially simulated reactor. Am Inst Chem Eng Annual Nov Meeting, Miami, FL, 1995.
  • 87
    • 85120132394 scopus 로고    scopus 로고
    • Keeler J, Martin G et al. The Process Perfector — the next step in multivariable control and optimisation. Technical Report, Pavilion Technologies Inc., Austin, TX, 1997.
  • 88
    • 0029252259 scopus 로고
    • Model predictive control of an industrial packed bed reactor using neural networks
    • K.O. Temeng P.D. Schnelle T.J. McAvoy Model predictive control of an industrial packed bed reactor using neural networks J Process Contr 5 1 1995 19 27
    • (1995) J Process Contr , vol.5 , Issue.1 , pp. 19-27
    • Temeng, K.O.1    Schnelle, P.D.2    McAvoy, T.J.3
  • 89
    • 85120111015 scopus 로고    scopus 로고
    • Scheneker B, Agarwal M. Experimental application of control based on state feedback neural network predictors. Am Inst Chem Eng Annual Nov Meeting, San Francisco, CA, 1994.
  • 90
    • 0031236237 scopus 로고    scopus 로고
    • Recurrent backpropagation neural network adaptive control of Penicillin Acylase Fermentation by Arthrobacter viscosus
    • M. Syu J.B. Chang Recurrent backpropagation neural network adaptive control of Penicillin Acylase Fermentation by Arthrobacter viscosus Ind Engng Chem Res 36 1997 3756 3761
    • (1997) Ind Engng Chem Res , vol.36 , pp. 3756-3761
    • Syu, M.1    Chang, J.B.2
  • 91
    • 0026617166 scopus 로고
    • Comparing two neural networks for pattern based adaptive process control
    • D.J. Cooper L. Megan R.F. Hinde Comparing two neural networks for pattern based adaptive process control AIChE J 38 1 1992 41 55
    • (1992) AIChE J , vol.38 , Issue.1 , pp. 41-55
    • Cooper, D.J.1    Megan, L.2    Hinde, R.F.3
  • 92
    • 0029230583 scopus 로고
    • Unified excitation and performance diagnostic adaptive control framework
    • R.F. Hinde D.J. Cooper Unified excitation and performance diagnostic adaptive control framework AIChE J 41 1 1992 110 121
    • (1992) AIChE J , vol.41 , Issue.1 , pp. 110-121
    • Hinde, R.F.1    Cooper, D.J.2
  • 93
    • 85120124275 scopus 로고    scopus 로고
    • Riberio BM, Dourado A. Lime kiln simulation and control by neural networks. In: Bulsari, editor. Neural networks for chemical engineers, chap. 7, 1995.
  • 94
    • 0001764422 scopus 로고
    • Adaptive model based control using neural network
    • P.M. Mills A.Y. Zomaya M.O. Tade Adaptive model based control using neural network Int J Contr 60 6 1994 1163 1192
    • (1994) Int J Contr , vol.60 , Issue.6 , pp. 1163-1192
    • Mills, P.M.1    Zomaya, A.Y.2    Tade, M.O.3
  • 95
    • 85120135647 scopus 로고    scopus 로고
    • Bulsari A, Saxen B, Saxen H. Neural control of a fed batch Bioprocess. In: Lecture Notes in Computer Science (No. 686). Springer, Berlin, 1993.
  • 96
    • 0027657894 scopus 로고
    • Predictive control of quality in batch manufacturing process using artificial neural network models
    • B. Joseph F.W. Hanratty Predictive control of quality in batch manufacturing process using artificial neural network models Ind Engng Chem Res 32 1993 1951 1961
    • (1993) Ind Engng Chem Res , vol.32 , pp. 1951-1961
    • Joseph, B.1    Hanratty, F.W.2
  • 97
    • 85120096576 scopus 로고    scopus 로고
    • Eikens B, Karim M. Real time control of waste water neutralisation process using radial basis function. Adv Cont Chem Process (ADCHEM) Symp. Japan, 1994:125–130.
  • 98
    • 0029393368 scopus 로고
    • Neural model-predictive control of distributed parameter crystal growth process
    • M. Ishida J. Zhan Neural model-predictive control of distributed parameter crystal growth process AIChE J 41 10 1995 2333 2336
    • (1995) AIChE J , vol.41 , Issue.10 , pp. 2333-2336
    • Ishida, M.1    Zhan, J.2
  • 99
    • 0031152395 scopus 로고    scopus 로고
    • A nonlinear predictive control strategy based on radial basis function models
    • M. Pottmann D.E. Seborg A nonlinear predictive control strategy based on radial basis function models Comput Chem Engng 21 9 1997 965 980
    • (1997) Comput Chem Engng , vol.21 , Issue.9 , pp. 965-980
    • Pottmann, M.1    Seborg, D.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.