메뉴 건너뛰기




Volumn 55, Issue 15-16, 2012, Pages 4246-4253

Modeling of heat transfer coefficient in the furnace of CFB boilers by artificial neural network approach

Author keywords

CFB; Heat transfer; Modeling; Neural networks

Indexed keywords

ARTIFICIAL NEURAL NETWORK APPROACH; CFB; CFB BOILERS; CIRCULATING FLUIDIZED BED BOILER; INPUT PATTERNS; LOCAL HEAT TRANSFER COEFFICIENT; OVERALL HEAT TRANSFER COEFFICIENT; TRAINING AND TESTING;

EID: 84861529407     PISSN: 00179310     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijheatmasstransfer.2012.03.066     Document Type: Article
Times cited : (49)

References (27)
  • 1
    • 0029657568 scopus 로고    scopus 로고
    • Heat transfer to walls of a circulating fluidized-bed furnace
    • Review Article No 48
    • P. Basu, and P.K. Nag Heat transfer to walls of a circulating fluidized-bed furnace Chem. Eng. Sci. 51 1 1996 1 26 Review Article No 48
    • (1996) Chem. Eng. Sci. , vol.51 , Issue.1 , pp. 1-26
    • Basu, P.1    Nag, P.K.2
  • 3
    • 0002853535 scopus 로고
    • Practical implication of the effect of solids suspension density on heat transfer in large scale CFB boilers
    • New York, AIChE
    • R. Divilio R., T.J. Boyd, Practical implication of the effect of solids suspension density on heat transfer in large scale CFB boilers, in: Proc. 4th Int. Conf. Circulating Fluidized Beds, New York, AIChE, 1994, pp. 334-339.
    • (1994) Proc. 4th Int. Conf. Circulating Fluidized Beds , pp. 334-339
    • Divilio R, R.1    Boyd, T.J.2
  • 5
    • 11144296358 scopus 로고
    • Fluid dynamics and its relevance for basic features of heat transfer in circulating fluidized beds
    • New York, AIChE
    • O. Molerus, Fluid dynamics and its relevance for basic features of heat transfer in circulating fluidized beds, in: Proc. 4th Int. Conf. Circulating Fluidized Beds, New York, AIChE, 1994, pp. 285-390.
    • (1994) Proc. 4th Int. Conf. Circulating Fluidized Beds , pp. 285-390
    • Molerus, O.1
  • 6
    • 0033231790 scopus 로고    scopus 로고
    • Combustion of coal in circulating fluidized-bed boilers: A review
    • P. Basu Combustion of coal in circulating fluidized-bed boilers: a review Chem. Eng. Sci. 54 1999 5547 5557
    • (1999) Chem. Eng. Sci. , vol.54 , pp. 5547-5557
    • Basu, P.1
  • 7
    • 0032675088 scopus 로고    scopus 로고
    • Applications of artificial neural networks in energy systems. A review
    • S.A. Kalogirou Applications of artificial neural networks in energy systems. A review Energy Convers. Manage. 40 1999 1073 1087
    • (1999) Energy Convers. Manage. , vol.40 , pp. 1073-1087
    • Kalogirou, S.A.1
  • 8
    • 74249103769 scopus 로고    scopus 로고
    • Modeling of heat transfer enhancement by wire coil inserts using artificial neural network analysis
    • M.R. Jafari Nasr, A. Habibi Khalaj, and S.H. Mozaffari Modeling of heat transfer enhancement by wire coil inserts using artificial neural network analysis Appl. Therm. Eng. 30 2010 143 151
    • (2010) Appl. Therm. Eng. , vol.30 , pp. 143-151
    • Jafari Nasr, M.R.1    Habibi Khalaj, A.2    Mozaffari, S.H.3
  • 9
    • 77955267946 scopus 로고    scopus 로고
    • Modeling of convection heat transfer of supercritical carbon dioxide in a vertical tube at low Reynolds numbers using artificial neural networks
    • S.M. Pesteei, and M. Mehrabi Modeling of convection heat transfer of supercritical carbon dioxide in a vertical tube at low Reynolds numbers using artificial neural networks Int. Commun. Heat Mass Transfer 37 2010 901 906
    • (2010) Int. Commun. Heat Mass Transfer , vol.37 , pp. 901-906
    • Pesteei, S.M.1    Mehrabi, M.2
  • 10
    • 1342344621 scopus 로고    scopus 로고
    • Genetic algorithm and artificial neural network for engine optimization of efficiency and NOx emission
    • U. Kesgin Genetic algorithm and artificial neural network for engine optimization of efficiency and NOx emission Fuel 83 2004 885 895
    • (2004) Fuel , vol.83 , pp. 885-895
    • Kesgin, U.1
  • 11
    • 38949213344 scopus 로고    scopus 로고
    • The prediction of convective heat transfer in floor-heating systems by artificial neural networks
    • R. Karadag, and O. Akgobek The prediction of convective heat transfer in floor-heating systems by artificial neural networks Int. Commun. Heat Mass Transfer 35 2008 312 325
    • (2008) Int. Commun. Heat Mass Transfer , vol.35 , pp. 312-325
    • Karadag, R.1    Akgobek, O.2
  • 12
    • 0034743693 scopus 로고    scopus 로고
    • A neural network approach for non-iterative calculation of heat transfer coefficient in fluid-particle systems
    • S.S. Sablani A neural network approach for non-iterative calculation of heat transfer coefficient in fluid-particle systems Chem. Eng. Process. 40 2001 363 369
    • (2001) Chem. Eng. Process. , vol.40 , pp. 363-369
    • Sablani, S.S.1
  • 13
    • 77649183955 scopus 로고    scopus 로고
    • Development of artificial neural network based heat convection algorithm for thermal simulation of large rectangular cross-sectional area Earth-to air heat exhangers
    • J. Zhang, and F. Haghighat Development of artificial neural network based heat convection algorithm for thermal simulation of large rectangular cross-sectional area Earth-to air heat exhangers Energ. Build. 42 2010 435 440
    • (2010) Energ. Build. , vol.42 , pp. 435-440
    • Zhang, J.1    Haghighat, F.2
  • 15
    • 84861527185 scopus 로고    scopus 로고
    • Experimental investigations of heat transfer in a combustion chamber of a 670 MWt CFB boiler
    • Poland, Gdansk-Sopot
    • R. Sekret, W. Nowak, Experimental investigations of heat transfer in a combustion chamber of a 670 MWt CFB boiler, in: Proc. 19-th National Congress of Thermodynamicists, Poland, Gdansk-Sopot, (2005) 1-8.
    • (2005) Proc. 19-th National Congress of Thermodynamicists , pp. 1-8
    • Sekret, R.1    Nowak, W.2
  • 17
    • 74649087356 scopus 로고    scopus 로고
    • Modeling of solid fuels combustion in oxygen-enriched atmosphere in circulating fluidized bed boiler. Part I. The mathematical model of fuel combustion in oxygen-enriched CFB environment
    • J. Krzywanski, T. Czakiert, W. Muskała, R. Sekret, and W. Nowak Modeling of solid fuels combustion in oxygen-enriched atmosphere in circulating fluidized bed boiler. Part I. The mathematical model of fuel combustion in oxygen-enriched CFB environment Fuel Process. Technol. 91 2010 290 295
    • (2010) Fuel Process. Technol. , vol.91 , pp. 290-295
    • Krzywanski, J.1    Czakiert, T.2    Muskała, W.3    Sekret, R.4    Nowak, W.5
  • 19
    • 33750217137 scopus 로고    scopus 로고
    • Prediction of heat transfer rates for shell-and-tube heat exchangers by artificial neural networks approach
    • Q. Wang, G. Xie, M. Zeng, and L. Luo Prediction of heat transfer rates for shell-and-tube heat exchangers by artificial neural networks approach J. Therm. Sci. 15 3 2006 257 262
    • (2006) J. Therm. Sci. , vol.15 , Issue.3 , pp. 257-262
    • Wang, Q.1    Xie, G.2    Zeng, M.3    Luo, L.4
  • 20
    • 0035545813 scopus 로고    scopus 로고
    • x pulverized coal combustion
    • x pulverized coal combustion Fuel 80 2001 2163 2168
    • (2001) Fuel , vol.80 , pp. 2163-2168
    • Hao, Z.1    Kefa, C.2    Jianbo, M.3
  • 21
    • 0032155773 scopus 로고    scopus 로고
    • Dynamic characteristic analysis and control for a fluidized Bed incinerator
    • Y. Miyamoto, Y. Kurosaki, H. Fujiyama, E. Nanbu, Dynamic characteristic analysis and control for a fluidized Bed incinerator, Control Engineering Practice, 6 (1998) 1159-1168.
    • (1998) Control Engineering Practice , vol.6 , pp. 1159-1168
    • Miyamoto, Y.1    Kurosaki, Y.2    Fujiyama, H.3    Nanbu, E.4
  • 22
    • 84861526368 scopus 로고    scopus 로고
    • Application of neural networks for determining of the convective heat transfer coefficient in a circulating fluidized bed
    • J. Krzywanski, W. Muskała, and W. Nowak Application of neural networks for determining of the convective heat transfer coefficient in a circulating fluidized bed Power Eng. 11 2008 761 764
    • (2008) Power Eng. , vol.11 , pp. 761-764
    • Krzywanski, J.1    Muskała, W.2    Nowak, W.3
  • 23
    • 0040864993 scopus 로고    scopus 로고
    • Neural networks for combustion process modeling
    • London, UK
    • B. Muller, H. Keller, Neural networks for combustion process modelling, in: Proc. of the Int. Conf. EANN '96, London, UK, (1996), 87-90.
    • (1996) Proc. of the Int. Conf. EANN '96 , pp. 87-90
    • Muller, B.1    Keller, H.2
  • 24
    • 0039205493 scopus 로고    scopus 로고
    • Neural network models for predictive control of a thermal plant
    • London, UK
    • S. Milanic, R. Karba, Neural network models for predictive control of a thermal plant, in: Proc. of the Int. Conf. EANN '96, London, UK, (1996), 151-154.
    • (1996) Proc. of the Int. Conf. EANN '96 , pp. 151-154
    • Milanic, S.1    Karba, R.2
  • 25
    • 0029488627 scopus 로고
    • Utilising artificial neural network and repro-modelling in turbulent combustion
    • Perth, Western Australia
    • F.C. Christo, A.R. Masri, E.M. Nebot, Utilising artificial neural network and repro-modelling in turbulent combustion, in: Proc. of the IEEE Int. Conf. ICNN '95, Perth, Western Australia, 2 (1995), 911-916.
    • (1995) Proc. of the IEEE Int. Conf. ICNN '95 , vol.2 , pp. 911-916
    • Christo, F.C.1    Masri, A.R.2    Nebot, E.M.3
  • 26
    • 0026825415 scopus 로고
    • Novel fast training algorithm for multilayer feedforward neural network
    • D.J. Park, B.E. Jun, and J.H. Kim Novel fast training algorithm for multilayer feedforward neural network Electron. Lett. 28 6 1992 543 544
    • (1992) Electron. Lett. , vol.28 , Issue.6 , pp. 543-544
    • Park, D.J.1    Jun, B.E.2    Kim, J.H.3
  • 27
    • 10444275587 scopus 로고    scopus 로고
    • Non-iterative estimation of heat transfer coefficients using artificial neural network models
    • S.S. Sablani, A. Kacimov, J. Perret, A.S. Majumdar, and A. Campo Non-iterative estimation of heat transfer coefficients using artificial neural network models Int. J. Heat Mass Transfer 48 2005 665 679
    • (2005) Int. J. Heat Mass Transfer , vol.48 , pp. 665-679
    • Sablani, S.S.1    Kacimov, A.2    Perret, J.3    Majumdar, A.S.4    Campo, A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.