메뉴 건너뛰기




Volumn 39, Issue , 2013, Pages 18-26

Generalized classifier neural network

Author keywords

Classification neural networks; Gradient descent learning

Indexed keywords

CLASSIFICATION PERFORMANCE; DATA SETS; GENERALIZED REGRESSION NEURAL NETWORKS; GRADIENT DESCENT; MATLAB ENVIRONMENT; MULTI LAYER PERCEPTRON; OUTPUT LAYER; PROBABILISTIC NEURAL NETWORKS; RADIAL BASIS FUNCTION NEURAL NETWORKS; RADIAL BASIS FUNCTIONS; SEPARATION ABILITY; SMOOTHING PARAMETER;

EID: 84872194773     PISSN: 08936080     EISSN: 18792782     Source Type: Journal    
DOI: 10.1016/j.neunet.2012.12.001     Document Type: Article
Times cited : (68)

References (35)
  • 1
    • 69449101508 scopus 로고    scopus 로고
    • A probabilistic neural network for earthquake magnitude prediction
    • Adeli H., Panakkat A. A probabilistic neural network for earthquake magnitude prediction. Neural Networks 2009, 22:1018-1024.
    • (2009) Neural Networks , vol.22 , pp. 1018-1024
    • Adeli, H.1    Panakkat, A.2
  • 2
    • 77949549405 scopus 로고    scopus 로고
    • A comparison between three neural network models for classification problems
    • Al-Daoud E. A comparison between three neural network models for classification problems. Journal of Artificial Intelligence 2009, 2:56-64.
    • (2009) Journal of Artificial Intelligence , vol.2 , pp. 56-64
    • Al-Daoud, E.1
  • 5
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network
    • Bartlett P.L. The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network. IEEE Transactions on Information Theory 1998, 44(2):525-536.
    • (1998) IEEE Transactions on Information Theory , vol.44 , Issue.2 , pp. 525-536
    • Bartlett, P.L.1
  • 6
    • 0026860799 scopus 로고
    • Robust linear programming discrimination of two linearly inseparable sets
    • Bennett K.P., Mangasarian O.L. Robust linear programming discrimination of two linearly inseparable sets. Optimization Methods and Software 1992, 23-34.
    • (1992) Optimization Methods and Software , pp. 23-34
    • Bennett, K.P.1    Mangasarian, O.L.2
  • 7
    • 0344835882 scopus 로고    scopus 로고
    • Constructive training of probabilistic neural networks
    • Berthold M.R., Diamond J. Constructive training of probabilistic neural networks. Neurocomputing 1998, 19:167-183.
    • (1998) Neurocomputing , vol.19 , pp. 167-183
    • Berthold, M.R.1    Diamond, J.2
  • 8
    • 44949120848 scopus 로고    scopus 로고
    • Improving classification performance of sonar targets by applying general regression neural network with PCA
    • Erkmen B., Yildirim T. Improving classification performance of sonar targets by applying general regression neural network with PCA. Expert Systems with Applications 2008, 35:472-475.
    • (2008) Expert Systems with Applications , vol.35 , pp. 472-475
    • Erkmen, B.1    Yildirim, T.2
  • 9
    • 64849117838 scopus 로고    scopus 로고
    • Generalized regression neural networks and feed forward neural networks for prediction of scour depth around bridge piers
    • Firat M., Gungor M. Generalized regression neural networks and feed forward neural networks for prediction of scour depth around bridge piers. Advances in Engineering Software 2009, 40:731-737.
    • (2009) Advances in Engineering Software , vol.40 , pp. 731-737
    • Firat, M.1    Gungor, M.2
  • 10
    • 84872184884 scopus 로고    scopus 로고
    • UCI machine learning repository.
    • Frank, A., & Asuncion, A. (2010). UCI machine learning repository. http://archieve.ics.uci.edu/ml.
    • (2010)
    • Frank, A.1    Asuncion, A.2
  • 11
    • 0036064637 scopus 로고    scopus 로고
    • A probabilistic neural network approach for modeling and classification of bacterial growth/no-growth data
    • Hajmeer M., Basheer I. A probabilistic neural network approach for modeling and classification of bacterial growth/no-growth data. Journal of Microbiological Methods 2002, 51:217-226.
    • (2002) Journal of Microbiological Methods , vol.51 , pp. 217-226
    • Hajmeer, M.1    Basheer, I.2
  • 12
    • 0035119476 scopus 로고    scopus 로고
    • Heuristic pattern corrrection scheme using adaptively trained generalized regression neural networks
    • Hoya T., Chambers J.A. Heuristic pattern corrrection scheme using adaptively trained generalized regression neural networks. IEEE Transactions on Neural Networks 2001, 12:1.
    • (2001) IEEE Transactions on Neural Networks , vol.12 , pp. 1
    • Hoya, T.1    Chambers, J.A.2
  • 13
    • 78649656557 scopus 로고    scopus 로고
    • The application of probabilistic neural network model in the green supply chain performance evaluation for pig industry
    • In International conference on e-business and e-government.
    • Kailun, H., Huijun, X., & Maohua, X. (2010). The application of probabilistic neural network model in the green supply chain performance evaluation for pig industry. In International conference on e-business and e-government.
    • (2010)
    • Kailun, H.1    Huijun, X.2    Maohua, X.3
  • 18
    • 0003085879 scopus 로고
    • Pattern recognition via linear programming: theory and application to medical diagnosis
    • SIAM Publications
    • Mangasarian O.L., Setiono R., Wolberg W.H. Pattern recognition via linear programming: theory and application to medical diagnosis. Large-scale numerical optimization 1990, 22-30. SIAM Publications.
    • (1990) Large-scale numerical optimization , pp. 22-30
    • Mangasarian, O.L.1    Setiono, R.2    Wolberg, W.H.3
  • 19
    • 0002039637 scopus 로고
    • Cancer diagnosis via linear programming
    • Mangasarian O.L., Wolberg W.H. Cancer diagnosis via linear programming. SIAM News 1990, 23(5):1-18.
    • (1990) SIAM News , vol.23 , Issue.5 , pp. 1-18
    • Mangasarian, O.L.1    Wolberg, W.H.2
  • 20
    • 0034227864 scopus 로고    scopus 로고
    • Probabilistic neural-network structure determination for pattern classification
    • Mao K., Tan K., Set W. Probabilistic neural-network structure determination for pattern classification. IEEE Transactions on Neural Networks 2000, 11(4):1009-1016.
    • (2000) IEEE Transactions on Neural Networks , vol.11 , Issue.4 , pp. 1009-1016
    • Mao, K.1    Tan, K.2    Set, W.3
  • 21
    • 0031375740 scopus 로고    scopus 로고
    • A new training algorithm for the general regression neural network
    • In IEEE international conference on systems, man and cybernetics, computational cybernetics and simulation
    • Masters, T., & Land, W. (1997). A new training algorithm for the general regression neural network. In IEEE international conference on systems, man and cybernetics, computational cybernetics and simulation. Vol. 3 (pp. 1990-1994).
    • (1997) , vol.3 , pp. 1990-1994
    • Masters, T.1    Land, W.2
  • 23
    • 0036827084 scopus 로고    scopus 로고
    • QSAR/QSPR studies using probabilistic neural networks and generalized regression neural networks
    • Mosier P.D., Jurs P.C. QSAR/QSPR studies using probabilistic neural networks and generalized regression neural networks. Journal of Chemical Information and Computer Sciences 2002, 42:1460-1470.
    • (2002) Journal of Chemical Information and Computer Sciences , vol.42 , pp. 1460-1470
    • Mosier, P.D.1    Jurs, P.C.2
  • 24
    • 85011324931 scopus 로고    scopus 로고
    • Application of general regression neural networks for path loss prediction
    • In Proceedings of international workshop trends and recent achievements in information technology.
    • Popescu, I., Kanatas, A., Constantinou, P., & Nafornita, I. (2002). Application of general regression neural networks for path loss prediction. In Proceedings of international workshop trends and recent achievements in information technology.
    • (2002)
    • Popescu, I.1    Kanatas, A.2    Constantinou, P.3    Nafornita, I.4
  • 25
    • 77955874355 scopus 로고    scopus 로고
    • Application of generalized regression neural network in prediction of cement properties
    • In 2010 International conference on computer design and applications.
    • Ren, S., Yang, D., Ji, F., & Tian, X. (2010). Application of generalized regression neural network in prediction of cement properties. In 2010 International conference on computer design and applications.
    • (2010)
    • Ren, S.1    Yang, D.2    Ji, F.3    Tian, X.4
  • 26
    • 2542525075 scopus 로고    scopus 로고
    • Adaptive probabilistic neural networks for pattern classification in time-varying environment
    • Rutkowski L. Adaptive probabilistic neural networks for pattern classification in time-varying environment. IEEE Transactions on Neural Networks 2004, 15(4):811-827.
    • (2004) IEEE Transactions on Neural Networks , vol.15 , Issue.4 , pp. 811-827
    • Rutkowski, L.1
  • 27
    • 0025206332 scopus 로고
    • Probabilistic neural networks
    • Specht D.F. Probabilistic neural networks. Neural Networks 1990, 3:109-118.
    • (1990) Neural Networks , vol.3 , pp. 109-118
    • Specht, D.F.1
  • 29
    • 0034855365 scopus 로고    scopus 로고
    • A modified general regression neural network with new efficient training algorithms as a robust 'black box'-tool for data analysis
    • Tomandl D., Schober A. A modified general regression neural network with new efficient training algorithms as a robust 'black box'-tool for data analysis. Neural Networks 2001, 14:1023-1034.
    • (2001) Neural Networks , vol.14 , pp. 1023-1034
    • Tomandl, D.1    Schober, A.2
  • 30
    • 79952426701 scopus 로고    scopus 로고
    • Rainfall prediction using generalized regression neural network: case study Zhengzhou
    • In 2010 International conference on computational and information sciences.
    • Wang, Z., & Sheng, H. (2010). Rainfall prediction using generalized regression neural network: case study Zhengzhou. In 2010 International conference on computational and information sciences.
    • (2010)
    • Wang, Z.1    Sheng, H.2
  • 31
    • 0025651706 scopus 로고
    • Multisurface method of pattern separation for medical diagnosis applied to breast cytology
    • Wolberg W.H., Mangasarian O. Multisurface method of pattern separation for medical diagnosis applied to breast cytology. Proceedings of the National Academy of Sciences 1990, 87:9193-9196.
    • (1990) Proceedings of the National Academy of Sciences , vol.87 , pp. 9193-9196
    • Wolberg, W.H.1    Mangasarian, O.2
  • 32
    • 84887613323 scopus 로고    scopus 로고
    • Comparison of generazlized regression neural network and MLP performances on hydrologic data forecasting
    • In International conference on neural information processing.
    • Yildirim, T., & Cigizoglu, H. K. (2002). Comparison of generazlized regression neural network and MLP performances on hydrologic data forecasting. In International conference on neural information processing.
    • (2002)
    • Yildirim, T.1    Cigizoglu, H.K.2
  • 33
    • 84871968195 scopus 로고    scopus 로고
    • Improved general regression network for protein domain boundary prediction
    • In Sixth international conference on bioinformatics.
    • Yoo, P. D., Sikder, A. R., Zhou, B. B., & Zomaya, A. Y. (2007). Improved general regression network for protein domain boundary prediction. In Sixth international conference on bioinformatics.
    • (2007)
    • Yoo, P.D.1    Sikder, A.R.2    Zhou, B.B.3    Zomaya, A.Y.4
  • 34
    • 48149109082 scopus 로고    scopus 로고
    • A generalized regression neural network based on fuzzy means clustering and its application in system identification
    • In International symposium on information technology convergence.
    • Zhao, S., Zhang, J., Li, X., & Song, W. (2007). A generalized regression neural network based on fuzzy means clustering and its application in system identification. In International symposium on information technology convergence.
    • (2007)
    • Zhao, S.1    Zhang, J.2    Li, X.3    Song, W.4
  • 35
    • 71049147573 scopus 로고    scopus 로고
    • Application of probabilistic neural network model in evaluation of water quality
    • In Internation conference on environmental science and information application technology.
    • Zhu, C., & Hao, Z. (2009). Application of probabilistic neural network model in evaluation of water quality. In Internation conference on environmental science and information application technology.
    • (2009)
    • Zhu, C.1    Hao, Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.