메뉴 건너뛰기




Volumn 63, Issue , 2014, Pages 90-97

Artificial neural networks for the performance prediction of large solar systems

Author keywords

Artificial neural networks; Daily energy output; Large solar thermal systems; Maximum temperature of storage tank

Indexed keywords

ENERGY OUTPUT; ENERGY PERFORMANCE; MULTIPLE LINEAR REGRESSIONS; PERFORMANCE PARAMETERS; PERFORMANCE PREDICTION; SOLAR THERMAL SYSTEMS; STORAGE TANK; TYPICAL OPERATING CONDITIONS;

EID: 84884571934     PISSN: 09601481     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.renene.2013.08.049     Document Type: Article
Times cited : (95)

References (21)
  • 5
    • 84884557586 scopus 로고    scopus 로고
    • QAiST Project. Information on quality assurance in solar thermal: recent changes in the standards and outlook. QAiST Industry Workshop, Warsaw, Poland, 14 December 2011.
    • QAiST Project. Information on quality assurance in solar thermal: recent changes in the standards and outlook. QAiST Industry Workshop, Warsaw, Poland, 14 December 2011.
  • 6
    • 73749087127 scopus 로고    scopus 로고
    • Theoretical formulation and experimental validation of the input-output modeling approach for large solar thermal systems
    • Belessiotis V., Mathioulakis E., Papanicolaou E. Theoretical formulation and experimental validation of the input-output modeling approach for large solar thermal systems. Solar Energy 2010, 84(2):245-255.
    • (2010) Solar Energy , vol.84 , Issue.2 , pp. 245-255
    • Belessiotis, V.1    Mathioulakis, E.2    Papanicolaou, E.3
  • 7
    • 84867742374 scopus 로고    scopus 로고
    • Experimental validation of the input-output modeling approach for large solar thermal systems - accuracy of the test procedure
    • Belessiotis V., Mathioulakis E., Papanicolaou E. Experimental validation of the input-output modeling approach for large solar thermal systems - accuracy of the test procedure. Renew Energy 2012, 51:197-205.
    • (2012) Renew Energy , vol.51 , pp. 197-205
    • Belessiotis, V.1    Mathioulakis, E.2    Papanicolaou, E.3
  • 8
    • 38349002414 scopus 로고    scopus 로고
    • Development of a neural network-based fault diagnostic system for solar thermal applications
    • Kalogirou S.A., Lalot S., Florides G., Desmet B. Development of a neural network-based fault diagnostic system for solar thermal applications. Solar Energy 2008, 82(2):164-172.
    • (2008) Solar Energy , vol.82 , Issue.2 , pp. 164-172
    • Kalogirou, S.A.1    Lalot, S.2    Florides, G.3    Desmet, B.4
  • 9
    • 0033686465 scopus 로고    scopus 로고
    • Applications of artificial neural networks for energy systems
    • Kalogirou S.A. Applications of artificial neural networks for energy systems. Appl Energy 2000, 67(1-2):17-35.
    • (2000) Appl Energy , vol.67 , Issue.1-2 , pp. 17-35
    • Kalogirou, S.A.1
  • 10
    • 0034963531 scopus 로고    scopus 로고
    • Artificial neural networks in renewable energy systems: a review
    • Kalogirou S.A. Artificial neural networks in renewable energy systems: a review. Renew Sustain Energy Rev 2001, 5(4):373-401.
    • (2001) Renew Sustain Energy Rev , vol.5 , Issue.4 , pp. 373-401
    • Kalogirou, S.A.1
  • 11
    • 0242269356 scopus 로고    scopus 로고
    • Artificial intelligence for the modelling and control of combustion processes: a review
    • Kalogirou S.A. Artificial intelligence for the modelling and control of combustion processes: a review. Prog Energy Combust Sci 2003, 29(6):515-566.
    • (2003) Prog Energy Combust Sci , vol.29 , Issue.6 , pp. 515-566
    • Kalogirou, S.A.1
  • 12
    • 0032681110 scopus 로고    scopus 로고
    • Modelling of solar domestic water heating systems using artificial neural networks
    • Kalogirou S.A., Panteliou S., Dentsoras A. Modelling of solar domestic water heating systems using artificial neural networks. Solar Energy 1999, 65(6):335-342.
    • (1999) Solar Energy , vol.65 , Issue.6 , pp. 335-342
    • Kalogirou, S.A.1    Panteliou, S.2    Dentsoras, A.3
  • 13
    • 0034192268 scopus 로고    scopus 로고
    • Long-term performance prediction of forced circulation solar domestic water heating systems using artificial neural networks
    • Kalogirou S.A. Long-term performance prediction of forced circulation solar domestic water heating systems using artificial neural networks. Appl Energy 2000, 66(1):63-74.
    • (2000) Appl Energy , vol.66 , Issue.1 , pp. 63-74
    • Kalogirou, S.A.1
  • 14
    • 0033684135 scopus 로고    scopus 로고
    • Thermosiphon solar domestic water heating systems long-term performance prediction using artificial neural networks
    • Kalogirou S.A., Panteliou S. Thermosiphon solar domestic water heating systems long-term performance prediction using artificial neural networks. Solar Energy 2000, 69(2):163-174.
    • (2000) Solar Energy , vol.69 , Issue.2 , pp. 163-174
    • Kalogirou, S.A.1    Panteliou, S.2
  • 15
    • 0032083450 scopus 로고    scopus 로고
    • Artificial neural networks for modelling the starting-up of a solar steam generator
    • Kalogirou S.A., Neocleous C., Schizas C. Artificial neural networks for modelling the starting-up of a solar steam generator. Appl Energy 1998, 60(2):89-100.
    • (1998) Appl Energy , vol.60 , Issue.2 , pp. 89-100
    • Kalogirou, S.A.1    Neocleous, C.2    Schizas, C.3
  • 16
    • 0035522196 scopus 로고    scopus 로고
    • ASDEX upgrade team fuzzy-neural approaches to the prediction of disruptions in ASDEX upgrade
    • Morabito F.C., Versaci M., Pautasso G., Tichmann C. ASDEX upgrade team fuzzy-neural approaches to the prediction of disruptions in ASDEX upgrade. Nucl Fusion 2001, 41(11):1715.
    • (2001) Nucl Fusion , vol.41 , Issue.11 , pp. 1715
    • Morabito, F.C.1    Versaci, M.2    Pautasso, G.3    Tichmann, C.4
  • 20
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart D.E., Hinton G.E., Williams R.J. Learning representations by back-propagating errors. Nature 1986, 323(6088):533-536.
    • (1986) Nature , vol.323 , Issue.6088 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.