메뉴 건너뛰기




Volumn 26, Issue 1, 2013, Pages 293-301

A hybrid algorithm for artificial neural network training

Author keywords

Artificial Neural Networks; Backpropagation algorithm; Cross validation; Hybrid training algorithm; Particle swarm optimization; Time varying parameter

Indexed keywords

BACKPROPAGATION ALGORITHMS; NEURAL NETWORKS; PARTICLE SWARM OPTIMIZATION (PSO); RANDOM PROCESSES; TIME VARYING CONTROL SYSTEMS;

EID: 84870056917     PISSN: 09521976     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.engappai.2012.01.023     Document Type: Article
Times cited : (128)

References (43)
  • 1
    • 35048869659 scopus 로고    scopus 로고
    • Alba, E.; Chicano, J.F.; 2004.Training Neural Networks with GA hybrid algorithms. In: Proceedings of Genetic and Evolutionary Computation (GECCO04), 26-30 June, Seattle, Washington, 852-863.
    • Alba, E.; Chicano, J.F.; 2004.Training Neural Networks with GA hybrid algorithms. In: Proceedings of Genetic and Evolutionary Computation (GECCO04), 26-30 June, Seattle, Washington, 852-863.
  • 2
    • 84971631220 scopus 로고    scopus 로고
    • Al-Kazemi, B.; Mohan, C.K.; 2002. Training feedforward Neural Networks using multi-phase particle swarm optimization. 9th International Conference on Neural Information Processing (ICONIP02), 18-22 November, Singapore, Vol. 5, pp. 2615-2619.
    • Al-Kazemi, B.; Mohan, C.K.; 2002. Training feedforward Neural Networks using multi-phase particle swarm optimization. 9th International Conference on Neural Information Processing (ICONIP02), 18-22 November, Singapore, Vol. 5, pp. 2615-2619.
  • 3
    • 0029373724 scopus 로고
    • Training neural nets with the reactive tabu search
    • R. Battiti, and G. Tecchiolli Training neural nets with the reactive tabu search IEEE Trans. Neural Networks 6 5 1995 1185 1200
    • (1995) IEEE Trans. Neural Networks , vol.6 , Issue.5 , pp. 1185-1200
    • Battiti, R.1    Tecchiolli, G.2
  • 4
    • 28944441923 scopus 로고    scopus 로고
    • Blum, C.; Socha, K.; 2005. Training feed-forward Neural Networks with Ant Colony Optimization: an application to pattern classification. IEEE 5th International Conference on Hybrid Intelligent Systems (HIS'05), 6-9 November, Rio de Janeiro, Brazil, 233-238.
    • Blum, C.; Socha, K.; 2005. Training feed-forward Neural Networks with Ant Colony Optimization: an application to pattern classification. IEEE 5th International Conference on Hybrid Intelligent Systems (HIS'05), 6-9 November, Rio de Janeiro, Brazil, 233-238.
  • 5
    • 26844480248 scopus 로고    scopus 로고
    • Cantu-Paz, E.; Kamath, C.; 2005. An Empirical Comparison of Combinations of Evolutionary Algorithms and Neural Networks for Classification Problems, IEEE Trans. Syst. Man. Cybernet - Part B: Cynernet
    • Cantu-Paz, E.; Kamath, C.; 2005. An Empirical Comparison of Combinations of Evolutionary Algorithms and Neural Networks for Classification Problems, IEEE Trans. Syst. Man. Cybernet - Part B: Cynernet
  • 6
    • 34848850436 scopus 로고    scopus 로고
    • Carvalho, M.; Ludermir, T.B.; 2006. An analysis Of PSO hybrid algorithms for feed-forward Neural Networks training, Proceedings of the Ninth Brazilian Symposium on Neural Networks (SBRN'06), 23-27 October, Ribeirao Preto, SP, Brazil.
    • Carvalho, M.; Ludermir, T.B.; 2006. An analysis Of PSO hybrid algorithms for feed-forward Neural Networks training, Proceedings of the Ninth Brazilian Symposium on Neural Networks (SBRN'06), 23-27 October, Ribeirao Preto, SP, Brazil.
  • 7
    • 47149106839 scopus 로고    scopus 로고
    • Carvalho, M.; Ludermir, T.B.; 2007. Particle swarm optimization of neural network architectures and weights. 7th International Conference on Hybrid Intelligent Systems (HIS2007), 17-19 September, Kaiserslautern, Germany, 336-339.
    • Carvalho, M.; Ludermir, T.B.; 2007. Particle swarm optimization of neural network architectures and weights. 7th International Conference on Hybrid Intelligent Systems (HIS2007), 17-19 September, Kaiserslautern, Germany, 336-339.
  • 8
    • 67349281255 scopus 로고    scopus 로고
    • Evolutionary Artificial Neural Network design and training for woodveneer classification
    • M. Castellani, and H. Rowlands Evolutionary Artificial Neural Network design and training for woodveneer classification Eng. Appl. Artif. Intell. 22 4-5 2009 732 741
    • (2009) Eng. Appl. Artif. Intell. , vol.22 , Issue.45 , pp. 732-741
    • Castellani, M.1    Rowlands, H.2
  • 9
    • 0005905874 scopus 로고    scopus 로고
    • Chalup, S.; Maire, F.; 1999. A study on hill climbing algorithms for neural network training. In: Proceedings of the Congress on Evolutionary Computation (CEC99), 6-9 July, Washington, DC, USA, 3, 2014-2021.
    • Chalup, S.; Maire, F.; 1999. A study on hill climbing algorithms for neural network training. In: Proceedings of the Congress on Evolutionary Computation (CEC99), 6-9 July, Washington, DC, USA, 3, 2014-2021.
  • 10
    • 58049106978 scopus 로고    scopus 로고
    • Chen, X.;Wang, J.; Sun, D.; Liang J.; 2008.A novel hybrid Evolutionary Algorithm based on PSO and AFSA for feedforward neural network training. 4th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM), 12-14 October, Dalian, China, 1-5.
    • Chen, X.;Wang, J.; Sun, D.; Liang J.; 2008.A novel hybrid Evolutionary Algorithm based on PSO and AFSA for feedforward neural network training. 4th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM), 12-14 October, Dalian, China, 1-5.
  • 11
    • 0036464756 scopus 로고    scopus 로고
    • The particle swarm: Explosion, stability, and convergence in a multi-dimensional complex space
    • M. Clerc, and J. Kennedy The particle swarm: explosion, stability, and convergence in a multi-dimensional complex space IEEE Trans. Evol. Comput. 6 2002 58 73
    • (2002) IEEE Trans. Evol. Comput. , vol.6 , pp. 58-73
    • Clerc, M.1    Kennedy, J.2
  • 12
    • 0002345372 scopus 로고    scopus 로고
    • Cooperative learning in Neural Networks using particle swarm optimizers
    • A.P. Engelbrecht, and F.V.D. Bergh Cooperative learning in Neural Networks using particle swarm optimizers S. Afr. Comput. J. 26 2000 84 90
    • (2000) S. Afr. Comput. J. , vol.26 , pp. 84-90
    • Engelbrecht, A.P.1    Bergh, F.V.D.2
  • 13
    • 0031276011 scopus 로고    scopus 로고
    • Bayesian network classifiers
    • N. Friedman Bayesian network classifiers Mach. Learn. 29 1997 131 163
    • (1997) Mach. Learn. , vol.29 , pp. 131-163
    • Friedman, N.1
  • 14
    • 84942134374 scopus 로고    scopus 로고
    • Comparison of particle Swarm optimization and backpropagation as training algorithms for neural networks
    • April
    • V.G. Gudise, and G.K. Venayagamoorthy Comparison of particle Swarm optimization and backpropagation as training algorithms for neural networks Proc. IEEE Swarm. Intell. Symp. 24-26 2003 110 117 April
    • (2003) Proc. IEEE Swarm. Intell. Symp. , vol.24-26 , pp. 110-117
    • Gudise, V.G.1    Venayagamoorthy, G.K.2
  • 15
    • 38049022614 scopus 로고    scopus 로고
    • Han, L.; He X.; 2007. A novel opposition-based particle swarm optimization for noisy problems. IEEE 3th International Conference on Natural Computation (ICNC2007), Hiakou, Hainan, China, 3, 624-629.
    • Han, L.; He X.; 2007. A novel opposition-based particle swarm optimization for noisy problems. IEEE 3th International Conference on Natural Computation (ICNC2007), Hiakou, Hainan, China, 3, 624-629.
  • 17
    • 37249054534 scopus 로고    scopus 로고
    • Karaboga,D.; Akay,B.;Ozturk, C.;2007 Artificial Bee Colony (ABC) optimization algorithm for training feed-forward neural networks. Proceedings of the 4th International Conference on Modeling Decisions for Artificial Intelligence (MDAI'07), 16-18 August, Kitakyushu, Japan, 318-329.
    • Karaboga,D.; Akay,B.;Ozturk, C.;2007 Artificial Bee Colony (ABC) optimization algorithm for training feed-forward neural networks. Proceedings of the 4th International Conference on Modeling Decisions for Artificial Intelligence (MDAI'07), 16-18 August, Kitakyushu, Japan, 318-329.
  • 18
    • 0029535737 scopus 로고    scopus 로고
    • Kennedy, J.; Eberhart, R.; 1995. Particle swarm optimization. IEEE International Conference on Neural Networks, 27 November-1 December, 4, 1942-1948.
    • Kennedy, J.; Eberhart, R.; 1995. Particle swarm optimization. IEEE International Conference on Neural Networks, 27 November-1 December, 4, 1942-1948.
  • 19
    • 71749096569 scopus 로고    scopus 로고
    • Evolutionary Artificial Neural Networks by multi-dimensional Particle Swarm Optimization
    • S. Kiranyaz, T. Ince, A. Yildirim, and M. Gabbouj Evolutionary Artificial Neural Networks by multi-dimensional Particle Swarm Optimization Neural Networks 22 10 2009 1448 1462
    • (2009) Neural Networks , vol.22 , Issue.10 , pp. 1448-1462
    • Kiranyaz, S.1    Ince, T.2    Yildirim, A.3    Gabbouj, M.4
  • 20
    • 79955333130 scopus 로고    scopus 로고
    • Malinak, P.; Jaksa, R.; 2007. Simultaneous gradient and evolutionary Neural Network weights adaptation methods. IEEE Congress on Evolutionary Computation (CEC), 25-28 Steptember, Singapore, Maylisa, 2665-2671.
    • Malinak, P.; Jaksa, R.; 2007. Simultaneous gradient and evolutionary Neural Network weights adaptation methods. IEEE Congress on Evolutionary Computation (CEC), 25-28 Steptember, Singapore, Maylisa, 2665-2671.
  • 21
    • 0036131572 scopus 로고    scopus 로고
    • A comparison of evolution strategies and backpropagation for neural network training
    • M. Mandischer A comparison of evolution strategies and backpropagation for neural network training Neurocomputing. 42 1-4 2002 87 117
    • (2002) Neurocomputing. , vol.42 , Issue.14 , pp. 87-117
    • Mandischer, M.1
  • 22
    • 0036079715 scopus 로고    scopus 로고
    • Mendes, R.; Cortez, P.; Rocha, M.; Neves, J.; 2002. Particle swarm for feedforward Neural Network Training. IEEE International Joint Conference on Neural Networks (IJCNN02), 12-17 May, Honolulu, HI, USA, 1895-1899.
    • Mendes, R.; Cortez, P.; Rocha, M.; Neves, J.; 2002. Particle swarm for feedforward Neural Network Training. IEEE International Joint Conference on Neural Networks (IJCNN02), 12-17 May, Honolulu, HI, USA, 1895-1899.
  • 23
    • 84870965684 scopus 로고    scopus 로고
    • Omran, M.G.H.; 2009. Using Opposition-based Learning with Particle Swarm Optimization and Barebones Differential Evolution. Particle Swarm Optimization, InTech Education and Publishing, A. Lazinica (Ed), 373-384.
    • Omran, M.G.H.; 2009. Using Opposition-based Learning with Particle Swarm Optimization and Barebones Differential Evolution. Particle Swarm Optimization, InTech Education and Publishing, A. Lazinica (Ed), 373-384.
  • 25
    • 84870969387 scopus 로고    scopus 로고
    • Parsopoulos, K.E.; Vrahatis, M.N.; 2010. Particle Swarm Optimization and Intelligence: Advances and Applications, information science reference.
    • Parsopoulos, K.E.; Vrahatis, M.N.; 2010. Particle Swarm Optimization and Intelligence: Advances and Applications, information science reference.
  • 26
    • 84870963022 scopus 로고    scopus 로고
    • Prechelt L.; 1994. PROBEN1-A set of neural network benchmark problems and benchmarking rules. Technical Report 21/94, Faculty Informatics, University of Karlsruhe, Karlsruhe, Germany.
    • Prechelt L.; 1994. PROBEN1-A set of neural network benchmark problems and benchmarking rules. Technical Report 21/94, Faculty Informatics, University of Karlsruhe, Karlsruhe, Germany.
  • 27
    • 0032099978 scopus 로고    scopus 로고
    • Automaticearly stopping using cross validation: Quantifying the criteria
    • L. Prechelt Automaticearly stopping using cross validation: quantifying the criteria Neural Networks 11 4 1998 761 767
    • (1998) Neural Networks , vol.11 , Issue.4 , pp. 761-767
    • Prechelt, L.1
  • 28
    • 0029412003 scopus 로고
    • Some notes on neural learning algorithm benchmarking
    • L. Prechelt Some notes on neural learning algorithm benchmarking Neurocomputing 9 3 1995 343 347
    • (1995) Neurocomputing , vol.9 , Issue.3 , pp. 343-347
    • Prechelt, L.1
  • 29
    • 0030130727 scopus 로고    scopus 로고
    • A quantitative study of experimental evaluations of neural network learning algorithms
    • L. Prechelt A quantitative study of experimental evaluations of neural network learning algorithms Neural Networks 9 3 1996 457 462
    • (1996) Neural Networks , vol.9 , Issue.3 , pp. 457-462
    • Prechelt, L.1
  • 30
    • 3142768423 scopus 로고    scopus 로고
    • Self-organizing hierarchical particle swarm optimizer with time-varing acceleration coefficients
    • A. Ratnaweera, K. Saman, and H.C. Watson Self-organizing hierarchical particle swarm optimizer with time-varing acceleration coefficients IEEE Trans. Evol. Comput. 8 3 2004 240 255
    • (2004) IEEE Trans. Evol. Comput. , vol.8 , Issue.3 , pp. 240-255
    • Ratnaweera, A.1    Saman, K.2    Watson, H.C.3
  • 31
    • 0032051287 scopus 로고    scopus 로고
    • Global optimization for artificial neural networks: A tabu search application
    • R.S. Sexton, B. Alidaee, R.E. Dorsey, and J.D. Johnson Global optimization for artificial neural networks: a tabu search application Eur. J. Oper. Res. 106 2-3 1998 570 584
    • (1998) Eur. J. Oper. Res. , vol.106 , Issue.23 , pp. 570-584
    • Sexton, R.S.1    Alidaee, B.2    Dorsey, R.E.3    Johnson, J.D.4
  • 32
    • 0034508915 scopus 로고    scopus 로고
    • Reliable classification using neural networks: A Genetic Algorithm and backpropagation comparison
    • R.S. Sexton, and E.D. Dorsey Reliable classification using neural networks: a Genetic Algorithm and backpropagation comparison Decis. Support Syst. 30 2000 11 22
    • (2000) Decis. Support Syst. , vol.30 , pp. 11-22
    • Sexton, R.S.1    Dorsey, E.D.2
  • 34
    • 33847221479 scopus 로고    scopus 로고
    • Tizhoosh H.R.; 2005. Opposition-based learning: a new scheme for machine intelligence. International Conference Computational Intelligence Modeling Control and Automation, 28-30 November, Vienna, Austria, Vol. 1, 695-701.
    • Tizhoosh H.R.; 2005. Opposition-based learning: a new scheme for machine intelligence. International Conference Computational Intelligence Modeling Control and Automation, 28-30 November, Vienna, Austria, Vol. 1, 695-701.
  • 35
    • 0032122764 scopus 로고    scopus 로고
    • Simulated annealing and weight decay in adaptive learning: The SARPROP algorithm
    • N.K. Treadgold, and T.D. Gedeon Simulated annealing and weight decay in adaptive learning: the SARPROP algorithm IEEE Trans. Neural Networks 9 4 1998 662 668
    • (1998) IEEE Trans. Neural Networks , vol.9 , Issue.4 , pp. 662-668
    • Treadgold, N.K.1    Gedeon, T.D.2
  • 36
    • 84863387880 scopus 로고    scopus 로고
    • Department of Information and Computer Science University of California Irvine
    • UCI Repository of machine learning databases Department of Information and Computer Science 2011 University of California Irvine
    • (2011) UCI Repository of Machine Learning Databases
  • 37
    • 33847675397 scopus 로고    scopus 로고
    • Optimizing feedforward Artificial Neural Network Architecture
    • G.C. Vosniakos, and P.G. Benardos Optimizing feedforward Artificial Neural Network Architecture Eng. Appl. Artif. Intell. 20 3 2007 365 382
    • (2007) Eng. Appl. Artif. Intell. , vol.20 , Issue.3 , pp. 365-382
    • Vosniakos, G.C.1    Benardos, P.G.2
  • 38
    • 60349124016 scopus 로고    scopus 로고
    • Wu, Z.; Ni, Z.; Zhang, C.; Gu, L.; 2008. Opposition based comprehensive learning Particle Swarm Optimization. 3th International Conference on Intelligent System and Knowledge Engineering (ISKE), 17-19 November, 2, 1013-1019.
    • Wu, Z.; Ni, Z.; Zhang, C.; Gu, L.; 2008. Opposition based comprehensive learning Particle Swarm Optimization. 3th International Conference on Intelligent System and Knowledge Engineering (ISKE), 17-19 November, 2, 1013-1019.
  • 39
    • 84870962116 scopus 로고    scopus 로고
    • Yaghini, M.; Khoshraftar, M.M.; Fallahi, M.; 2011. HIOPGA: a new hybrid metaheuristic algorithm to train feedforward Neural Networks for Prediction. The 7th International Conference on Data Mining (DMIN'11), July 18-21, Las Vegas, NV, USA.
    • Yaghini, M.; Khoshraftar, M.M.; Fallahi, M.; 2011. HIOPGA: a new hybrid metaheuristic algorithm to train feedforward Neural Networks for Prediction. The 7th International Conference on Data Mining (DMIN'11), July 18-21, Las Vegas, NV, USA.
  • 40
    • 84876134484 scopus 로고    scopus 로고
    • Yaghini, M.; Khoshraftar, M.M.; Seyedabadi, M. Railway passenger train delay prediction via neural network model. J. Adv. Transp. doi:.193, in press.
    • Yaghini, M.; Khoshraftar, M.M.; Seyedabadi, M. Railway passenger train delay prediction via neural network model. J. Adv. Transp. doi: 10.1002/atr.193, in press.
  • 41
    • 0033362601 scopus 로고    scopus 로고
    • Evolving Artificial Neural Network
    • X. Yao Evolving Artificial Neural Network Proc. IEEE. 87 9 1999 1423 1447
    • (1999) Proc. IEEE. , vol.87 , Issue.9 , pp. 1423-1447
    • Yao, X.1
  • 42
    • 38649118854 scopus 로고    scopus 로고
    • Evolving Artificial Neural Networks using an improved PSO and DPSO
    • J. Yu, S. Wang, and L. Xi Evolving Artificial Neural Networks using an improved PSO and DPSO Neurocomputing 71 4-6 2008 1054 1060
    • (2008) Neurocomputing , vol.71 , Issue.46 , pp. 1054-1060
    • Yu, J.1    Wang, S.2    Xi, L.3
  • 43
    • 33750328484 scopus 로고    scopus 로고
    • Zaho, F.; Ren, Z.; Yu, D.; Yang, Y.; 2005. Application of an improved particle swarm optimization algorithm for Neural Network training. International Conference on Neural Networks and Brain (ICNN&B05), 13-15 October, Beijing, China, 3, 1639-1698.
    • Zaho, F.; Ren, Z.; Yu, D.; Yang, Y.; 2005. Application of an improved particle swarm optimization algorithm for Neural Network training. International Conference on Neural Networks and Brain (ICNN&B05), 13-15 October, Beijing, China, 3, 1639-1698.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.