메뉴 건너뛰기




Volumn 37, Issue 6, 2010, Pages 813-821

Prediction of critical heat flux using ANFIS

Author keywords

Adaptive network based fuzzy inference system; Critical heat flux; Parametric study

Indexed keywords

DEEP NEURAL NETWORKS; ERRORS; FORECASTING; FUZZY INFERENCE; FUZZY NEURAL NETWORKS; FUZZY SYSTEMS; NUCLEAR FUELS; NUCLEAR POWER PLANTS; NUCLEAR REACTORS;

EID: 79751531878     PISSN: 03064549     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.anucene.2010.02.019     Document Type: Article
Times cited : (43)

References (27)
  • 1
    • 34247632172 scopus 로고    scopus 로고
    • Modeling aeration efficiency of stepped cascades by using ANFIS
    • DOI 10.1002/clen.200700019
    • Baylar, A., Hanbay, D., Ozpolat, E., 2007. Modeling aeration efficiency of stepped cascades by using ANFIS. Clean-Soil Air Water 35 (2), 186-192. (Pubitemid 46672125)
    • (2007) Clean - Soil, Air, Water , vol.35 , Issue.2 , pp. 186-192
    • Baylar, A.1    Hanbay, D.2    Ozpolat, E.3
  • 4
    • 33646712247 scopus 로고    scopus 로고
    • Adaptive neural fuzzy inference systems (anfis)
    • Bonissone, P.P., 2002. Adaptive neural fuzzy inference systems (ANFIS): analysis and applications. http://www.rpi.edu/~bonisp/fuzzy-course/Papers-pdf/ anfis.rpi04.pdf.
    • (2002) Analysis And Applications
    • Bonissone, P.P.1
  • 6
    • 49149096916 scopus 로고    scopus 로고
    • Predicting performance of a groundsource heat pump system using fuzzy weighted pre-processing-based ANFIS
    • Esen, H., Inalli, M., Sengur, A., Esen, M., 2008. Predicting performance of a groundsource heat pump system using fuzzy weighted pre-processing-based ANFIS. Build. Environ. 43, 2178-2187.
    • (2008) Build. Environ , vol.43 , pp. 2178-2187
    • Esen, H.1    Inalli, M.2    Sengur, A.3    Esen, M.4
  • 10
    • 26944458497 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients
    • DOI 10.1016/j.jneumeth.2005.04.013, PII S0165027005001172
    • Güler, I., Übeyli, E.D., 2005. Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients. J. Neurosci. Methods 148 (2), 113-121. (Pubitemid 41476221)
    • (2005) Journal of Neuroscience Methods , vol.148 , Issue.2 , pp. 113-121
    • Guler, I.1    Ubeyli, E.D.2
  • 11
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference system
    • Jang, J.S.R., 1993. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst., Man, Cybern. A 23 (5/6), 665-685.
    • (1993) IEEE Trans. Syst., Man, Cybern A , vol.23 , Issue.5-6 , pp. 665-685
    • Jang, J.S.R.1
  • 13
    • 0027266182 scopus 로고
    • Functional equivalence between radial basis function networks and fuzzy inference system
    • Jang, R.J.S., Sun, C.T., 1993. Functional equivalence between radial basis function networks and fuzzy inference system. IEEE Trans. Neural Networks 4 (1), 156-159.
    • (1993) IEEE Trans. Neural Networks , vol.4 , Issue.1 , pp. 156-159
    • Jang, R.J.S.1    Sun, C.T.2
  • 14
    • 0029273384 scopus 로고
    • Neuro-fuzzy modeling and control
    • Jang, J.S.R., Sun, C.T., 1995. Neuro-fuzzy modeling and control. Proc. IEEE 83 (3), 378-406.
    • (1995) Proc. IEEE , vol.83 , Issue.3 , pp. 378-406
    • Jang, J.S.R.1    Sun, C.T.2
  • 15
    • 0035781085 scopus 로고    scopus 로고
    • Critical heat flux in subcooled flowboiling - An assessment of current understanding and future directions for research
    • Kandlikar, S.G., 2001. Critical heat flux in subcooled flowboiling - an assessment of current understanding and future directions for research. Multiphase Sci. Technol. 13 (3), 207-232.
    • (2001) Multiphase Sci. Technol , vol.13 , Issue.3 , pp. 207-232
    • Kandlikar, S.G.1
  • 16
    • 0033690146 scopus 로고    scopus 로고
    • Critical heat flux of water in vertical round tubes at low pressure and low flow conditions
    • Kim, H.C., Baek, W.P., Chang, S.H., 2000a. Critical heat flux of water in vertical round tubes at low pressure and low flow conditions. Nucl. Eng. Des. 199, 49-73.
    • (2000) Nucl. Eng. Des , vol.199 , pp. 49-73
    • Kim, H.C.1    Baek, W.P.2    Chang, S.H.3
  • 18
    • 0001022365 scopus 로고    scopus 로고
    • Integrating artificial neural networks and empirical correlations for the prediction of water-subcooled critical heat flux
    • Mazzola, A., 1997. Integrating artificial neural networks and empirical correlations for the prediction of water subcooled critical heat flux. Rev. Gen. Therm. 36, 799-806. (Pubitemid 127818611)
    • (1997) Revue Generale de Thermique , vol.36 , Issue.11 , pp. 799-806
    • Mazzola, A.1
  • 19
    • 0002060271 scopus 로고    scopus 로고
    • Parametric trends analysis of the critical heat flux based on artificial neural networks
    • Moon, S., Baek, W.P., Chang, S.H., 1996. Parametric trends analysis of the critical heat flux based on artificial neural networks. Nucl. Eng. Des. 163, 29-49. (Pubitemid 126369912)
    • (1996) Nuclear Engineering and Design , vol.163 , Issue.1-2 , pp. 29-49
    • Moon, S.K.1    Baek, W.-P.2    Chang, S.H.3
  • 20
    • 0028761466 scopus 로고
    • Classification and prediction of the critical heat flux using fuzzy clustering and artificial neural networks
    • Moon, S., Chang, S.H., 1994. Classification and prediction of the critical heat flux using fuzzy clustering and artificial neural networks. Nucl. Eng. Des. 150, 151-161.
    • (1994) Nucl. Eng. Des , vol.150 , pp. 151-161
    • Moon, S.1    Chang, S.H.2
  • 21
    • 0036577756 scopus 로고    scopus 로고
    • Application of an artificial neural network in reactor thermo hydraulic problem: Prediction of critical heat flux
    • Su, G., Fukuda, K., Jia, D., Morita, K., 2002. Application of an artificial neural network in reactor thermo hydraulic problem: prediction of critical heat flux. Nucl. Sci. Technol. 39 (5), 546-571.
    • (2002) Nucl. Sci. Technol , vol.39 , Issue.5 , pp. 546-571
    • Su, G.1    Fukuda, K.2    Jia, D.3    Morita, K.4
  • 25
    • 33846447425 scopus 로고    scopus 로고
    • Critical heat flux prediction by using radial basis function and multilayer perceptron neural networks: A comparison study
    • DOI 10.1016/j.nucengdes.2006.05.005, PII S0029549306003736
    • Vaziri, N., Hojabri, A., Erfani, A., Monsefi, M., Nilforooshan, N., 2007. Critical heat flux prediction by using radial basis function and multilayer perceptron neural networks: a comparison study. Nucl. Eng. Des. 237, 377-385. (Pubitemid 46148982)
    • (2007) Nuclear Engineering and Design , vol.237 , Issue.4 , pp. 377-385
    • Vaziri, N.1    Hojabri, A.2    Erfani, A.3    Monsefi, M.4    Nilforooshan, B.5
  • 26
    • 32144456879 scopus 로고    scopus 로고
    • Studies on critical heat flux in flow boiling at near critical pressures
    • DOI 10.1016/j.ijheatmasstransfer.2005.06.029, PII S0017931005004576
    • Vijayarangan, B.R., Jayanti, S., Balakrishnan, A.R., 2006. Studies on critical heat flux in flow boiling at near critical pressures. Int. J. Heat Mass Transfer 49, 259-268. (Pubitemid 43205817)
    • (2006) International Journal of Heat and Mass Transfer , vol.49 , Issue.1-2 , pp. 259-268
    • Vijayarangan, B.R.1    Jayanti, S.2    Balakrishnan, A.R.3
  • 27
    • 0027105462 scopus 로고
    • Prediction of critical heat using a hybrid Kohon-backpropagation neural network intelligent engineering systems through artificial neural networks
    • St. Louis, MO, USA
    • Yapo, T., Embrechets, S.T., Cathey, S.T., 1992. Prediction of critical heat using a hybrid Kohon-backpropagation neural network intelligent engineering systems through artificial neural networks. In: Proceeding of the Artificial Neural Networks in Engineering (ANNIE'92), vol. 2, St. Louis, MO, USA, pp. 853-858.
    • (1992) Proceeding of the Artificial Neural Networks in Engineering (ANNIE'92) , vol.2 , pp. 853-858
    • Yapo, T.1    Embrechets, S.T.2    Cathey, S.T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.