메뉴 건너뛰기




Volumn 90, Issue 7, 2012, Pages 938-949

Dynamic crude oil fouling prediction in industrial preheaters using optimized ANN based moving window technique

Author keywords

ANN; Crude oil; Dynamic prediction; Fouling; Moving window; Preheat exchanger

Indexed keywords

ANN; ARTIFICIAL NEURAL NETWORK MODELS; COMPLEX DYNAMICS; DATA BLOCKS; DATA EXTRACTION; DYNAMIC PREDICTION; EXPERIMENTAL DATA; FOULING BEHAVIOR; FOULING PREDICTION; FOULING RATE; MEAN RELATIVE ERROR; MODELING APPROACH; MODELING STRATEGY; MOVING WINDOW; ONLINE MONITORING; PREHEAT EXCHANGER; PROCESS DYNAMICS; SHELL AND TUBE HEAT EXCHANGERS;

EID: 84862317127     PISSN: 02638762     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cherd.2011.10.013     Document Type: Article
Times cited : (38)

References (42)
  • 1
    • 38949129019 scopus 로고    scopus 로고
    • Evaluation of ANN modeling for prediction of crude oil fouling behavior
    • Aminian J., Shahhosseini S. Evaluation of ANN modeling for prediction of crude oil fouling behavior. Appl. Therm. Eng. 2008, 28:668-674.
    • (2008) Appl. Therm. Eng. , vol.28 , pp. 668-674
    • Aminian, J.1    Shahhosseini, S.2
  • 2
    • 67349198590 scopus 로고    scopus 로고
    • Neuro-based formulation to predict fouling threshold in crude preheaters
    • Aminian J., Shahhosseini S. Neuro-based formulation to predict fouling threshold in crude preheaters. Int. Commun. Heat Mass Transfer 2009, 36:525-531.
    • (2009) Int. Commun. Heat Mass Transfer , vol.36 , pp. 525-531
    • Aminian, J.1    Shahhosseini, S.2
  • 3
    • 0033105287 scopus 로고    scopus 로고
    • Model selection in neural networks
    • Anders U., Korn O. Model selection in neural networks. Neural Networks 2009, 12(2):309-323.
    • (2009) Neural Networks , vol.12 , Issue.2 , pp. 309-323
    • Anders, U.1    Korn, O.2
  • 7
    • 0024280480 scopus 로고    scopus 로고
    • Asphaltene precipitation primary crude exchanger fouling mechanism
    • Dickakian G., Seay S. Asphaltene precipitation primary crude exchanger fouling mechanism. Oil Gas J. 1998, 86(10):47-50.
    • (1998) Oil Gas J. , vol.86 , Issue.10 , pp. 47-50
    • Dickakian, G.1    Seay, S.2
  • 9
    • 0000615669 scopus 로고
    • Function minimization by conjugate gradients
    • Fletcher R., Reeves C.M. Function minimization by conjugate gradients. Comput. J. 1964, 7(2):149-154.
    • (1964) Comput. J. , vol.7 , Issue.2 , pp. 149-154
    • Fletcher, R.1    Reeves, C.M.2
  • 11
    • 0028543366 scopus 로고
    • Training feed forward networks with the Marquardt algorithm
    • Hagan M.T., Menhaj M. Training feed forward networks with the Marquardt algorithm. IEEE Trans. Neural Networks 1994, 5:989-993.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.2
  • 14
    • 50849083804 scopus 로고    scopus 로고
    • Accounts of experiences in the application of artificial neural networks in chemical engineering
    • Himmelblau D.M. Accounts of experiences in the application of artificial neural networks in chemical engineering. Ind. Eng. Chem. Res. 2008, 47:5782-5796.
    • (2008) Ind. Eng. Chem. Res. , vol.47 , pp. 5782-5796
    • Himmelblau, D.M.1
  • 15
    • 84862314371 scopus 로고    scopus 로고
    • HIS website [Internet], UK, The source of critical information and insight, Published as a news service by HIS [updated 2007 February 2; cited August 13], Available from:
    • HIS website [Internet], UK, The source of critical information and insight, Published as a news service by HIS [updated 2007 February 2; cited 2010 August 13], Available from: http://uk.ihs.com/news/overcoming-effect-oil-fouling.htm.
    • (2010)
  • 16
    • 33646370475 scopus 로고    scopus 로고
    • Modeling of crude oil fouling in preheat exchangers of refinery distillation units
    • Jafari Nasr M.R., Majidi Givi M. Modeling of crude oil fouling in preheat exchangers of refinery distillation units. Appl. Therm. Eng. 2006, 26:1572-1577.
    • (2006) Appl. Therm. Eng. , vol.26 , pp. 1572-1577
    • Jafari Nasr, M.R.1    Majidi Givi, M.2
  • 17
    • 0038330469 scopus 로고    scopus 로고
    • Online fouling detection in electrical circulating heaters using neural networks
    • Lalot S., Lecoeuche S. Online fouling detection in electrical circulating heaters using neural networks. Int. J. Heat Mass Transfer 2003, 46:2445-2457.
    • (2003) Int. J. Heat Mass Transfer , vol.46 , pp. 2445-2457
    • Lalot, S.1    Lecoeuche, S.2
  • 18
    • 33645017386 scopus 로고    scopus 로고
    • Online detection of fouling in a water circulating temperature controller (WCTC) used in injection moulding. Part 1. Principles
    • Lalot S. Online detection of fouling in a water circulating temperature controller (WCTC) used in injection moulding. Part 1. Principles. Appl. Therm. Eng. 2006, 26:1087-1094.
    • (2006) Appl. Therm. Eng. , vol.26 , pp. 1087-1094
    • Lalot, S.1
  • 19
    • 33645029368 scopus 로고    scopus 로고
    • Online detection of fouling in a water circulating temperature controller (WCTC) used in injection moulding. Part 2. Application
    • Lalot S. Online detection of fouling in a water circulating temperature controller (WCTC) used in injection moulding. Part 2. Application. Appl. Therm. Eng. 2006, 26:1095-1105.
    • (2006) Appl. Therm. Eng. , vol.26 , pp. 1095-1105
    • Lalot, S.1
  • 21
    • 0022011031 scopus 로고
    • Input/output parametric models for nonlinear system: 1. Deterministic nonlinear systems: 2. Stochastic nonlinear systems
    • Leontaritis I.J., Billings S.A. Input/output parametric models for nonlinear system: 1. Deterministic nonlinear systems: 2. Stochastic nonlinear systems. Int. J. Control. 1985, 41:303-344.
    • (1985) Int. J. Control. , vol.41 , pp. 303-344
    • Leontaritis, I.J.1    Billings, S.A.2
  • 22
    • 0001136496 scopus 로고
    • Identification using feed forward networks
    • Levin A.U., Nerendra K.S. Identification using feed forward networks. Neural Comput. 1995, 7:349-357.
    • (1995) Neural Comput. , vol.7 , pp. 349-357
    • Levin, A.U.1    Nerendra, K.S.2
  • 26
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • Moller M.F. A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks 1993, 6(4):525-533.
    • (1993) Neural Networks , vol.6 , Issue.4 , pp. 525-533
    • Moller, M.F.1
  • 28
    • 77950299927 scopus 로고    scopus 로고
    • A methodology for modeling batch reactors using generalized dynamic neural networks
    • Navvab Kashani M., Shahhosseini S. A methodology for modeling batch reactors using generalized dynamic neural networks. Chem. Eng. J. 2010, 159:195-202.
    • (2010) Chem. Eng. J. , vol.159 , pp. 195-202
    • Navvab Kashani, M.1    Shahhosseini, S.2
  • 29
  • 31
    • 0006057398 scopus 로고    scopus 로고
    • Effect of mitigating fouling on the energy efficiency of crude oil distillation
    • Panchal C.B., Huangfu E.P. Effect of mitigating fouling on the energy efficiency of crude oil distillation. Heat Transfer Eng. 2000, 21(3):3-9.
    • (2000) Heat Transfer Eng. , vol.21 , Issue.3 , pp. 3-9
    • Panchal, C.B.1    Huangfu, E.P.2
  • 32
    • 0036643177 scopus 로고    scopus 로고
    • Evaluation of laboratory crude oil threshold fouling data for application to refinery preheat trains
    • Polley G.T., Wilson D.I., Yeap B.L., Pugh S.J. Evaluation of laboratory crude oil threshold fouling data for application to refinery preheat trains. Appl. Therm. Eng. 2002, 22:777-788.
    • (2002) Appl. Therm. Eng. , vol.22 , pp. 777-788
    • Polley, G.T.1    Wilson, D.I.2    Yeap, B.L.3    Pugh, S.J.4
  • 33
    • 0032099978 scopus 로고    scopus 로고
    • Automatic early stopping using cross validation: quantifying the criteria
    • Prechelt L. Automatic early stopping using cross validation: quantifying the criteria. Neural Networks 1998, 11(4):761-767.
    • (1998) Neural Networks , vol.11 , Issue.4 , pp. 761-767
    • Prechelt, L.1
  • 34
    • 0033105479 scopus 로고    scopus 로고
    • A comparison of the ability of black box and neural network models of ARX structure to represent a fluidized bed anaerobic digestion process
    • Premier G.C., Dinsdale R., Guwy A.J., Hawkes F.R., Hawkes D.L., Wilcox S.J. A comparison of the ability of black box and neural network models of ARX structure to represent a fluidized bed anaerobic digestion process. Water Res. 1999, 33(4):1027-1037.
    • (1999) Water Res. , vol.33 , Issue.4 , pp. 1027-1037
    • Premier, G.C.1    Dinsdale, R.2    Guwy, A.J.3    Hawkes, F.R.4    Hawkes, D.L.5    Wilcox, S.J.6
  • 36
    • 33646734054 scopus 로고    scopus 로고
    • Neural network for evaluating boiler behavior
    • Romeo L.M., Gareta R. Neural network for evaluating boiler behavior. Appl. Therm. Eng. 2006, 26:1530-1536.
    • (2006) Appl. Therm. Eng. , vol.26 , pp. 1530-1536
    • Romeo, L.M.1    Gareta, R.2
  • 38
    • 0026868901 scopus 로고
    • Long-term predictions of chemical processes using recurrent neural networks: a parallel training approach
    • Su H.T., McAvoy T.J., Werbos P. Long-term predictions of chemical processes using recurrent neural networks: a parallel training approach. Ind. Eng. Chem. Res. 1992, 31:1338-1352.
    • (1992) Ind. Eng. Chem. Res. , vol.31 , pp. 1338-1352
    • Su, H.T.1    McAvoy, T.J.2    Werbos, P.3
  • 39
    • 21344457000 scopus 로고    scopus 로고
    • Monitoring and prediction of fouling in coal-fired utility boilers using neural networks
    • Teruel E., Cortés C., Díez L.I., Arauzo I. Monitoring and prediction of fouling in coal-fired utility boilers using neural networks. Chem. Eng. Sci. 2005, 60:5035-5048.
    • (2005) Chem. Eng. Sci. , vol.60 , pp. 5035-5048
    • Teruel, E.1    Cortés, C.2    Díez, L.I.3    Arauzo, I.4
  • 41
    • 0442328455 scopus 로고    scopus 로고
    • Mitigation of crude oil refinery heat exchanger fouling through retrofits based on thermo-hydraulic fouling models
    • Yeap B.L., Wilson D.I., Polley G.T., Pugh S.J. Mitigation of crude oil refinery heat exchanger fouling through retrofits based on thermo-hydraulic fouling models. Chem. Eng. Res. Des. 2004, 84(1):53-71.
    • (2004) Chem. Eng. Res. Des. , vol.84 , Issue.1 , pp. 53-71
    • Yeap, B.L.1    Wilson, D.I.2    Polley, G.T.3    Pugh, S.J.4
  • 42
    • 0031628183 scopus 로고    scopus 로고
    • Long term prediction models based on mixed order locally recurrent neural network
    • Zhang J., Morris A.J., Martin E.B. Long term prediction models based on mixed order locally recurrent neural network. Comput. Chem. Eng. 1998, 22:1051-1063.
    • (1998) Comput. Chem. Eng. , vol.22 , pp. 1051-1063
    • Zhang, J.1    Morris, A.J.2    Martin, E.B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.