-
1
-
-
84893692635
-
Cellular complexity of the bone marrow hematopoietic stem cell niche
-
Calvi, L.M. & D.C. Link . 2014. Cellular complexity of the bone marrow hematopoietic stem cell niche. Calcif. Tissue Int. 94: 112-124.
-
(2014)
Calcif. Tissue Int.
, vol.94
, pp. 112-124
-
-
Calvi, L.M.1
Link, D.C.2
-
2
-
-
84892610064
-
The bone marrow niche for haematopoietic stem cells
-
Morrison, S.J. & D.T. Scadden . 2014. The bone marrow niche for haematopoietic stem cells. Nature 505: 327-334.
-
(2014)
Nature
, vol.505
, pp. 327-334
-
-
Morrison, S.J.1
Scadden, D.T.2
-
3
-
-
78651092929
-
In vivo imaging of transplanted hematopoietic stem and progenitor cells in mouse calvarium bone marrow
-
Lo Celso, C., C.P. Lin & D.T. Scadden . 2011. In vivo imaging of transplanted hematopoietic stem and progenitor cells in mouse calvarium bone marrow. Nat. Protoc. 6: 1-14.
-
(2011)
Nat. Protoc.
, vol.6
, pp. 1-14
-
-
Lo Celso, C.1
Lin, C.P.2
Scadden, D.T.3
-
4
-
-
84859899567
-
Acute myeloid leukemia stem cells and CD33-targeted immunotherapy
-
Walter, R.B., F.R. Appelbaum, E.H. Estey, et al. 2012. Acute myeloid leukemia stem cells and CD33-targeted immunotherapy. Blood 119: 6198-6208.
-
(2012)
Blood
, vol.119
, pp. 6198-6208
-
-
Walter, R.B.1
Appelbaum, F.R.2
Estey, E.H.3
-
5
-
-
36148972831
-
Ph+/VE-cadherin + identifies a stem cell like population of acute lymphoblastic leukemia sustained by bone marrow niche cells
-
Wang, L., H. O'Leary, J. Fortney, et al. 2007. Ph+/VE-cadherin + identifies a stem cell like population of acute lymphoblastic leukemia sustained by bone marrow niche cells. Blood 110: 3334-3344.
-
(2007)
Blood
, vol.110
, pp. 3334-3344
-
-
Wang, L.1
O'Leary, H.2
Fortney, J.3
-
6
-
-
0030911358
-
Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice
-
Bhatia, M., J.C. Wang, U. Kapp, et al. 1997. Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proc. Natl. Acad. Sci. U. S. A. 94: 5320-5325.
-
(1997)
Proc. Natl. Acad. Sci. U. S. A.
, vol.94
, pp. 5320-5325
-
-
Bhatia, M.1
Wang, J.C.2
Kapp, U.3
-
7
-
-
0030789242
-
Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell
-
Bonnet, D. & J.E. Dick . 1997. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 3: 730-737.
-
(1997)
Nat. Med.
, vol.3
, pp. 730-737
-
-
Bonnet, D.1
Dick, J.E.2
-
8
-
-
0028091194
-
A cell initiating human acute myeloid leukaemia after transplantation into SCID mice
-
Lapidot, T., C. Sirard, J. Vormoor, et al. 1994. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367: 645-648.
-
(1994)
Nature
, vol.367
, pp. 645-648
-
-
Lapidot, T.1
Sirard, C.2
Vormoor, J.3
-
9
-
-
84874235360
-
Hematopoietic stem cell and progenitor cell mechanisms in myelodysplastic syndromes
-
Pang, W.W., J.V. Pluvinage, E.A. Price, et al. 2013. Hematopoietic stem cell and progenitor cell mechanisms in myelodysplastic syndromes. Proc. Natl. Acad. Sci. U. S. A. 110: 3011-3016.
-
(2013)
Proc. Natl. Acad. Sci. U. S. A.
, vol.110
, pp. 3011-3016
-
-
Pang, W.W.1
Pluvinage, J.V.2
Price, E.A.3
-
10
-
-
84865756332
-
Molecular ontogeny of donor-derived follicular lymphomas occurring after hematopoietic cell transplantation
-
Weigert, O., N. Kopp, A.A. Lane, et al. 2012. Molecular ontogeny of donor-derived follicular lymphomas occurring after hematopoietic cell transplantation. Cancer. Discov. 2: 47-55.
-
(2012)
Cancer. Discov.
, vol.2
, pp. 47-55
-
-
Weigert, O.1
Kopp, N.2
Lane, A.A.3
-
11
-
-
76549104736
-
Lymphoma stem cells: enough evidence to support their existence
-
Martinez-Climent, J.A., L. Fontan, R.D. Gascoyne, et al. 2010. Lymphoma stem cells: enough evidence to support their existence? Haematologica 95: 293-302.
-
(2010)
Haematologica
, vol.95
, pp. 293-302
-
-
Martinez-Climent, J.A.1
Fontan, L.2
Gascoyne, R.D.3
-
12
-
-
77957682423
-
Prospective isolation of clonogenic mantle cell lymphoma-initiating cells
-
Chen, Z., P. Ayala, M. Wang, et al. 2010. Prospective isolation of clonogenic mantle cell lymphoma-initiating cells. Stem Cell. Res. 5: 212-225.
-
(2010)
Stem Cell. Res.
, vol.5
, pp. 212-225
-
-
Chen, Z.1
Ayala, P.2
Wang, M.3
-
14
-
-
78649991073
-
Notch signalling in T-cell lymphoblastic leukaemia/lymphoma and other haematological malignancies
-
Aster, J.C., S.C. Blacklow & W.S. Pear . 2011. Notch signalling in T-cell lymphoblastic leukaemia/lymphoma and other haematological malignancies. J. Pathol. 223: 262-273.
-
(2011)
J. Pathol.
, vol.223
, pp. 262-273
-
-
Aster, J.C.1
Blacklow, S.C.2
Pear, W.S.3
-
15
-
-
0022289842
-
Nucleotide sequence from the neurogenic locus notch implies a gene product that shares homology with proteins containing EGF-like repeats
-
Wharton, K.A., K.M. Johansen, T. Xu, et al. 1985. Nucleotide sequence from the neurogenic locus notch implies a gene product that shares homology with proteins containing EGF-like repeats. Cell 43: 567-581.
-
(1985)
Cell
, vol.43
, pp. 567-581
-
-
Wharton, K.A.1
Johansen, K.M.2
Xu, T.3
-
16
-
-
0022780155
-
Sequence of the notch locus of Drosophila melanogaster: relationship of the encoded protein to mammalian clotting and growth factors
-
Kidd, S., M.R. Kelley & M.W. Young . 1986. Sequence of the notch locus of Drosophila melanogaster: relationship of the encoded protein to mammalian clotting and growth factors. Mol. Cell. Biol. 6: 3094-3108.
-
(1986)
Mol. Cell. Biol.
, vol.6
, pp. 3094-3108
-
-
Kidd, S.1
Kelley, M.R.2
Young, M.W.3
-
17
-
-
0033617522
-
Notch signaling: cell fate control and signal integration in development
-
Artavanis-Tsakonas, S., M.D. Rand & R.J. Lake . 1999. Notch signaling: cell fate control and signal integration in development. Science 284: 770-776.
-
(1999)
Science
, vol.284
, pp. 770-776
-
-
Artavanis-Tsakonas, S.1
Rand, M.D.2
Lake, R.J.3
-
20
-
-
84860436944
-
Non-canonical Notch signaling: emerging role and mechanism
-
Andersen, P., H. Uosaki, L.T. Shenje, et al. 2012. Non-canonical Notch signaling: emerging role and mechanism. Trends Cell Biol. 22: 257-265.
-
(2012)
Trends Cell Biol.
, vol.22
, pp. 257-265
-
-
Andersen, P.1
Uosaki, H.2
Shenje, L.T.3
-
21
-
-
84880306937
-
The Notch signaling pathway as a mediator of tumor survival
-
Capaccione, K.M. & S.R. Pine . 2013. The Notch signaling pathway as a mediator of tumor survival. Carcinogenesis 34: 1420-1430.
-
(2013)
Carcinogenesis
, vol.34
, pp. 1420-1430
-
-
Capaccione, K.M.1
Pine, S.R.2
-
23
-
-
84865292942
-
Endocytosis and control of Notch signaling
-
Kandachar, V. & F. Roegiers . 2012. Endocytosis and control of Notch signaling. Curr. Opin. Cell Biol. 24: 534-540.
-
(2012)
Curr. Opin. Cell Biol.
, vol.24
, pp. 534-540
-
-
Kandachar, V.1
Roegiers, F.2
-
24
-
-
84861995097
-
Notch receptor-ligand binding and activation: insights from molecular studies
-
Chillakuri, C.R., D. Sheppard, S.M. Lea, et al. 2012. Notch receptor-ligand binding and activation: insights from molecular studies. Semin. Cell Dev. Biol. 23: 421-428.
-
(2012)
Semin. Cell Dev. Biol.
, vol.23
, pp. 421-428
-
-
Chillakuri, C.R.1
Sheppard, D.2
Lea, S.M.3
-
26
-
-
84897830319
-
Endothelial Notch activity promotes angiogenesis and osteogenesis in bone
-
Ramasamy, S.K., A.P. Kusumbe, L. Wang, et al. 2014. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature 507: 376-380.
-
(2014)
Nature
, vol.507
, pp. 376-380
-
-
Ramasamy, S.K.1
Kusumbe, A.P.2
Wang, L.3
-
27
-
-
40449139405
-
Dimorphic effects of Notch signaling in bone homeostasis
-
Engin, F., Z. Yao, T. Yang, et al. 2008. Dimorphic effects of Notch signaling in bone homeostasis. Nat. Med. 14: 299-305.
-
(2008)
Nat. Med.
, vol.14
, pp. 299-305
-
-
Engin, F.1
Yao, Z.2
Yang, T.3
-
28
-
-
40449084522
-
Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation
-
Hilton, M.J., X. Tu, X. Wu, et al. 2008. Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat. Med. 14: 306-314.
-
(2008)
Nat. Med.
, vol.14
, pp. 306-314
-
-
Hilton, M.J.1
Tu, X.2
Wu, X.3
-
30
-
-
67649595326
-
Identification of a stroma-mediated Wnt/β-catenin signal promoting self-renewal of hematopoietic stem cells in the stem cell niche
-
Kim, J.A., Y.J. Kang, G. Park, et al. 2009. Identification of a stroma-mediated Wnt/β-catenin signal promoting self-renewal of hematopoietic stem cells in the stem cell niche. Stem Cells 27: 1318-1329.
-
(2009)
Stem Cells
, vol.27
, pp. 1318-1329
-
-
Kim, J.A.1
Kang, Y.J.2
Park, G.3
-
31
-
-
77449117244
-
Cadherin-based adhesion is a potential target for niche manipulation to protect hematopoietic stem cells in adult bone marrow
-
Hosokawa, K., F. Arai, H. Yoshihara, et al. 2010. Cadherin-based adhesion is a potential target for niche manipulation to protect hematopoietic stem cells in adult bone marrow. Cell Stem Cell 6: 194-198.
-
(2010)
Cell Stem Cell
, vol.6
, pp. 194-198
-
-
Hosokawa, K.1
Arai, F.2
Yoshihara, H.3
-
32
-
-
77956038665
-
Knockdown of N-cadherin suppresses the long-term engraftment of hematopoietic stem cells
-
Hosokawa, K., F. Arai, H. Yoshihara, et al. 2010. Knockdown of N-cadherin suppresses the long-term engraftment of hematopoietic stem cells. Blood 116: 554-563.
-
(2010)
Blood
, vol.116
, pp. 554-563
-
-
Hosokawa, K.1
Arai, F.2
Yoshihara, H.3
-
33
-
-
3242669145
-
Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche
-
Arai, F., A. Hirao, M. Ohmura, et al. 2004. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118: 149-161.
-
(2004)
Cell
, vol.118
, pp. 149-161
-
-
Arai, F.1
Hirao, A.2
Ohmura, M.3
-
34
-
-
21344474104
-
Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells
-
Nilsson, S.K., H.M. Johnston, G.A. Whitty, et al. 2005. Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood 106: 1232-1239.
-
(2005)
Blood
, vol.106
, pp. 1232-1239
-
-
Nilsson, S.K.1
Johnston, H.M.2
Whitty, G.A.3
-
35
-
-
21244472780
-
Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size
-
Stier, S., Y. Ko, R. Forkert, et al. 2005. Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J. Exp. Med. 201: 1781-1791.
-
(2005)
J. Exp. Med.
, vol.201
, pp. 1781-1791
-
-
Stier, S.1
Ko, Y.2
Forkert, R.3
-
36
-
-
0025856717
-
TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms
-
Ellisen, L.W., J. Bird, D.C. West, et al. 1991. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66: 649-661.
-
(1991)
Cell
, vol.66
, pp. 649-661
-
-
Ellisen, L.W.1
Bird, J.2
West, D.C.3
-
37
-
-
5044225888
-
Activating mutations of Notch1 in human T cell acute lymphoblastic leukemia
-
Weng, A.P., A.A. Ferrando, W. Lee, et al. 2004. Activating mutations of Notch1 in human T cell acute lymphoblastic leukemia. Science 306: 269-271.
-
(2004)
Science
, vol.306
, pp. 269-271
-
-
Weng, A.P.1
Ferrando, A.A.2
Lee, W.3
-
39
-
-
77956306573
-
Notch signaling in solid tumors
-
Koch, U. & F. Radtke . 2010. Notch signaling in solid tumors. Curr. Top. Dev. Biol. 92: 411-455.
-
(2010)
Curr. Top. Dev. Biol.
, vol.92
, pp. 411-455
-
-
Koch, U.1
Radtke, F.2
-
40
-
-
79960036578
-
Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia
-
Puente, X.S., M. Pinyol, V. Quesada, et al. 2011. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 475: 101-105.
-
(2011)
Nature
, vol.475
, pp. 101-105
-
-
Puente, X.S.1
Pinyol, M.2
Quesada, V.3
-
41
-
-
84898059073
-
An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia
-
Knoechel, B., J.E. Roderick, K.E. Williamson, et al. 2014. An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia. Nat. Genet. 46: 364-370.
-
(2014)
Nat. Genet.
, vol.46
, pp. 364-370
-
-
Knoechel, B.1
Roderick, J.E.2
Williamson, K.E.3
-
42
-
-
79955915582
-
A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia
-
Klinakis, A., C. Lobry, O. Abdel-Wahab, et al. 2011. A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia. Nature 473: 230-233.
-
(2011)
Nature
, vol.473
, pp. 230-233
-
-
Klinakis, A.1
Lobry, C.2
Abdel-Wahab, O.3
-
43
-
-
80555129351
-
Oncogenic and tumor suppressor functions of Notch in cancer: it's NOTCH what you think
-
Lobry, C., P. Oh & I. Aifantis . 2011. Oncogenic and tumor suppressor functions of Notch in cancer: it's NOTCH what you think. J. Exp. Med. 208: 1931-1935.
-
(2011)
J. Exp. Med.
, vol.208
, pp. 1931-1935
-
-
Lobry, C.1
Oh, P.2
Aifantis, I.3
-
44
-
-
84901837657
-
Notch signaling: switching an oncogene to a tumor suppressor
-
Lobry, C., P. Oh, M.R. Mansour, et al. 2014. Notch signaling: switching an oncogene to a tumor suppressor. Blood 123: 2451-2459.
-
(2014)
Blood
, vol.123
, pp. 2451-2459
-
-
Lobry, C.1
Oh, P.2
Mansour, M.R.3
-
45
-
-
84861987137
-
The double-edged sword of Notch signaling in cancer
-
South, A.P., R.J. Cho & J.C. Aster . 2012. The double-edged sword of Notch signaling in cancer. Semin. Cell Dev. Biol. 23: 458-464.
-
(2012)
Semin. Cell Dev. Biol.
, vol.23
, pp. 458-464
-
-
South, A.P.1
Cho, R.J.2
Aster, J.C.3
-
46
-
-
36749098400
-
Identification of a hierarchy of multipotent hematopoietic progenitors in human cord Blood
-
Majeti, R., C.Y. Park & I.L. Weissman . 2007. Identification of a hierarchy of multipotent hematopoietic progenitors in human cord Blood. Cell Stem Cell 1: 635-645.
-
(2007)
Cell Stem Cell
, vol.1
, pp. 635-645
-
-
Majeti, R.1
Park, C.Y.2
Weissman, I.L.3
-
47
-
-
84881159234
-
CD34(-) cells at the apex of the human hematopoietic stem cell hierarchy have distinctive cellular and molecular signatures
-
Anjos-Afonso, F., E. Currie, H.G. Palmer, et al. 2013. CD34(-) cells at the apex of the human hematopoietic stem cell hierarchy have distinctive cellular and molecular signatures. Cell Stem Cell 13: 161-174.
-
(2013)
Cell Stem Cell
, vol.13
, pp. 161-174
-
-
Anjos-Afonso, F.1
Currie, E.2
Palmer, H.G.3
-
48
-
-
0012221031
-
The notch pathway: modulation of cell fate decisions in hematopoiesis
-
Ohishi, K., B. Varnum-Finney & I.D. Bernstein . 2002. The notch pathway: modulation of cell fate decisions in hematopoiesis. Int. J. Hematol. 75: 449-459.
-
(2002)
Int. J. Hematol.
, vol.75
, pp. 449-459
-
-
Ohishi, K.1
Varnum-Finney, B.2
Bernstein, I.D.3
-
49
-
-
74449084422
-
Notch signaling and the bone marrow hematopoietic stem cell niche
-
Weber, J.M. & L.M. Calvi . 2010. Notch signaling and the bone marrow hematopoietic stem cell niche. Bone 46: 281-285.
-
(2010)
Bone
, vol.46
, pp. 281-285
-
-
Weber, J.M.1
Calvi, L.M.2
-
50
-
-
80054023655
-
Notch signaling in mammalian hematopoietic stem cells
-
Pajcini, K.V., N.A. Speck & W.S. Pear . 2011. Notch signaling in mammalian hematopoietic stem cells. Leukemia 25: 1525-1532.
-
(2011)
Leukemia
, vol.25
, pp. 1525-1532
-
-
Pajcini, K.V.1
Speck, N.A.2
Pear, W.S.3
-
51
-
-
0031930238
-
The human homolog of rat Jagged1 expressed by marrow stroma inhibits differentiation of 32D cells through interaction with Notch1
-
Li, L., L.A. Milner, Y. Deng, et al. 1998. The human homolog of rat Jagged1 expressed by marrow stroma inhibits differentiation of 32D cells through interaction with Notch1. Immunity 8: 43-55.
-
(1998)
Immunity
, vol.8
, pp. 43-55
-
-
Li, L.1
Milner, L.A.2
Deng, Y.3
-
52
-
-
0032904239
-
Notch1-induced delay of human hematopoietic progenitor cell differentiation is associated with altered cell cycle kinetics
-
Carlesso, N., J.C. Aster, J. Sklar, et al. 1999. Notch1-induced delay of human hematopoietic progenitor cell differentiation is associated with altered cell cycle kinetics. Blood 93: 838-848.
-
(1999)
Blood
, vol.93
, pp. 838-848
-
-
Carlesso, N.1
Aster, J.C.2
Sklar, J.3
-
53
-
-
0035760308
-
Notch1 inhibits differentiation of hematopoietic cells by sustaining GATA-2 expression
-
Kumano, K., S. Chiba, K. Shimizu, et al. 2001. Notch1 inhibits differentiation of hematopoietic cells by sustaining GATA-2 expression. Blood 98: 3283-3289.
-
(2001)
Blood
, vol.98
, pp. 3283-3289
-
-
Kumano, K.1
Chiba, S.2
Shimizu, K.3
-
54
-
-
0036529989
-
Notch1 activation increases hematopoietic stem cell self-renewal in vivo and favors lymphoid over myeloid lineage outcome
-
Stier, S., T. Cheng, D. Dombkowski, et al. 2002. Notch1 activation increases hematopoietic stem cell self-renewal in vivo and favors lymphoid over myeloid lineage outcome. Blood 99: 2369-2378.
-
(2002)
Blood
, vol.99
, pp. 2369-2378
-
-
Stier, S.1
Cheng, T.2
Dombkowski, D.3
-
55
-
-
20144370145
-
Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance
-
Duncan, A.W., F.M. Rattis, L.N. DiMascio, et al. 2005. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat. Immunol. 6: 314-322.
-
(2005)
Nat. Immunol.
, vol.6
, pp. 314-322
-
-
Duncan, A.W.1
Rattis, F.M.2
DiMascio, L.N.3
-
56
-
-
35848948403
-
Imaging hematopoietic precursor division in real time
-
Wu, M., H.Y. Kwon, F. Rattis, et al. 2007. Imaging hematopoietic precursor division in real time. Cell Stem Cell 1: 541-554.
-
(2007)
Cell Stem Cell
, vol.1
, pp. 541-554
-
-
Wu, M.1
Kwon, H.Y.2
Rattis, F.3
-
57
-
-
0033694305
-
Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling
-
Varnum-Finney, B., L. Xu, C. Brashem-Stein, et al. 2000. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat. Med. 6: 1278-1281.
-
(2000)
Nat. Med.
, vol.6
, pp. 1278-1281
-
-
Varnum-Finney, B.1
Xu, L.2
Brashem-Stein, C.3
-
58
-
-
0037369237
-
HES-1 preserves purified hematopoietic stem cells ex vivo and accumulates side population cells in vivo
-
Kunisato, A., S. Chiba, E. Nakagami-Yamaguchi, et al. 2003. HES-1 preserves purified hematopoietic stem cells ex vivo and accumulates side population cells in vivo. Blood 101: 1777-1783.
-
(2003)
Blood
, vol.101
, pp. 1777-1783
-
-
Kunisato, A.1
Chiba, S.2
Nakagami-Yamaguchi, E.3
-
59
-
-
84873578601
-
Divergent effects of supraphysiologic Notch signals on leukemia stem cells and hematopoietic stem cells
-
Chiang, M.Y., O. Shestova, L. Xu, et al. 2013. Divergent effects of supraphysiologic Notch signals on leukemia stem cells and hematopoietic stem cells. Blood 121: 905-917.
-
(2013)
Blood
, vol.121
, pp. 905-917
-
-
Chiang, M.Y.1
Shestova, O.2
Xu, L.3
-
60
-
-
0242268524
-
Osteoblastic cells regulate the haematopoietic stem cell niche
-
Calvi, L.M., G.B. Adams, K.W. Weibrecht, et al. 2003. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425: 841-846.
-
(2003)
Nature
, vol.425
, pp. 841-846
-
-
Calvi, L.M.1
Adams, G.B.2
Weibrecht, K.W.3
-
61
-
-
33746652583
-
Parathyroid hormone stimulates expression of the Notch ligand Jagged1 in osteoblastic cells
-
Weber, J.M., S.R. Forsythe, C.A. Christianson, et al. 2006. Parathyroid hormone stimulates expression of the Notch ligand Jagged1 in osteoblastic cells. Bone 39: 485-493.
-
(2006)
Bone
, vol.39
, pp. 485-493
-
-
Weber, J.M.1
Forsythe, S.R.2
Christianson, C.A.3
-
62
-
-
0038404519
-
Notch1 but not Notch2 is essential for generating hematopoietic stem cells from endothelial cells
-
Kumano, K., S. Chiba, A. Kunisato, et al. 2003. Notch1 but not Notch2 is essential for generating hematopoietic stem cells from endothelial cells. Immunity 18: 699-711.
-
(2003)
Immunity
, vol.18
, pp. 699-711
-
-
Kumano, K.1
Chiba, S.2
Kunisato, A.3
-
63
-
-
77449121923
-
Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells
-
Butler, J.M., D.J. Nolan, E.L. Vertes, et al. 2010. Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell 6: 251-264.
-
(2010)
Cell Stem Cell
, vol.6
, pp. 251-264
-
-
Butler, J.M.1
Nolan, D.J.2
Vertes, E.L.3
-
64
-
-
84884157062
-
Endothelial Jagged-1 is necessary for homeostatic and regenerative hematopoiesis
-
Poulos M.G., P. Guo, N.M. Kofler, et al. 2013. Endothelial Jagged-1 is necessary for homeostatic and regenerative hematopoiesis. Cell. Rep. 4: 1022-1034.
-
(2013)
Cell. Rep.
, vol.4
, pp. 1022-1034
-
-
Poulos, M.G.1
Guo, P.2
Kofler, N.M.3
-
65
-
-
76349113345
-
Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution
-
Delaney, C., S. Heimfeld, C. Brashem-Stein, et al. 2010. Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution. Nat. Med. 16: 232-236.
-
(2010)
Nat. Med.
, vol.16
, pp. 232-236
-
-
Delaney, C.1
Heimfeld, S.2
Brashem-Stein, C.3
-
66
-
-
79959461100
-
Ex vivo expansion of human hematopoietic stem and progenitor cells
-
Dahlberg, A., C. Delaney & I.D. Bernstein . 2011. Ex vivo expansion of human hematopoietic stem and progenitor cells. Blood 117: 6083-6090.
-
(2011)
Blood
, vol.117
, pp. 6083-6090
-
-
Dahlberg, A.1
Delaney, C.2
Bernstein, I.D.3
-
67
-
-
27144518462
-
Dose-dependent effects of the Notch ligand Delta1 on ex vivo differentiation and in vivo marrow repopulating ability of cord blood cells
-
Delaney, C., B. Varnum-Finney, K. Aoyama, et al. 2005. Dose-dependent effects of the Notch ligand Delta1 on ex vivo differentiation and in vivo marrow repopulating ability of cord blood cells. Blood 106: 2693-2699.
-
(2005)
Blood
, vol.106
, pp. 2693-2699
-
-
Delaney, C.1
Varnum-Finney, B.2
Aoyama, K.3
-
68
-
-
0035476891
-
Differential effects of Notch ligands Delta-1 and Jagged-1 in human lymphoid differentiation
-
Jaleco, A.C., H. Neves, E. Hooijberg, et al. 2001. Differential effects of Notch ligands Delta-1 and Jagged-1 in human lymphoid differentiation. J. Exp. Med. 194: 991-1002.
-
(2001)
J. Exp. Med.
, vol.194
, pp. 991-1002
-
-
Jaleco, A.C.1
Neves, H.2
Hooijberg, E.3
-
69
-
-
58149151302
-
Delta-like 4 is the essential, nonredundant ligand for Notch1 during thymic T cell lineage commitment
-
Koch, U., E. Fiorini, R. Benedito, et al. 2008. Delta-like 4 is the essential, nonredundant ligand for Notch1 during thymic T cell lineage commitment. J. Exp. Med. 205: 2515-2523.
-
(2008)
J. Exp. Med.
, vol.205
, pp. 2515-2523
-
-
Koch, U.1
Fiorini, E.2
Benedito, R.3
-
70
-
-
79952217210
-
Notch2 governs the rate of generation of mouse long- and short-term repopulating stem cells
-
Varnum-Finney, B., L.M. Halasz, M. Sun, et al. 2011. Notch2 governs the rate of generation of mouse long- and short-term repopulating stem cells. J. Clin. Invest. 121: 1207-1216.
-
(2011)
J. Clin. Invest.
, vol.121
, pp. 1207-1216
-
-
Varnum-Finney, B.1
Halasz, L.M.2
Sun, M.3
-
71
-
-
84881122277
-
In vivo mapping of notch pathway activity in normal and stress hematopoiesis
-
Oh, P., C. Lobry, J. Gao, et al. 2013. In vivo mapping of notch pathway activity in normal and stress hematopoiesis. Cell Stem Cell 13: 190-204.
-
(2013)
Cell Stem Cell
, vol.13
, pp. 190-204
-
-
Oh, P.1
Lobry, C.2
Gao, J.3
-
72
-
-
84897904676
-
Notch signals are required for in vitro but not in vivo maintenance of human hematopoietic stem cells and delay the appearance of multipotent progenitors
-
Benveniste, P., P. Serra, D. Dervovic, et al. 2014. Notch signals are required for in vitro but not in vivo maintenance of human hematopoietic stem cells and delay the appearance of multipotent progenitors. Blood 123: 1167-1177.
-
(2014)
Blood
, vol.123
, pp. 1167-1177
-
-
Benveniste, P.1
Serra, P.2
Dervovic, D.3
-
73
-
-
15244346226
-
Jagged1-dependent Notch signaling is dispensable for hematopoietic stem cell self-renewal and differentiation
-
Mancini, S.J., N. Mantei, A. Dumortier, et al. 2005. Jagged1-dependent Notch signaling is dispensable for hematopoietic stem cell self-renewal and differentiation. Blood 105: 2340-2342.
-
(2005)
Blood
, vol.105
, pp. 2340-2342
-
-
Mancini, S.J.1
Mantei, N.2
Dumortier, A.3
-
74
-
-
41449089457
-
Canonical notch signaling is dispensable for the maintenance of adult hematopoietic stem cells
-
Maillard, I., U. Koch, A. Dumortier, et al. 2008. Canonical notch signaling is dispensable for the maintenance of adult hematopoietic stem cells. Cell Stem Cell 2: 356-366.
-
(2008)
Cell Stem Cell
, vol.2
, pp. 356-366
-
-
Maillard, I.1
Koch, U.2
Dumortier, A.3
-
75
-
-
84896344790
-
The Notch1 transcriptional activation domain is required for development and reveals a novel role for Notch1 signaling in fetal hematopoietic stem cells
-
Gerhardt, D.M., K.V. Pajcini, T. D'altri, et al. 2014. The Notch1 transcriptional activation domain is required for development and reveals a novel role for Notch1 signaling in fetal hematopoietic stem cells. Genes Dev. 28: 576-593.
-
(2014)
Genes Dev.
, vol.28
, pp. 576-593
-
-
Gerhardt, D.M.1
Pajcini, K.V.2
D'altri, T.3
-
76
-
-
0018102359
-
The relationship between the spleen colony-forming cell and the haemopoietic stem cell
-
Schofield, R. 1978. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4: 7-25.
-
(1978)
Blood Cells
, vol.4
, pp. 7-25
-
-
Schofield, R.1
-
77
-
-
0017834345
-
Endosteal marrow: a rich source of hematopoietic stem cells
-
Gong, J.K. 1978. Endosteal marrow: a rich source of hematopoietic stem cells. Science 199: 1443-1445.
-
(1978)
Science
, vol.199
, pp. 1443-1445
-
-
Gong, J.K.1
-
78
-
-
0031883380
-
The role of osteoblasts in the hematopoietic microenvironment
-
Taichman, R.S. & S.G. Emerson . 1998. The role of osteoblasts in the hematopoietic microenvironment. Stem Cells 16: 7-15.
-
(1998)
Stem Cells
, vol.16
, pp. 7-15
-
-
Taichman, R.S.1
Emerson, S.G.2
-
79
-
-
0035871882
-
Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches
-
Nilsson, S.K., H.M. Johnston & J.A. Coverdale . 2001. Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches. Blood 97: 2293-2299.
-
(2001)
Blood
, vol.97
, pp. 2293-2299
-
-
Nilsson, S.K.1
Johnston, H.M.2
Coverdale, J.A.3
-
80
-
-
0242363225
-
Identification of the haematopoietic stem cell niche and control of the niche size
-
Zhang, J., C. Niu, L. Ye, et al. 2003. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425: 836-841.
-
(2003)
Nature
, vol.425
, pp. 836-841
-
-
Zhang, J.1
Niu, C.2
Ye, L.3
-
81
-
-
1942457308
-
Hematopoiesis is severely altered in mice with an induced osteoblast deficiency
-
Visnjic, D., Z. Kalajzic, D.W. Rowe, et al. 2004. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood 103: 3258-3264.
-
(2004)
Blood
, vol.103
, pp. 3258-3264
-
-
Visnjic, D.1
Kalajzic, Z.2
Rowe, D.W.3
-
82
-
-
33846869023
-
Therapeutic targeting of a stem cell niche
-
Adams, G.B., R.P. Martin, I.R. Alley, et al. 2007. Therapeutic targeting of a stem cell niche. Nat. Biotechnol. 25: 238-243.
-
(2007)
Nat. Biotechnol.
, vol.25
, pp. 238-243
-
-
Adams, G.B.1
Martin, R.P.2
Alley, I.R.3
-
83
-
-
84864979448
-
Getting blood from bone: an emerging understanding of the role that osteoblasts play in regulating hematopoietic stem cells within their niche
-
Shiozawa, Y. & R.S. Taichman . 2012. Getting blood from bone: an emerging understanding of the role that osteoblasts play in regulating hematopoietic stem cells within their niche. Exp. Hematol. 40: 685-694.
-
(2012)
Exp. Hematol.
, vol.40
, pp. 685-694
-
-
Shiozawa, Y.1
Taichman, R.S.2
-
84
-
-
84905273057
-
Regulation of hematopoiesis in endosteal microenvironments
-
Asada, N. & Y. Katayama . 2014. Regulation of hematopoiesis in endosteal microenvironments. Int. J. Hematol. 99: 679-684.
-
(2014)
Int. J. Hematol.
, vol.99
, pp. 679-684
-
-
Asada, N.1
Katayama, Y.2
-
85
-
-
84886947010
-
Arteriolar niches maintain haematopoietic stem cell quiescence
-
Kunisaki, Y., I. Bruns, C. Scheiermann, et al. 2013. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502: 637-643.
-
(2013)
Nature
, vol.502
, pp. 637-643
-
-
Kunisaki, Y.1
Bruns, I.2
Scheiermann, C.3
-
86
-
-
84856147560
-
Endothelial and perivascular cells maintain haematopoietic stem cells
-
Ding, L., T.L. Saunders, G. Enikolopov, et al. 2012. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481: 457-462.
-
(2012)
Nature
, vol.481
, pp. 457-462
-
-
Ding, L.1
Saunders, T.L.2
Enikolopov, G.3
-
87
-
-
84875000886
-
Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches
-
Ding, L. & S.J. Morrison . 2013. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495: 231-235.
-
(2013)
Nature
, vol.495
, pp. 231-235
-
-
Ding, L.1
Morrison, S.J.2
-
88
-
-
0038404519
-
Notch1 but not Notch2 is essential for generating hematopoietic stem cells from endothelial cells
-
Kumano, K., S. Chiba, A. Kunisato, et al. 2003. Notch1 but not Notch2 is essential for generating hematopoietic stem cells from endothelial cells. Immunity 18: 699-711.
-
(2003)
Immunity
, vol.18
, pp. 699-711
-
-
Kumano, K.1
Chiba, S.2
Kunisato, A.3
-
89
-
-
84896300806
-
Regulation of hematopoiesis by activators and inhibitors of Wnt signaling from the niche
-
Schreck, C., F. Bock, S. Grziwok, et al. 2014. Regulation of hematopoiesis by activators and inhibitors of Wnt signaling from the niche. Ann. N. Y. Acad. Sci. 1310: 32-43.
-
(2014)
Ann. N. Y. Acad. Sci.
, vol.1310
, pp. 32-43
-
-
Schreck, C.1
Bock, F.2
Grziwok, S.3
-
90
-
-
81355147381
-
The haematopoietic stem cell niche at a glance
-
Lo Celso, C. & D.T. Scadden . 2011. The haematopoietic stem cell niche at a glance. J. Cell. Sci. 124: 3529-3535.
-
(2011)
J. Cell. Sci.
, vol.124
, pp. 3529-3535
-
-
Lo Celso, C.1
Scadden, D.T.2
-
92
-
-
84877966319
-
Concise review: current concepts in bone marrow microenvironmental regulation of hematopoietic stem and progenitor cells
-
Smith, J.N. & L.M. Calvi . 2013. Concise review: current concepts in bone marrow microenvironmental regulation of hematopoietic stem and progenitor cells. Stem Cells 31: 1044-1050.
-
(2013)
Stem Cells
, vol.31
, pp. 1044-1050
-
-
Smith, J.N.1
Calvi, L.M.2
-
93
-
-
84899587273
-
Foxc1 is a critical regulator of haematopoietic stem/progenitor cell niche formation
-
Omatsu, Y., M. Seike, T. Sugiyama, et al. 2014. Foxc1 is a critical regulator of haematopoietic stem/progenitor cell niche formation. Nature 508: 536-540
-
(2014)
Nature
, vol.508
, pp. 536-540
-
-
Omatsu, Y.1
Seike, M.2
Sugiyama, T.3
-
94
-
-
77957326036
-
Early B cell factor 2 regulates hematopoietic stem cell homeostasis in a cell-nonautonomous manner
-
Kieslinger, M., S. Hiechinger, G. Dobreva, et al. 2010. Early B cell factor 2 regulates hematopoietic stem cell homeostasis in a cell-nonautonomous manner. Cell Stem Cell 7: 496-507.
-
(2010)
Cell Stem Cell
, vol.7
, pp. 496-507
-
-
Kieslinger, M.1
Hiechinger, S.2
Dobreva, G.3
-
95
-
-
84892833777
-
Discovery and saturation analysis of cancer genes across 21 tumour types
-
Lawrence, M.S., P. Stojanov, C.H. Mermel, et al. 2014. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505: 495-501.
-
(2014)
Nature
, vol.505
, pp. 495-501
-
-
Lawrence, M.S.1
Stojanov, P.2
Mermel, C.H.3
-
96
-
-
20244364979
-
Stroma-mediated dysregulation of myelopoiesis in mice lacking IκBα
-
Rupec, R.A., F. Jundt, B. Rebholz, et al. 2005. Stroma-mediated dysregulation of myelopoiesis in mice lacking IκBα. Immunity 22: 479-491.
-
(2005)
Immunity
, vol.22
, pp. 479-491
-
-
Rupec, R.A.1
Jundt, F.2
Rebholz, B.3
-
97
-
-
34250363611
-
Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment
-
Walkley, C.R., J.M. Shea, N.A. Sims, et al. 2007. Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment. Cell 129: 1081-1095.
-
(2007)
Cell
, vol.129
, pp. 1081-1095
-
-
Walkley, C.R.1
Shea, J.M.2
Sims, N.A.3
-
98
-
-
34250331610
-
A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor gamma deficiency
-
Walkley, C.R., G.H. Olsen, S. Dworkin, et al. 2007. A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor gamma deficiency. Cell 129: 1097-1110.
-
(2007)
Cell
, vol.129
, pp. 1097-1110
-
-
Walkley, C.R.1
Olsen, G.H.2
Dworkin, S.3
-
99
-
-
84903993535
-
Notch-dependent repression of miR-155 in the bone marrow niche regulates hematopoiesis in an NFκB-dependent manner
-
Wang L., H. Zhang, S. Rodriguez, et al. 2014. Notch-dependent repression of miR-155 in the bone marrow niche regulates hematopoiesis in an NFκB-dependent manner. Cell Stem Cell 15: 51-65.
-
(2014)
Cell Stem Cell
, vol.15
, pp. 51-65
-
-
Wang, L.1
Zhang, H.2
Rodriguez, S.3
-
100
-
-
0034051852
-
Ligand endocytosis drives receptor dissociation and activation in the Notch pathway
-
Parks, A.L., K.M. Klueg, J.R. Stout, et al. 2000. Ligand endocytosis drives receptor dissociation and activation in the Notch pathway. Development 127: 1373-1385.
-
(2000)
Development
, vol.127
, pp. 1373-1385
-
-
Parks, A.L.1
Klueg, K.M.2
Stout, J.R.3
-
101
-
-
24344481807
-
Mind bomb 1 is essential for generating functional Notch ligands to activate Notch
-
Koo, B.K., H.S. Lim, R. Song, et al. 2005. Mind bomb 1 is essential for generating functional Notch ligands to activate Notch. Development 132: 3459-3470.
-
(2005)
Development
, vol.132
, pp. 3459-3470
-
-
Koo, B.K.1
Lim, H.S.2
Song, R.3
-
102
-
-
43249100317
-
An obligatory role of mind bomb-1 in notch signaling of mammalian development
-
Koo, B.K., M.J. Yoon, K.J. Yoon, et al. 2007. An obligatory role of mind bomb-1 in notch signaling of mammalian development. PLoS One 2: e1221.
-
(2007)
PLoS One
, vol.2
, pp. e1221
-
-
Koo, B.K.1
Yoon, M.J.2
Yoon, K.J.3
-
103
-
-
58149388329
-
Defective Notch activation in microenvironment leads to myeloproliferative disease
-
Kim, Y.W., B.K. Koo, H.W. Jeong, et al. 2008. Defective Notch activation in microenvironment leads to myeloproliferative disease. Blood 112: 4628-4638.
-
(2008)
Blood
, vol.112
, pp. 4628-4638
-
-
Kim, Y.W.1
Koo, B.K.2
Jeong, H.W.3
-
104
-
-
34247593034
-
Impaired microRNA processing enhances cellular transformation and tumorigenesis
-
Kumar, M.S., J. Lu, K.L. Mercer, et al. 2007. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat. Genet. 39: 673-677.
-
(2007)
Nat. Genet.
, vol.39
, pp. 673-677
-
-
Kumar, M.S.1
Lu, J.2
Mercer, K.L.3
-
105
-
-
77950862042
-
Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia
-
Raaijmakers, M.H., S. Mukherjee, S. Guo, et al. 2010. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 464: 852-857.
-
(2010)
Nature
, vol.464
, pp. 852-857
-
-
Raaijmakers, M.H.1
Mukherjee, S.2
Guo, S.3
-
106
-
-
84893917461
-
Leukaemogenesis induced by an activating β-catenin mutation in osteoblasts
-
Kode, A., J.S. Manavalan, I. Mosialou, et al. 2014. Leukaemogenesis induced by an activating β-catenin mutation in osteoblasts. Nature 506: 240-244.
-
(2014)
Nature
, vol.506
, pp. 240-244
-
-
Kode, A.1
Manavalan, J.S.2
Mosialou, I.3
-
107
-
-
84884164883
-
Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche
-
Schepers, K., E.M. Pietras, D. Reynaud, et al. 2013. Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell 13: 285-299.
-
(2013)
Cell Stem Cell
, vol.13
, pp. 285-299
-
-
Schepers, K.1
Pietras, E.M.2
Reynaud, D.3
-
108
-
-
57849108116
-
Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells
-
Colmone, A., M. Amorim, A.L. Pontier, et al. 2008. Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science 322: 1861-1865.
-
(2008)
Science
, vol.322
, pp. 1861-1865
-
-
Colmone, A.1
Amorim, M.2
Pontier, A.L.3
-
109
-
-
21244472780
-
Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size
-
Stier, S., Y. Ko, R. Forkert, et al. 2005. Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J. Exp. Med. 201: 1781-1791.
-
(2005)
J. Exp. Med.
, vol.201
, pp. 1781-1791
-
-
Stier, S.1
Ko, Y.2
Forkert, R.3
-
110
-
-
33746578393
-
Osteopontin: a bridge between bone and blood
-
Haylock, D.N. & S.K. Nilsson . 2006. Osteopontin: a bridge between bone and blood. Br. J. Haematol. 134: 467-474.
-
(2006)
Br. J. Haematol.
, vol.134
, pp. 467-474
-
-
Haylock, D.N.1
Nilsson, S.K.2
-
111
-
-
84881288585
-
Adhesion to osteopontin in the bone marrow niche regulates lymphoblastic leukemia cell dormancy
-
Boyerinas, B., M. Zafrir, A.E. Yesilkanal, et al. 2013. Adhesion to osteopontin in the bone marrow niche regulates lymphoblastic leukemia cell dormancy. Blood 121: 4821-4831.
-
(2013)
Blood
, vol.121
, pp. 4821-4831
-
-
Boyerinas, B.1
Zafrir, M.2
Yesilkanal, A.E.3
-
112
-
-
84861841026
-
Osteopontin is a prognostic factor for survival of acute myeloid leukemia patients
-
Liersch, R., J. Gerss, C. Schliemann, et al. 2012. Osteopontin is a prognostic factor for survival of acute myeloid leukemia patients. Blood 119: 5215-5220.
-
(2012)
Blood
, vol.119
, pp. 5215-5220
-
-
Liersch, R.1
Gerss, J.2
Schliemann, C.3
-
113
-
-
84859832491
-
Altered microenvironmental regulation of leukemic and normal stem cells in chronic myelogenous leukemia
-
Zhang, B., Y.W. Ho, Q. Huang, et al. 2012. Altered microenvironmental regulation of leukemic and normal stem cells in chronic myelogenous leukemia. Cancer. Cell 21: 577-592.
-
(2012)
Cancer. Cell
, vol.21
, pp. 577-592
-
-
Zhang, B.1
Ho, Y.W.2
Huang, Q.3
-
114
-
-
84855858755
-
Functional inhibition of osteoblastic cells in an in vivo mouse model of myeloid leukemia
-
Frisch, B.J., J.M. Ashton, L. Xing, et al. 2012. Functional inhibition of osteoblastic cells in an in vivo mouse model of myeloid leukemia. Blood 119: 540-550.
-
(2012)
Blood
, vol.119
, pp. 540-550
-
-
Frisch, B.J.1
Ashton, J.M.2
Xing, L.3
-
115
-
-
84887424411
-
Differential regulation of myeloid leukemias by the bone marrow microenvironment
-
Krause, D.S., K. Fulzele, A. Catic, et al. 2013. Differential regulation of myeloid leukemias by the bone marrow microenvironment. Nat. Med. 19: 1513-1517.
-
(2013)
Nat. Med.
, vol.19
, pp. 1513-1517
-
-
Krause, D.S.1
Fulzele, K.2
Catic, A.3
-
116
-
-
84883740609
-
Insufficient stromal support in MDS results from molecular and functional deficits of mesenchymal stromal cells
-
Geyh, S., S. Oz, R.P. Cadeddu, et al. 2013. Insufficient stromal support in MDS results from molecular and functional deficits of mesenchymal stromal cells. Leukemia 27: 1841-1851.
-
(2013)
Leukemia
, vol.27
, pp. 1841-1851
-
-
Geyh, S.1
Oz, S.2
Cadeddu, R.P.3
-
117
-
-
39649091183
-
Inappropriate Notch activity and limited mesenchymal stem cell plasticity in the bone marrow of patients with myelodysplastic syndromes
-
Varga, G., J. Kiss, J. Varkonyi, et al. 2007. Inappropriate Notch activity and limited mesenchymal stem cell plasticity in the bone marrow of patients with myelodysplastic syndromes. Pathol. Oncol. Res. 13: 311-319.
-
(2007)
Pathol. Oncol. Res.
, vol.13
, pp. 311-319
-
-
Varga, G.1
Kiss, J.2
Varkonyi, J.3
-
118
-
-
84856008970
-
Notch signalling in cancer progression and bone metastasis
-
Sethi, N. & Y. Kang . 2011. Notch signalling in cancer progression and bone metastasis. Br. J. Cancer 105: 1805-1810.
-
(2011)
Br. J. Cancer
, vol.105
, pp. 1805-1810
-
-
Sethi, N.1
Kang, Y.2
-
119
-
-
84866447416
-
The evolving concept of cancer and metastasis stem cells
-
Baccelli, I. & A. Trumpp . 2012. The evolving concept of cancer and metastasis stem cells. J. Cell Biol. 198: 281-293.
-
(2012)
J. Cell Biol.
, vol.198
, pp. 281-293
-
-
Baccelli, I.1
Trumpp, A.2
-
120
-
-
84896500413
-
Contributions of the host microenvironment to cancer-induced bone disease
-
Olechnowicz, S.W. & C.M. Edwards . 2014. Contributions of the host microenvironment to cancer-induced bone disease. Cancer Res. 74: 1625-1631.
-
(2014)
Cancer Res.
, vol.74
, pp. 1625-1631
-
-
Olechnowicz, S.W.1
Edwards, C.M.2
-
121
-
-
84866359847
-
Eradication of breast cancer cells in patients with distant metastasis: the finishing touches?
-
Ito, Y., T. Iwase & K. Hatake . 2012. Eradication of breast cancer cells in patients with distant metastasis: the finishing touches? Breast Cancer. 19: 206-211.
-
(2012)
Breast Cancer.
, vol.19
, pp. 206-211
-
-
Ito, Y.1
Iwase, T.2
Hatake, K.3
-
122
-
-
84891850062
-
Targeting tumor-stromal interactions in bone metastasis
-
Esposito, M. & Y. Kang . 2014. Targeting tumor-stromal interactions in bone metastasis. Pharmacol. Ther. 141: 222-233.
-
(2014)
Pharmacol. Ther.
, vol.141
, pp. 222-233
-
-
Esposito, M.1
Kang, Y.2
-
123
-
-
80053157914
-
Unravelling the complexity of metastasis-molecular understanding and targeted therapies
-
Sethi, N. & Y. Kang . 2011. Unravelling the complexity of metastasis-molecular understanding and targeted therapies. Nat. Rev. Cancer 11: 735-748.
-
(2011)
Nat. Rev. Cancer
, vol.11
, pp. 735-748
-
-
Sethi, N.1
Kang, Y.2
-
124
-
-
79751472667
-
Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells
-
Sethi, N., X. Dai, C.G. Winter, et al. 2011. Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell 19: 192-205.
-
(2011)
Cancer Cell
, vol.19
, pp. 192-205
-
-
Sethi, N.1
Dai, X.2
Winter, C.G.3
-
125
-
-
79953331206
-
Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow
-
Shiozawa, Y., E.A. Pedersen, A.M. Havens, et al. 2011. Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J. Clin. Invest. 121: 1298-1312.
-
(2011)
J. Clin. Invest.
, vol.121
, pp. 1298-1312
-
-
Shiozawa, Y.1
Pedersen, E.A.2
Havens, A.M.3
-
126
-
-
77955646193
-
Mesenchymal and haematopoietic stem cells form a unique bone marrow niche
-
Méndez-Ferrer, S., T.V. Michurina, F. Ferraro, et al. 2010. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466: 829-834.
-
(2010)
Nature
, vol.466
, pp. 829-834
-
-
Méndez-Ferrer, S.1
Michurina, T.V.2
Ferraro, F.3
|