메뉴 건너뛰기




Volumn 1335, Issue 1, 2015, Pages 63-77

Notch signaling in the malignant bone marrow microenvironment: Implications for a niche-based model of oncogenesis

Author keywords

Bone marrow; Delta; Hematopoiesis; HSC; Jagged; Leukemia; Malignancy; Microenvironment; Notch; Stem cell

Indexed keywords

MUS MUSCULUS;

EID: 84920419095     PISSN: 00778923     EISSN: 17496632     Source Type: Book Series    
DOI: 10.1111/nyas.12562     Document Type: Review
Times cited : (24)

References (126)
  • 1
    • 84893692635 scopus 로고    scopus 로고
    • Cellular complexity of the bone marrow hematopoietic stem cell niche
    • Calvi, L.M. & D.C. Link . 2014. Cellular complexity of the bone marrow hematopoietic stem cell niche. Calcif. Tissue Int. 94: 112-124.
    • (2014) Calcif. Tissue Int. , vol.94 , pp. 112-124
    • Calvi, L.M.1    Link, D.C.2
  • 2
    • 84892610064 scopus 로고    scopus 로고
    • The bone marrow niche for haematopoietic stem cells
    • Morrison, S.J. & D.T. Scadden . 2014. The bone marrow niche for haematopoietic stem cells. Nature 505: 327-334.
    • (2014) Nature , vol.505 , pp. 327-334
    • Morrison, S.J.1    Scadden, D.T.2
  • 3
    • 78651092929 scopus 로고    scopus 로고
    • In vivo imaging of transplanted hematopoietic stem and progenitor cells in mouse calvarium bone marrow
    • Lo Celso, C., C.P. Lin & D.T. Scadden . 2011. In vivo imaging of transplanted hematopoietic stem and progenitor cells in mouse calvarium bone marrow. Nat. Protoc. 6: 1-14.
    • (2011) Nat. Protoc. , vol.6 , pp. 1-14
    • Lo Celso, C.1    Lin, C.P.2    Scadden, D.T.3
  • 4
    • 84859899567 scopus 로고    scopus 로고
    • Acute myeloid leukemia stem cells and CD33-targeted immunotherapy
    • Walter, R.B., F.R. Appelbaum, E.H. Estey, et al. 2012. Acute myeloid leukemia stem cells and CD33-targeted immunotherapy. Blood 119: 6198-6208.
    • (2012) Blood , vol.119 , pp. 6198-6208
    • Walter, R.B.1    Appelbaum, F.R.2    Estey, E.H.3
  • 5
    • 36148972831 scopus 로고    scopus 로고
    • Ph+/VE-cadherin + identifies a stem cell like population of acute lymphoblastic leukemia sustained by bone marrow niche cells
    • Wang, L., H. O'Leary, J. Fortney, et al. 2007. Ph+/VE-cadherin + identifies a stem cell like population of acute lymphoblastic leukemia sustained by bone marrow niche cells. Blood 110: 3334-3344.
    • (2007) Blood , vol.110 , pp. 3334-3344
    • Wang, L.1    O'Leary, H.2    Fortney, J.3
  • 6
    • 0030911358 scopus 로고    scopus 로고
    • Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice
    • Bhatia, M., J.C. Wang, U. Kapp, et al. 1997. Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proc. Natl. Acad. Sci. U. S. A. 94: 5320-5325.
    • (1997) Proc. Natl. Acad. Sci. U. S. A. , vol.94 , pp. 5320-5325
    • Bhatia, M.1    Wang, J.C.2    Kapp, U.3
  • 7
    • 0030789242 scopus 로고    scopus 로고
    • Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell
    • Bonnet, D. & J.E. Dick . 1997. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 3: 730-737.
    • (1997) Nat. Med. , vol.3 , pp. 730-737
    • Bonnet, D.1    Dick, J.E.2
  • 8
    • 0028091194 scopus 로고
    • A cell initiating human acute myeloid leukaemia after transplantation into SCID mice
    • Lapidot, T., C. Sirard, J. Vormoor, et al. 1994. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367: 645-648.
    • (1994) Nature , vol.367 , pp. 645-648
    • Lapidot, T.1    Sirard, C.2    Vormoor, J.3
  • 9
    • 84874235360 scopus 로고    scopus 로고
    • Hematopoietic stem cell and progenitor cell mechanisms in myelodysplastic syndromes
    • Pang, W.W., J.V. Pluvinage, E.A. Price, et al. 2013. Hematopoietic stem cell and progenitor cell mechanisms in myelodysplastic syndromes. Proc. Natl. Acad. Sci. U. S. A. 110: 3011-3016.
    • (2013) Proc. Natl. Acad. Sci. U. S. A. , vol.110 , pp. 3011-3016
    • Pang, W.W.1    Pluvinage, J.V.2    Price, E.A.3
  • 10
    • 84865756332 scopus 로고    scopus 로고
    • Molecular ontogeny of donor-derived follicular lymphomas occurring after hematopoietic cell transplantation
    • Weigert, O., N. Kopp, A.A. Lane, et al. 2012. Molecular ontogeny of donor-derived follicular lymphomas occurring after hematopoietic cell transplantation. Cancer. Discov. 2: 47-55.
    • (2012) Cancer. Discov. , vol.2 , pp. 47-55
    • Weigert, O.1    Kopp, N.2    Lane, A.A.3
  • 11
    • 76549104736 scopus 로고    scopus 로고
    • Lymphoma stem cells: enough evidence to support their existence
    • Martinez-Climent, J.A., L. Fontan, R.D. Gascoyne, et al. 2010. Lymphoma stem cells: enough evidence to support their existence? Haematologica 95: 293-302.
    • (2010) Haematologica , vol.95 , pp. 293-302
    • Martinez-Climent, J.A.1    Fontan, L.2    Gascoyne, R.D.3
  • 12
    • 77957682423 scopus 로고    scopus 로고
    • Prospective isolation of clonogenic mantle cell lymphoma-initiating cells
    • Chen, Z., P. Ayala, M. Wang, et al. 2010. Prospective isolation of clonogenic mantle cell lymphoma-initiating cells. Stem Cell. Res. 5: 212-225.
    • (2010) Stem Cell. Res. , vol.5 , pp. 212-225
    • Chen, Z.1    Ayala, P.2    Wang, M.3
  • 14
    • 78649991073 scopus 로고    scopus 로고
    • Notch signalling in T-cell lymphoblastic leukaemia/lymphoma and other haematological malignancies
    • Aster, J.C., S.C. Blacklow & W.S. Pear . 2011. Notch signalling in T-cell lymphoblastic leukaemia/lymphoma and other haematological malignancies. J. Pathol. 223: 262-273.
    • (2011) J. Pathol. , vol.223 , pp. 262-273
    • Aster, J.C.1    Blacklow, S.C.2    Pear, W.S.3
  • 15
    • 0022289842 scopus 로고
    • Nucleotide sequence from the neurogenic locus notch implies a gene product that shares homology with proteins containing EGF-like repeats
    • Wharton, K.A., K.M. Johansen, T. Xu, et al. 1985. Nucleotide sequence from the neurogenic locus notch implies a gene product that shares homology with proteins containing EGF-like repeats. Cell 43: 567-581.
    • (1985) Cell , vol.43 , pp. 567-581
    • Wharton, K.A.1    Johansen, K.M.2    Xu, T.3
  • 16
    • 0022780155 scopus 로고
    • Sequence of the notch locus of Drosophila melanogaster: relationship of the encoded protein to mammalian clotting and growth factors
    • Kidd, S., M.R. Kelley & M.W. Young . 1986. Sequence of the notch locus of Drosophila melanogaster: relationship of the encoded protein to mammalian clotting and growth factors. Mol. Cell. Biol. 6: 3094-3108.
    • (1986) Mol. Cell. Biol. , vol.6 , pp. 3094-3108
    • Kidd, S.1    Kelley, M.R.2    Young, M.W.3
  • 17
    • 0033617522 scopus 로고    scopus 로고
    • Notch signaling: cell fate control and signal integration in development
    • Artavanis-Tsakonas, S., M.D. Rand & R.J. Lake . 1999. Notch signaling: cell fate control and signal integration in development. Science 284: 770-776.
    • (1999) Science , vol.284 , pp. 770-776
    • Artavanis-Tsakonas, S.1    Rand, M.D.2    Lake, R.J.3
  • 18
    • 50849100996 scopus 로고    scopus 로고
    • The many facets of Notch ligands
    • D'Souza, B., A. Miyamoto & G. Weinmaster . 2008. The many facets of Notch ligands. Oncogene 27: 5148-5167.
    • (2008) Oncogene , vol.27 , pp. 5148-5167
    • D'Souza, B.1    Miyamoto, A.2    Weinmaster, G.3
  • 20
    • 84860436944 scopus 로고    scopus 로고
    • Non-canonical Notch signaling: emerging role and mechanism
    • Andersen, P., H. Uosaki, L.T. Shenje, et al. 2012. Non-canonical Notch signaling: emerging role and mechanism. Trends Cell Biol. 22: 257-265.
    • (2012) Trends Cell Biol. , vol.22 , pp. 257-265
    • Andersen, P.1    Uosaki, H.2    Shenje, L.T.3
  • 21
    • 84880306937 scopus 로고    scopus 로고
    • The Notch signaling pathway as a mediator of tumor survival
    • Capaccione, K.M. & S.R. Pine . 2013. The Notch signaling pathway as a mediator of tumor survival. Carcinogenesis 34: 1420-1430.
    • (2013) Carcinogenesis , vol.34 , pp. 1420-1430
    • Capaccione, K.M.1    Pine, S.R.2
  • 23
    • 84865292942 scopus 로고    scopus 로고
    • Endocytosis and control of Notch signaling
    • Kandachar, V. & F. Roegiers . 2012. Endocytosis and control of Notch signaling. Curr. Opin. Cell Biol. 24: 534-540.
    • (2012) Curr. Opin. Cell Biol. , vol.24 , pp. 534-540
    • Kandachar, V.1    Roegiers, F.2
  • 24
    • 84861995097 scopus 로고    scopus 로고
    • Notch receptor-ligand binding and activation: insights from molecular studies
    • Chillakuri, C.R., D. Sheppard, S.M. Lea, et al. 2012. Notch receptor-ligand binding and activation: insights from molecular studies. Semin. Cell Dev. Biol. 23: 421-428.
    • (2012) Semin. Cell Dev. Biol. , vol.23 , pp. 421-428
    • Chillakuri, C.R.1    Sheppard, D.2    Lea, S.M.3
  • 25
    • 84861990389 scopus 로고    scopus 로고
    • Notch ligand endocytosis: mechanistic basis of signaling activity
    • Musse, A.A., L. Meloty-Kapella & G. Weinmaster . 2012. Notch ligand endocytosis: mechanistic basis of signaling activity. Semin. Cell Dev. Biol. 23: 429-436.
    • (2012) Semin. Cell Dev. Biol. , vol.23 , pp. 429-436
    • Musse, A.A.1    Meloty-Kapella, L.2    Weinmaster, G.3
  • 26
    • 84897830319 scopus 로고    scopus 로고
    • Endothelial Notch activity promotes angiogenesis and osteogenesis in bone
    • Ramasamy, S.K., A.P. Kusumbe, L. Wang, et al. 2014. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature 507: 376-380.
    • (2014) Nature , vol.507 , pp. 376-380
    • Ramasamy, S.K.1    Kusumbe, A.P.2    Wang, L.3
  • 27
    • 40449139405 scopus 로고    scopus 로고
    • Dimorphic effects of Notch signaling in bone homeostasis
    • Engin, F., Z. Yao, T. Yang, et al. 2008. Dimorphic effects of Notch signaling in bone homeostasis. Nat. Med. 14: 299-305.
    • (2008) Nat. Med. , vol.14 , pp. 299-305
    • Engin, F.1    Yao, Z.2    Yang, T.3
  • 28
    • 40449084522 scopus 로고    scopus 로고
    • Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation
    • Hilton, M.J., X. Tu, X. Wu, et al. 2008. Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat. Med. 14: 306-314.
    • (2008) Nat. Med. , vol.14 , pp. 306-314
    • Hilton, M.J.1    Tu, X.2    Wu, X.3
  • 30
    • 67649595326 scopus 로고    scopus 로고
    • Identification of a stroma-mediated Wnt/β-catenin signal promoting self-renewal of hematopoietic stem cells in the stem cell niche
    • Kim, J.A., Y.J. Kang, G. Park, et al. 2009. Identification of a stroma-mediated Wnt/β-catenin signal promoting self-renewal of hematopoietic stem cells in the stem cell niche. Stem Cells 27: 1318-1329.
    • (2009) Stem Cells , vol.27 , pp. 1318-1329
    • Kim, J.A.1    Kang, Y.J.2    Park, G.3
  • 31
    • 77449117244 scopus 로고    scopus 로고
    • Cadherin-based adhesion is a potential target for niche manipulation to protect hematopoietic stem cells in adult bone marrow
    • Hosokawa, K., F. Arai, H. Yoshihara, et al. 2010. Cadherin-based adhesion is a potential target for niche manipulation to protect hematopoietic stem cells in adult bone marrow. Cell Stem Cell 6: 194-198.
    • (2010) Cell Stem Cell , vol.6 , pp. 194-198
    • Hosokawa, K.1    Arai, F.2    Yoshihara, H.3
  • 32
    • 77956038665 scopus 로고    scopus 로고
    • Knockdown of N-cadherin suppresses the long-term engraftment of hematopoietic stem cells
    • Hosokawa, K., F. Arai, H. Yoshihara, et al. 2010. Knockdown of N-cadherin suppresses the long-term engraftment of hematopoietic stem cells. Blood 116: 554-563.
    • (2010) Blood , vol.116 , pp. 554-563
    • Hosokawa, K.1    Arai, F.2    Yoshihara, H.3
  • 33
    • 3242669145 scopus 로고    scopus 로고
    • Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche
    • Arai, F., A. Hirao, M. Ohmura, et al. 2004. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118: 149-161.
    • (2004) Cell , vol.118 , pp. 149-161
    • Arai, F.1    Hirao, A.2    Ohmura, M.3
  • 34
    • 21344474104 scopus 로고    scopus 로고
    • Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells
    • Nilsson, S.K., H.M. Johnston, G.A. Whitty, et al. 2005. Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood 106: 1232-1239.
    • (2005) Blood , vol.106 , pp. 1232-1239
    • Nilsson, S.K.1    Johnston, H.M.2    Whitty, G.A.3
  • 35
    • 21244472780 scopus 로고    scopus 로고
    • Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size
    • Stier, S., Y. Ko, R. Forkert, et al. 2005. Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J. Exp. Med. 201: 1781-1791.
    • (2005) J. Exp. Med. , vol.201 , pp. 1781-1791
    • Stier, S.1    Ko, Y.2    Forkert, R.3
  • 36
    • 0025856717 scopus 로고
    • TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms
    • Ellisen, L.W., J. Bird, D.C. West, et al. 1991. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66: 649-661.
    • (1991) Cell , vol.66 , pp. 649-661
    • Ellisen, L.W.1    Bird, J.2    West, D.C.3
  • 37
    • 5044225888 scopus 로고    scopus 로고
    • Activating mutations of Notch1 in human T cell acute lymphoblastic leukemia
    • Weng, A.P., A.A. Ferrando, W. Lee, et al. 2004. Activating mutations of Notch1 in human T cell acute lymphoblastic leukemia. Science 306: 269-271.
    • (2004) Science , vol.306 , pp. 269-271
    • Weng, A.P.1    Ferrando, A.A.2    Lee, W.3
  • 38
    • 42049103185 scopus 로고    scopus 로고
    • Notch signaling in leukemias and lymphomas
    • Jundt, F., R. Schwarzer & B. Dorken . 2008. Notch signaling in leukemias and lymphomas. Curr. Mol. Med. 8: 51-59.
    • (2008) Curr. Mol. Med. , vol.8 , pp. 51-59
    • Jundt, F.1    Schwarzer, R.2    Dorken, B.3
  • 39
    • 77956306573 scopus 로고    scopus 로고
    • Notch signaling in solid tumors
    • Koch, U. & F. Radtke . 2010. Notch signaling in solid tumors. Curr. Top. Dev. Biol. 92: 411-455.
    • (2010) Curr. Top. Dev. Biol. , vol.92 , pp. 411-455
    • Koch, U.1    Radtke, F.2
  • 40
    • 79960036578 scopus 로고    scopus 로고
    • Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia
    • Puente, X.S., M. Pinyol, V. Quesada, et al. 2011. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 475: 101-105.
    • (2011) Nature , vol.475 , pp. 101-105
    • Puente, X.S.1    Pinyol, M.2    Quesada, V.3
  • 41
    • 84898059073 scopus 로고    scopus 로고
    • An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia
    • Knoechel, B., J.E. Roderick, K.E. Williamson, et al. 2014. An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia. Nat. Genet. 46: 364-370.
    • (2014) Nat. Genet. , vol.46 , pp. 364-370
    • Knoechel, B.1    Roderick, J.E.2    Williamson, K.E.3
  • 42
    • 79955915582 scopus 로고    scopus 로고
    • A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia
    • Klinakis, A., C. Lobry, O. Abdel-Wahab, et al. 2011. A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia. Nature 473: 230-233.
    • (2011) Nature , vol.473 , pp. 230-233
    • Klinakis, A.1    Lobry, C.2    Abdel-Wahab, O.3
  • 43
    • 80555129351 scopus 로고    scopus 로고
    • Oncogenic and tumor suppressor functions of Notch in cancer: it's NOTCH what you think
    • Lobry, C., P. Oh & I. Aifantis . 2011. Oncogenic and tumor suppressor functions of Notch in cancer: it's NOTCH what you think. J. Exp. Med. 208: 1931-1935.
    • (2011) J. Exp. Med. , vol.208 , pp. 1931-1935
    • Lobry, C.1    Oh, P.2    Aifantis, I.3
  • 44
    • 84901837657 scopus 로고    scopus 로고
    • Notch signaling: switching an oncogene to a tumor suppressor
    • Lobry, C., P. Oh, M.R. Mansour, et al. 2014. Notch signaling: switching an oncogene to a tumor suppressor. Blood 123: 2451-2459.
    • (2014) Blood , vol.123 , pp. 2451-2459
    • Lobry, C.1    Oh, P.2    Mansour, M.R.3
  • 45
    • 84861987137 scopus 로고    scopus 로고
    • The double-edged sword of Notch signaling in cancer
    • South, A.P., R.J. Cho & J.C. Aster . 2012. The double-edged sword of Notch signaling in cancer. Semin. Cell Dev. Biol. 23: 458-464.
    • (2012) Semin. Cell Dev. Biol. , vol.23 , pp. 458-464
    • South, A.P.1    Cho, R.J.2    Aster, J.C.3
  • 46
    • 36749098400 scopus 로고    scopus 로고
    • Identification of a hierarchy of multipotent hematopoietic progenitors in human cord Blood
    • Majeti, R., C.Y. Park & I.L. Weissman . 2007. Identification of a hierarchy of multipotent hematopoietic progenitors in human cord Blood. Cell Stem Cell 1: 635-645.
    • (2007) Cell Stem Cell , vol.1 , pp. 635-645
    • Majeti, R.1    Park, C.Y.2    Weissman, I.L.3
  • 47
    • 84881159234 scopus 로고    scopus 로고
    • CD34(-) cells at the apex of the human hematopoietic stem cell hierarchy have distinctive cellular and molecular signatures
    • Anjos-Afonso, F., E. Currie, H.G. Palmer, et al. 2013. CD34(-) cells at the apex of the human hematopoietic stem cell hierarchy have distinctive cellular and molecular signatures. Cell Stem Cell 13: 161-174.
    • (2013) Cell Stem Cell , vol.13 , pp. 161-174
    • Anjos-Afonso, F.1    Currie, E.2    Palmer, H.G.3
  • 48
    • 0012221031 scopus 로고    scopus 로고
    • The notch pathway: modulation of cell fate decisions in hematopoiesis
    • Ohishi, K., B. Varnum-Finney & I.D. Bernstein . 2002. The notch pathway: modulation of cell fate decisions in hematopoiesis. Int. J. Hematol. 75: 449-459.
    • (2002) Int. J. Hematol. , vol.75 , pp. 449-459
    • Ohishi, K.1    Varnum-Finney, B.2    Bernstein, I.D.3
  • 49
    • 74449084422 scopus 로고    scopus 로고
    • Notch signaling and the bone marrow hematopoietic stem cell niche
    • Weber, J.M. & L.M. Calvi . 2010. Notch signaling and the bone marrow hematopoietic stem cell niche. Bone 46: 281-285.
    • (2010) Bone , vol.46 , pp. 281-285
    • Weber, J.M.1    Calvi, L.M.2
  • 50
    • 80054023655 scopus 로고    scopus 로고
    • Notch signaling in mammalian hematopoietic stem cells
    • Pajcini, K.V., N.A. Speck & W.S. Pear . 2011. Notch signaling in mammalian hematopoietic stem cells. Leukemia 25: 1525-1532.
    • (2011) Leukemia , vol.25 , pp. 1525-1532
    • Pajcini, K.V.1    Speck, N.A.2    Pear, W.S.3
  • 51
    • 0031930238 scopus 로고    scopus 로고
    • The human homolog of rat Jagged1 expressed by marrow stroma inhibits differentiation of 32D cells through interaction with Notch1
    • Li, L., L.A. Milner, Y. Deng, et al. 1998. The human homolog of rat Jagged1 expressed by marrow stroma inhibits differentiation of 32D cells through interaction with Notch1. Immunity 8: 43-55.
    • (1998) Immunity , vol.8 , pp. 43-55
    • Li, L.1    Milner, L.A.2    Deng, Y.3
  • 52
    • 0032904239 scopus 로고    scopus 로고
    • Notch1-induced delay of human hematopoietic progenitor cell differentiation is associated with altered cell cycle kinetics
    • Carlesso, N., J.C. Aster, J. Sklar, et al. 1999. Notch1-induced delay of human hematopoietic progenitor cell differentiation is associated with altered cell cycle kinetics. Blood 93: 838-848.
    • (1999) Blood , vol.93 , pp. 838-848
    • Carlesso, N.1    Aster, J.C.2    Sklar, J.3
  • 53
    • 0035760308 scopus 로고    scopus 로고
    • Notch1 inhibits differentiation of hematopoietic cells by sustaining GATA-2 expression
    • Kumano, K., S. Chiba, K. Shimizu, et al. 2001. Notch1 inhibits differentiation of hematopoietic cells by sustaining GATA-2 expression. Blood 98: 3283-3289.
    • (2001) Blood , vol.98 , pp. 3283-3289
    • Kumano, K.1    Chiba, S.2    Shimizu, K.3
  • 54
    • 0036529989 scopus 로고    scopus 로고
    • Notch1 activation increases hematopoietic stem cell self-renewal in vivo and favors lymphoid over myeloid lineage outcome
    • Stier, S., T. Cheng, D. Dombkowski, et al. 2002. Notch1 activation increases hematopoietic stem cell self-renewal in vivo and favors lymphoid over myeloid lineage outcome. Blood 99: 2369-2378.
    • (2002) Blood , vol.99 , pp. 2369-2378
    • Stier, S.1    Cheng, T.2    Dombkowski, D.3
  • 55
    • 20144370145 scopus 로고    scopus 로고
    • Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance
    • Duncan, A.W., F.M. Rattis, L.N. DiMascio, et al. 2005. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat. Immunol. 6: 314-322.
    • (2005) Nat. Immunol. , vol.6 , pp. 314-322
    • Duncan, A.W.1    Rattis, F.M.2    DiMascio, L.N.3
  • 56
    • 35848948403 scopus 로고    scopus 로고
    • Imaging hematopoietic precursor division in real time
    • Wu, M., H.Y. Kwon, F. Rattis, et al. 2007. Imaging hematopoietic precursor division in real time. Cell Stem Cell 1: 541-554.
    • (2007) Cell Stem Cell , vol.1 , pp. 541-554
    • Wu, M.1    Kwon, H.Y.2    Rattis, F.3
  • 57
    • 0033694305 scopus 로고    scopus 로고
    • Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling
    • Varnum-Finney, B., L. Xu, C. Brashem-Stein, et al. 2000. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat. Med. 6: 1278-1281.
    • (2000) Nat. Med. , vol.6 , pp. 1278-1281
    • Varnum-Finney, B.1    Xu, L.2    Brashem-Stein, C.3
  • 58
    • 0037369237 scopus 로고    scopus 로고
    • HES-1 preserves purified hematopoietic stem cells ex vivo and accumulates side population cells in vivo
    • Kunisato, A., S. Chiba, E. Nakagami-Yamaguchi, et al. 2003. HES-1 preserves purified hematopoietic stem cells ex vivo and accumulates side population cells in vivo. Blood 101: 1777-1783.
    • (2003) Blood , vol.101 , pp. 1777-1783
    • Kunisato, A.1    Chiba, S.2    Nakagami-Yamaguchi, E.3
  • 59
    • 84873578601 scopus 로고    scopus 로고
    • Divergent effects of supraphysiologic Notch signals on leukemia stem cells and hematopoietic stem cells
    • Chiang, M.Y., O. Shestova, L. Xu, et al. 2013. Divergent effects of supraphysiologic Notch signals on leukemia stem cells and hematopoietic stem cells. Blood 121: 905-917.
    • (2013) Blood , vol.121 , pp. 905-917
    • Chiang, M.Y.1    Shestova, O.2    Xu, L.3
  • 60
    • 0242268524 scopus 로고    scopus 로고
    • Osteoblastic cells regulate the haematopoietic stem cell niche
    • Calvi, L.M., G.B. Adams, K.W. Weibrecht, et al. 2003. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425: 841-846.
    • (2003) Nature , vol.425 , pp. 841-846
    • Calvi, L.M.1    Adams, G.B.2    Weibrecht, K.W.3
  • 61
    • 33746652583 scopus 로고    scopus 로고
    • Parathyroid hormone stimulates expression of the Notch ligand Jagged1 in osteoblastic cells
    • Weber, J.M., S.R. Forsythe, C.A. Christianson, et al. 2006. Parathyroid hormone stimulates expression of the Notch ligand Jagged1 in osteoblastic cells. Bone 39: 485-493.
    • (2006) Bone , vol.39 , pp. 485-493
    • Weber, J.M.1    Forsythe, S.R.2    Christianson, C.A.3
  • 62
    • 0038404519 scopus 로고    scopus 로고
    • Notch1 but not Notch2 is essential for generating hematopoietic stem cells from endothelial cells
    • Kumano, K., S. Chiba, A. Kunisato, et al. 2003. Notch1 but not Notch2 is essential for generating hematopoietic stem cells from endothelial cells. Immunity 18: 699-711.
    • (2003) Immunity , vol.18 , pp. 699-711
    • Kumano, K.1    Chiba, S.2    Kunisato, A.3
  • 63
    • 77449121923 scopus 로고    scopus 로고
    • Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells
    • Butler, J.M., D.J. Nolan, E.L. Vertes, et al. 2010. Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell 6: 251-264.
    • (2010) Cell Stem Cell , vol.6 , pp. 251-264
    • Butler, J.M.1    Nolan, D.J.2    Vertes, E.L.3
  • 64
    • 84884157062 scopus 로고    scopus 로고
    • Endothelial Jagged-1 is necessary for homeostatic and regenerative hematopoiesis
    • Poulos M.G., P. Guo, N.M. Kofler, et al. 2013. Endothelial Jagged-1 is necessary for homeostatic and regenerative hematopoiesis. Cell. Rep. 4: 1022-1034.
    • (2013) Cell. Rep. , vol.4 , pp. 1022-1034
    • Poulos, M.G.1    Guo, P.2    Kofler, N.M.3
  • 65
    • 76349113345 scopus 로고    scopus 로고
    • Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution
    • Delaney, C., S. Heimfeld, C. Brashem-Stein, et al. 2010. Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution. Nat. Med. 16: 232-236.
    • (2010) Nat. Med. , vol.16 , pp. 232-236
    • Delaney, C.1    Heimfeld, S.2    Brashem-Stein, C.3
  • 66
    • 79959461100 scopus 로고    scopus 로고
    • Ex vivo expansion of human hematopoietic stem and progenitor cells
    • Dahlberg, A., C. Delaney & I.D. Bernstein . 2011. Ex vivo expansion of human hematopoietic stem and progenitor cells. Blood 117: 6083-6090.
    • (2011) Blood , vol.117 , pp. 6083-6090
    • Dahlberg, A.1    Delaney, C.2    Bernstein, I.D.3
  • 67
    • 27144518462 scopus 로고    scopus 로고
    • Dose-dependent effects of the Notch ligand Delta1 on ex vivo differentiation and in vivo marrow repopulating ability of cord blood cells
    • Delaney, C., B. Varnum-Finney, K. Aoyama, et al. 2005. Dose-dependent effects of the Notch ligand Delta1 on ex vivo differentiation and in vivo marrow repopulating ability of cord blood cells. Blood 106: 2693-2699.
    • (2005) Blood , vol.106 , pp. 2693-2699
    • Delaney, C.1    Varnum-Finney, B.2    Aoyama, K.3
  • 68
    • 0035476891 scopus 로고    scopus 로고
    • Differential effects of Notch ligands Delta-1 and Jagged-1 in human lymphoid differentiation
    • Jaleco, A.C., H. Neves, E. Hooijberg, et al. 2001. Differential effects of Notch ligands Delta-1 and Jagged-1 in human lymphoid differentiation. J. Exp. Med. 194: 991-1002.
    • (2001) J. Exp. Med. , vol.194 , pp. 991-1002
    • Jaleco, A.C.1    Neves, H.2    Hooijberg, E.3
  • 69
    • 58149151302 scopus 로고    scopus 로고
    • Delta-like 4 is the essential, nonredundant ligand for Notch1 during thymic T cell lineage commitment
    • Koch, U., E. Fiorini, R. Benedito, et al. 2008. Delta-like 4 is the essential, nonredundant ligand for Notch1 during thymic T cell lineage commitment. J. Exp. Med. 205: 2515-2523.
    • (2008) J. Exp. Med. , vol.205 , pp. 2515-2523
    • Koch, U.1    Fiorini, E.2    Benedito, R.3
  • 70
    • 79952217210 scopus 로고    scopus 로고
    • Notch2 governs the rate of generation of mouse long- and short-term repopulating stem cells
    • Varnum-Finney, B., L.M. Halasz, M. Sun, et al. 2011. Notch2 governs the rate of generation of mouse long- and short-term repopulating stem cells. J. Clin. Invest. 121: 1207-1216.
    • (2011) J. Clin. Invest. , vol.121 , pp. 1207-1216
    • Varnum-Finney, B.1    Halasz, L.M.2    Sun, M.3
  • 71
    • 84881122277 scopus 로고    scopus 로고
    • In vivo mapping of notch pathway activity in normal and stress hematopoiesis
    • Oh, P., C. Lobry, J. Gao, et al. 2013. In vivo mapping of notch pathway activity in normal and stress hematopoiesis. Cell Stem Cell 13: 190-204.
    • (2013) Cell Stem Cell , vol.13 , pp. 190-204
    • Oh, P.1    Lobry, C.2    Gao, J.3
  • 72
    • 84897904676 scopus 로고    scopus 로고
    • Notch signals are required for in vitro but not in vivo maintenance of human hematopoietic stem cells and delay the appearance of multipotent progenitors
    • Benveniste, P., P. Serra, D. Dervovic, et al. 2014. Notch signals are required for in vitro but not in vivo maintenance of human hematopoietic stem cells and delay the appearance of multipotent progenitors. Blood 123: 1167-1177.
    • (2014) Blood , vol.123 , pp. 1167-1177
    • Benveniste, P.1    Serra, P.2    Dervovic, D.3
  • 73
    • 15244346226 scopus 로고    scopus 로고
    • Jagged1-dependent Notch signaling is dispensable for hematopoietic stem cell self-renewal and differentiation
    • Mancini, S.J., N. Mantei, A. Dumortier, et al. 2005. Jagged1-dependent Notch signaling is dispensable for hematopoietic stem cell self-renewal and differentiation. Blood 105: 2340-2342.
    • (2005) Blood , vol.105 , pp. 2340-2342
    • Mancini, S.J.1    Mantei, N.2    Dumortier, A.3
  • 74
    • 41449089457 scopus 로고    scopus 로고
    • Canonical notch signaling is dispensable for the maintenance of adult hematopoietic stem cells
    • Maillard, I., U. Koch, A. Dumortier, et al. 2008. Canonical notch signaling is dispensable for the maintenance of adult hematopoietic stem cells. Cell Stem Cell 2: 356-366.
    • (2008) Cell Stem Cell , vol.2 , pp. 356-366
    • Maillard, I.1    Koch, U.2    Dumortier, A.3
  • 75
    • 84896344790 scopus 로고    scopus 로고
    • The Notch1 transcriptional activation domain is required for development and reveals a novel role for Notch1 signaling in fetal hematopoietic stem cells
    • Gerhardt, D.M., K.V. Pajcini, T. D'altri, et al. 2014. The Notch1 transcriptional activation domain is required for development and reveals a novel role for Notch1 signaling in fetal hematopoietic stem cells. Genes Dev. 28: 576-593.
    • (2014) Genes Dev. , vol.28 , pp. 576-593
    • Gerhardt, D.M.1    Pajcini, K.V.2    D'altri, T.3
  • 76
    • 0018102359 scopus 로고
    • The relationship between the spleen colony-forming cell and the haemopoietic stem cell
    • Schofield, R. 1978. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4: 7-25.
    • (1978) Blood Cells , vol.4 , pp. 7-25
    • Schofield, R.1
  • 77
    • 0017834345 scopus 로고
    • Endosteal marrow: a rich source of hematopoietic stem cells
    • Gong, J.K. 1978. Endosteal marrow: a rich source of hematopoietic stem cells. Science 199: 1443-1445.
    • (1978) Science , vol.199 , pp. 1443-1445
    • Gong, J.K.1
  • 78
    • 0031883380 scopus 로고    scopus 로고
    • The role of osteoblasts in the hematopoietic microenvironment
    • Taichman, R.S. & S.G. Emerson . 1998. The role of osteoblasts in the hematopoietic microenvironment. Stem Cells 16: 7-15.
    • (1998) Stem Cells , vol.16 , pp. 7-15
    • Taichman, R.S.1    Emerson, S.G.2
  • 79
    • 0035871882 scopus 로고    scopus 로고
    • Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches
    • Nilsson, S.K., H.M. Johnston & J.A. Coverdale . 2001. Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches. Blood 97: 2293-2299.
    • (2001) Blood , vol.97 , pp. 2293-2299
    • Nilsson, S.K.1    Johnston, H.M.2    Coverdale, J.A.3
  • 80
    • 0242363225 scopus 로고    scopus 로고
    • Identification of the haematopoietic stem cell niche and control of the niche size
    • Zhang, J., C. Niu, L. Ye, et al. 2003. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425: 836-841.
    • (2003) Nature , vol.425 , pp. 836-841
    • Zhang, J.1    Niu, C.2    Ye, L.3
  • 81
    • 1942457308 scopus 로고    scopus 로고
    • Hematopoiesis is severely altered in mice with an induced osteoblast deficiency
    • Visnjic, D., Z. Kalajzic, D.W. Rowe, et al. 2004. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood 103: 3258-3264.
    • (2004) Blood , vol.103 , pp. 3258-3264
    • Visnjic, D.1    Kalajzic, Z.2    Rowe, D.W.3
  • 82
    • 33846869023 scopus 로고    scopus 로고
    • Therapeutic targeting of a stem cell niche
    • Adams, G.B., R.P. Martin, I.R. Alley, et al. 2007. Therapeutic targeting of a stem cell niche. Nat. Biotechnol. 25: 238-243.
    • (2007) Nat. Biotechnol. , vol.25 , pp. 238-243
    • Adams, G.B.1    Martin, R.P.2    Alley, I.R.3
  • 83
    • 84864979448 scopus 로고    scopus 로고
    • Getting blood from bone: an emerging understanding of the role that osteoblasts play in regulating hematopoietic stem cells within their niche
    • Shiozawa, Y. & R.S. Taichman . 2012. Getting blood from bone: an emerging understanding of the role that osteoblasts play in regulating hematopoietic stem cells within their niche. Exp. Hematol. 40: 685-694.
    • (2012) Exp. Hematol. , vol.40 , pp. 685-694
    • Shiozawa, Y.1    Taichman, R.S.2
  • 84
    • 84905273057 scopus 로고    scopus 로고
    • Regulation of hematopoiesis in endosteal microenvironments
    • Asada, N. & Y. Katayama . 2014. Regulation of hematopoiesis in endosteal microenvironments. Int. J. Hematol. 99: 679-684.
    • (2014) Int. J. Hematol. , vol.99 , pp. 679-684
    • Asada, N.1    Katayama, Y.2
  • 85
    • 84886947010 scopus 로고    scopus 로고
    • Arteriolar niches maintain haematopoietic stem cell quiescence
    • Kunisaki, Y., I. Bruns, C. Scheiermann, et al. 2013. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502: 637-643.
    • (2013) Nature , vol.502 , pp. 637-643
    • Kunisaki, Y.1    Bruns, I.2    Scheiermann, C.3
  • 86
    • 84856147560 scopus 로고    scopus 로고
    • Endothelial and perivascular cells maintain haematopoietic stem cells
    • Ding, L., T.L. Saunders, G. Enikolopov, et al. 2012. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481: 457-462.
    • (2012) Nature , vol.481 , pp. 457-462
    • Ding, L.1    Saunders, T.L.2    Enikolopov, G.3
  • 87
    • 84875000886 scopus 로고    scopus 로고
    • Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches
    • Ding, L. & S.J. Morrison . 2013. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495: 231-235.
    • (2013) Nature , vol.495 , pp. 231-235
    • Ding, L.1    Morrison, S.J.2
  • 88
    • 0038404519 scopus 로고    scopus 로고
    • Notch1 but not Notch2 is essential for generating hematopoietic stem cells from endothelial cells
    • Kumano, K., S. Chiba, A. Kunisato, et al. 2003. Notch1 but not Notch2 is essential for generating hematopoietic stem cells from endothelial cells. Immunity 18: 699-711.
    • (2003) Immunity , vol.18 , pp. 699-711
    • Kumano, K.1    Chiba, S.2    Kunisato, A.3
  • 89
    • 84896300806 scopus 로고    scopus 로고
    • Regulation of hematopoiesis by activators and inhibitors of Wnt signaling from the niche
    • Schreck, C., F. Bock, S. Grziwok, et al. 2014. Regulation of hematopoiesis by activators and inhibitors of Wnt signaling from the niche. Ann. N. Y. Acad. Sci. 1310: 32-43.
    • (2014) Ann. N. Y. Acad. Sci. , vol.1310 , pp. 32-43
    • Schreck, C.1    Bock, F.2    Grziwok, S.3
  • 90
    • 81355147381 scopus 로고    scopus 로고
    • The haematopoietic stem cell niche at a glance
    • Lo Celso, C. & D.T. Scadden . 2011. The haematopoietic stem cell niche at a glance. J. Cell. Sci. 124: 3529-3535.
    • (2011) J. Cell. Sci. , vol.124 , pp. 3529-3535
    • Lo Celso, C.1    Scadden, D.T.2
  • 91
    • 77950626633 scopus 로고    scopus 로고
    • How the niche regulates hematopoietic stem cells
    • Renstrom, J., M. Kroger, C. Peschel, et al. 2010. How the niche regulates hematopoietic stem cells. Chem. Biol. Interact. 184: 7-15.
    • (2010) Chem. Biol. Interact. , vol.184 , pp. 7-15
    • Renstrom, J.1    Kroger, M.2    Peschel, C.3
  • 92
    • 84877966319 scopus 로고    scopus 로고
    • Concise review: current concepts in bone marrow microenvironmental regulation of hematopoietic stem and progenitor cells
    • Smith, J.N. & L.M. Calvi . 2013. Concise review: current concepts in bone marrow microenvironmental regulation of hematopoietic stem and progenitor cells. Stem Cells 31: 1044-1050.
    • (2013) Stem Cells , vol.31 , pp. 1044-1050
    • Smith, J.N.1    Calvi, L.M.2
  • 93
    • 84899587273 scopus 로고    scopus 로고
    • Foxc1 is a critical regulator of haematopoietic stem/progenitor cell niche formation
    • Omatsu, Y., M. Seike, T. Sugiyama, et al. 2014. Foxc1 is a critical regulator of haematopoietic stem/progenitor cell niche formation. Nature 508: 536-540
    • (2014) Nature , vol.508 , pp. 536-540
    • Omatsu, Y.1    Seike, M.2    Sugiyama, T.3
  • 94
    • 77957326036 scopus 로고    scopus 로고
    • Early B cell factor 2 regulates hematopoietic stem cell homeostasis in a cell-nonautonomous manner
    • Kieslinger, M., S. Hiechinger, G. Dobreva, et al. 2010. Early B cell factor 2 regulates hematopoietic stem cell homeostasis in a cell-nonautonomous manner. Cell Stem Cell 7: 496-507.
    • (2010) Cell Stem Cell , vol.7 , pp. 496-507
    • Kieslinger, M.1    Hiechinger, S.2    Dobreva, G.3
  • 95
    • 84892833777 scopus 로고    scopus 로고
    • Discovery and saturation analysis of cancer genes across 21 tumour types
    • Lawrence, M.S., P. Stojanov, C.H. Mermel, et al. 2014. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505: 495-501.
    • (2014) Nature , vol.505 , pp. 495-501
    • Lawrence, M.S.1    Stojanov, P.2    Mermel, C.H.3
  • 96
    • 20244364979 scopus 로고    scopus 로고
    • Stroma-mediated dysregulation of myelopoiesis in mice lacking IκBα
    • Rupec, R.A., F. Jundt, B. Rebholz, et al. 2005. Stroma-mediated dysregulation of myelopoiesis in mice lacking IκBα. Immunity 22: 479-491.
    • (2005) Immunity , vol.22 , pp. 479-491
    • Rupec, R.A.1    Jundt, F.2    Rebholz, B.3
  • 97
    • 34250363611 scopus 로고    scopus 로고
    • Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment
    • Walkley, C.R., J.M. Shea, N.A. Sims, et al. 2007. Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment. Cell 129: 1081-1095.
    • (2007) Cell , vol.129 , pp. 1081-1095
    • Walkley, C.R.1    Shea, J.M.2    Sims, N.A.3
  • 98
    • 34250331610 scopus 로고    scopus 로고
    • A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor gamma deficiency
    • Walkley, C.R., G.H. Olsen, S. Dworkin, et al. 2007. A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor gamma deficiency. Cell 129: 1097-1110.
    • (2007) Cell , vol.129 , pp. 1097-1110
    • Walkley, C.R.1    Olsen, G.H.2    Dworkin, S.3
  • 99
    • 84903993535 scopus 로고    scopus 로고
    • Notch-dependent repression of miR-155 in the bone marrow niche regulates hematopoiesis in an NFκB-dependent manner
    • Wang L., H. Zhang, S. Rodriguez, et al. 2014. Notch-dependent repression of miR-155 in the bone marrow niche regulates hematopoiesis in an NFκB-dependent manner. Cell Stem Cell 15: 51-65.
    • (2014) Cell Stem Cell , vol.15 , pp. 51-65
    • Wang, L.1    Zhang, H.2    Rodriguez, S.3
  • 100
    • 0034051852 scopus 로고    scopus 로고
    • Ligand endocytosis drives receptor dissociation and activation in the Notch pathway
    • Parks, A.L., K.M. Klueg, J.R. Stout, et al. 2000. Ligand endocytosis drives receptor dissociation and activation in the Notch pathway. Development 127: 1373-1385.
    • (2000) Development , vol.127 , pp. 1373-1385
    • Parks, A.L.1    Klueg, K.M.2    Stout, J.R.3
  • 101
    • 24344481807 scopus 로고    scopus 로고
    • Mind bomb 1 is essential for generating functional Notch ligands to activate Notch
    • Koo, B.K., H.S. Lim, R. Song, et al. 2005. Mind bomb 1 is essential for generating functional Notch ligands to activate Notch. Development 132: 3459-3470.
    • (2005) Development , vol.132 , pp. 3459-3470
    • Koo, B.K.1    Lim, H.S.2    Song, R.3
  • 102
    • 43249100317 scopus 로고    scopus 로고
    • An obligatory role of mind bomb-1 in notch signaling of mammalian development
    • Koo, B.K., M.J. Yoon, K.J. Yoon, et al. 2007. An obligatory role of mind bomb-1 in notch signaling of mammalian development. PLoS One 2: e1221.
    • (2007) PLoS One , vol.2 , pp. e1221
    • Koo, B.K.1    Yoon, M.J.2    Yoon, K.J.3
  • 103
    • 58149388329 scopus 로고    scopus 로고
    • Defective Notch activation in microenvironment leads to myeloproliferative disease
    • Kim, Y.W., B.K. Koo, H.W. Jeong, et al. 2008. Defective Notch activation in microenvironment leads to myeloproliferative disease. Blood 112: 4628-4638.
    • (2008) Blood , vol.112 , pp. 4628-4638
    • Kim, Y.W.1    Koo, B.K.2    Jeong, H.W.3
  • 104
    • 34247593034 scopus 로고    scopus 로고
    • Impaired microRNA processing enhances cellular transformation and tumorigenesis
    • Kumar, M.S., J. Lu, K.L. Mercer, et al. 2007. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat. Genet. 39: 673-677.
    • (2007) Nat. Genet. , vol.39 , pp. 673-677
    • Kumar, M.S.1    Lu, J.2    Mercer, K.L.3
  • 105
    • 77950862042 scopus 로고    scopus 로고
    • Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia
    • Raaijmakers, M.H., S. Mukherjee, S. Guo, et al. 2010. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 464: 852-857.
    • (2010) Nature , vol.464 , pp. 852-857
    • Raaijmakers, M.H.1    Mukherjee, S.2    Guo, S.3
  • 106
    • 84893917461 scopus 로고    scopus 로고
    • Leukaemogenesis induced by an activating β-catenin mutation in osteoblasts
    • Kode, A., J.S. Manavalan, I. Mosialou, et al. 2014. Leukaemogenesis induced by an activating β-catenin mutation in osteoblasts. Nature 506: 240-244.
    • (2014) Nature , vol.506 , pp. 240-244
    • Kode, A.1    Manavalan, J.S.2    Mosialou, I.3
  • 107
    • 84884164883 scopus 로고    scopus 로고
    • Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche
    • Schepers, K., E.M. Pietras, D. Reynaud, et al. 2013. Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell 13: 285-299.
    • (2013) Cell Stem Cell , vol.13 , pp. 285-299
    • Schepers, K.1    Pietras, E.M.2    Reynaud, D.3
  • 108
    • 57849108116 scopus 로고    scopus 로고
    • Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells
    • Colmone, A., M. Amorim, A.L. Pontier, et al. 2008. Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science 322: 1861-1865.
    • (2008) Science , vol.322 , pp. 1861-1865
    • Colmone, A.1    Amorim, M.2    Pontier, A.L.3
  • 109
    • 21244472780 scopus 로고    scopus 로고
    • Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size
    • Stier, S., Y. Ko, R. Forkert, et al. 2005. Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J. Exp. Med. 201: 1781-1791.
    • (2005) J. Exp. Med. , vol.201 , pp. 1781-1791
    • Stier, S.1    Ko, Y.2    Forkert, R.3
  • 110
    • 33746578393 scopus 로고    scopus 로고
    • Osteopontin: a bridge between bone and blood
    • Haylock, D.N. & S.K. Nilsson . 2006. Osteopontin: a bridge between bone and blood. Br. J. Haematol. 134: 467-474.
    • (2006) Br. J. Haematol. , vol.134 , pp. 467-474
    • Haylock, D.N.1    Nilsson, S.K.2
  • 111
    • 84881288585 scopus 로고    scopus 로고
    • Adhesion to osteopontin in the bone marrow niche regulates lymphoblastic leukemia cell dormancy
    • Boyerinas, B., M. Zafrir, A.E. Yesilkanal, et al. 2013. Adhesion to osteopontin in the bone marrow niche regulates lymphoblastic leukemia cell dormancy. Blood 121: 4821-4831.
    • (2013) Blood , vol.121 , pp. 4821-4831
    • Boyerinas, B.1    Zafrir, M.2    Yesilkanal, A.E.3
  • 112
    • 84861841026 scopus 로고    scopus 로고
    • Osteopontin is a prognostic factor for survival of acute myeloid leukemia patients
    • Liersch, R., J. Gerss, C. Schliemann, et al. 2012. Osteopontin is a prognostic factor for survival of acute myeloid leukemia patients. Blood 119: 5215-5220.
    • (2012) Blood , vol.119 , pp. 5215-5220
    • Liersch, R.1    Gerss, J.2    Schliemann, C.3
  • 113
    • 84859832491 scopus 로고    scopus 로고
    • Altered microenvironmental regulation of leukemic and normal stem cells in chronic myelogenous leukemia
    • Zhang, B., Y.W. Ho, Q. Huang, et al. 2012. Altered microenvironmental regulation of leukemic and normal stem cells in chronic myelogenous leukemia. Cancer. Cell 21: 577-592.
    • (2012) Cancer. Cell , vol.21 , pp. 577-592
    • Zhang, B.1    Ho, Y.W.2    Huang, Q.3
  • 114
    • 84855858755 scopus 로고    scopus 로고
    • Functional inhibition of osteoblastic cells in an in vivo mouse model of myeloid leukemia
    • Frisch, B.J., J.M. Ashton, L. Xing, et al. 2012. Functional inhibition of osteoblastic cells in an in vivo mouse model of myeloid leukemia. Blood 119: 540-550.
    • (2012) Blood , vol.119 , pp. 540-550
    • Frisch, B.J.1    Ashton, J.M.2    Xing, L.3
  • 115
    • 84887424411 scopus 로고    scopus 로고
    • Differential regulation of myeloid leukemias by the bone marrow microenvironment
    • Krause, D.S., K. Fulzele, A. Catic, et al. 2013. Differential regulation of myeloid leukemias by the bone marrow microenvironment. Nat. Med. 19: 1513-1517.
    • (2013) Nat. Med. , vol.19 , pp. 1513-1517
    • Krause, D.S.1    Fulzele, K.2    Catic, A.3
  • 116
    • 84883740609 scopus 로고    scopus 로고
    • Insufficient stromal support in MDS results from molecular and functional deficits of mesenchymal stromal cells
    • Geyh, S., S. Oz, R.P. Cadeddu, et al. 2013. Insufficient stromal support in MDS results from molecular and functional deficits of mesenchymal stromal cells. Leukemia 27: 1841-1851.
    • (2013) Leukemia , vol.27 , pp. 1841-1851
    • Geyh, S.1    Oz, S.2    Cadeddu, R.P.3
  • 117
    • 39649091183 scopus 로고    scopus 로고
    • Inappropriate Notch activity and limited mesenchymal stem cell plasticity in the bone marrow of patients with myelodysplastic syndromes
    • Varga, G., J. Kiss, J. Varkonyi, et al. 2007. Inappropriate Notch activity and limited mesenchymal stem cell plasticity in the bone marrow of patients with myelodysplastic syndromes. Pathol. Oncol. Res. 13: 311-319.
    • (2007) Pathol. Oncol. Res. , vol.13 , pp. 311-319
    • Varga, G.1    Kiss, J.2    Varkonyi, J.3
  • 118
    • 84856008970 scopus 로고    scopus 로고
    • Notch signalling in cancer progression and bone metastasis
    • Sethi, N. & Y. Kang . 2011. Notch signalling in cancer progression and bone metastasis. Br. J. Cancer 105: 1805-1810.
    • (2011) Br. J. Cancer , vol.105 , pp. 1805-1810
    • Sethi, N.1    Kang, Y.2
  • 119
    • 84866447416 scopus 로고    scopus 로고
    • The evolving concept of cancer and metastasis stem cells
    • Baccelli, I. & A. Trumpp . 2012. The evolving concept of cancer and metastasis stem cells. J. Cell Biol. 198: 281-293.
    • (2012) J. Cell Biol. , vol.198 , pp. 281-293
    • Baccelli, I.1    Trumpp, A.2
  • 120
    • 84896500413 scopus 로고    scopus 로고
    • Contributions of the host microenvironment to cancer-induced bone disease
    • Olechnowicz, S.W. & C.M. Edwards . 2014. Contributions of the host microenvironment to cancer-induced bone disease. Cancer Res. 74: 1625-1631.
    • (2014) Cancer Res. , vol.74 , pp. 1625-1631
    • Olechnowicz, S.W.1    Edwards, C.M.2
  • 121
    • 84866359847 scopus 로고    scopus 로고
    • Eradication of breast cancer cells in patients with distant metastasis: the finishing touches?
    • Ito, Y., T. Iwase & K. Hatake . 2012. Eradication of breast cancer cells in patients with distant metastasis: the finishing touches? Breast Cancer. 19: 206-211.
    • (2012) Breast Cancer. , vol.19 , pp. 206-211
    • Ito, Y.1    Iwase, T.2    Hatake, K.3
  • 122
    • 84891850062 scopus 로고    scopus 로고
    • Targeting tumor-stromal interactions in bone metastasis
    • Esposito, M. & Y. Kang . 2014. Targeting tumor-stromal interactions in bone metastasis. Pharmacol. Ther. 141: 222-233.
    • (2014) Pharmacol. Ther. , vol.141 , pp. 222-233
    • Esposito, M.1    Kang, Y.2
  • 123
    • 80053157914 scopus 로고    scopus 로고
    • Unravelling the complexity of metastasis-molecular understanding and targeted therapies
    • Sethi, N. & Y. Kang . 2011. Unravelling the complexity of metastasis-molecular understanding and targeted therapies. Nat. Rev. Cancer 11: 735-748.
    • (2011) Nat. Rev. Cancer , vol.11 , pp. 735-748
    • Sethi, N.1    Kang, Y.2
  • 124
    • 79751472667 scopus 로고    scopus 로고
    • Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells
    • Sethi, N., X. Dai, C.G. Winter, et al. 2011. Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell 19: 192-205.
    • (2011) Cancer Cell , vol.19 , pp. 192-205
    • Sethi, N.1    Dai, X.2    Winter, C.G.3
  • 125
    • 79953331206 scopus 로고    scopus 로고
    • Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow
    • Shiozawa, Y., E.A. Pedersen, A.M. Havens, et al. 2011. Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J. Clin. Invest. 121: 1298-1312.
    • (2011) J. Clin. Invest. , vol.121 , pp. 1298-1312
    • Shiozawa, Y.1    Pedersen, E.A.2    Havens, A.M.3
  • 126
    • 77955646193 scopus 로고    scopus 로고
    • Mesenchymal and haematopoietic stem cells form a unique bone marrow niche
    • Méndez-Ferrer, S., T.V. Michurina, F. Ferraro, et al. 2010. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466: 829-834.
    • (2010) Nature , vol.466 , pp. 829-834
    • Méndez-Ferrer, S.1    Michurina, T.V.2    Ferraro, F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.