메뉴 건너뛰기




Volumn 1310, Issue 1, 2014, Pages 32-43

Regulation of hematopoiesis by activators and inhibitors of Wnt signaling from the niche

Author keywords

Catenin; Hematopoietic stem cell; Microenvironment; Niche; Stroma; Wnt

Indexed keywords

DICKKOPF 1 PROTEIN; SECRETED FRIZZLED RELATED PROTEIN 1; WNT PROTEIN;

EID: 84896300806     PISSN: 00778923     EISSN: 17496632     Source Type: Book Series    
DOI: 10.1111/nyas.12384     Document Type: Article
Times cited : (24)

References (120)
  • 1
    • 0026500983 scopus 로고
    • Evidence that hematopoietic stem cells express mouse c-kit but do not depend on steel factor for their generation
    • Ikuta, K. & I.L. Weissman. 1992. Evidence that hematopoietic stem cells express mouse c-kit but do not depend on steel factor for their generation. Proc. Natl. Acad. Sci. U S A 89: 1502-1506.
    • (1992) Proc. Natl. Acad. Sci. U S A , vol.89 , pp. 1502-1506
    • Ikuta, K.1    Weissman, I.L.2
  • 2
    • 0037030681 scopus 로고    scopus 로고
    • Kremen proteins are Dickkopf receptors that regulate Wnt/beta-catenin signalling
    • Mao, B. et al. 2002. Kremen proteins are Dickkopf receptors that regulate Wnt/beta-catenin signalling. Nature 417: 664-667.
    • (2002) Nature , vol.417 , pp. 664-667
    • Mao, B.1
  • 3
    • 3943088431 scopus 로고    scopus 로고
    • Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML
    • Jamieson, C.H. et al. 2004. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N. Engl. J. Med. 351: 657-667.
    • (2004) N. Engl. J. Med. , vol.351 , pp. 657-667
    • Jamieson, C.H.1
  • 4
    • 0029796633 scopus 로고    scopus 로고
    • Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell
    • Osawa, M. et al. 1996. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273: 242-245.
    • (1996) Science , vol.273 , pp. 242-245
    • Osawa, M.1
  • 5
    • 0035807964 scopus 로고    scopus 로고
    • Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells
    • Christensen, J.L. & I.L. Weissman. 2001. Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc. Natl. Acad. Sci. USA 98: 14541-14546.
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , pp. 14541-14546
    • Christensen, J.L.1    Weissman, I.L.2
  • 6
    • 21244463426 scopus 로고    scopus 로고
    • SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells
    • Kiel, M.J. et al. 2005. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121: 1109-1121.
    • (2005) Cell , vol.121 , pp. 1109-1121
    • Kiel, M.J.1
  • 7
    • 33644778662 scopus 로고    scopus 로고
    • Endothelial protein C receptor (CD201) explicitly identifies hematopoietic stem cells in murine bone marrow
    • Balazs, A.B. et al. 2006. Endothelial protein C receptor (CD201) explicitly identifies hematopoietic stem cells in murine bone marrow. Blood 107: 2317-2321.
    • (2006) Blood , vol.107 , pp. 2317-2321
    • Balazs, A.B.1
  • 8
    • 67650587142 scopus 로고    scopus 로고
    • Prospective isolation and molecular characterization of hematopoietic stem cells with durable self-renewal potential
    • Kent, D.G. et al. 2009. Prospective isolation and molecular characterization of hematopoietic stem cells with durable self-renewal potential. Blood 113: 6342-6350.
    • (2009) Blood , vol.113 , pp. 6342-6350
    • Kent, D.G.1
  • 9
    • 77953512588 scopus 로고    scopus 로고
    • Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment
    • Morita, Y., H. Ema & H. Nakauchi. 2010. Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment. J. Exp. Med. 207: 1173-1182.
    • (2010) J. Exp. Med. , vol.207 , pp. 1173-1182
    • Morita, Y.1    Ema, H.2    Nakauchi, H.3
  • 10
    • 34547692981 scopus 로고    scopus 로고
    • Long-term propagation of distinct hematopoietic differentiation programs in vivo
    • Dykstra, B. et al. 2007. Long-term propagation of distinct hematopoietic differentiation programs in vivo. Cell Stem. Cell 1: 218-229.
    • (2007) Cell Stem. Cell , vol.1 , pp. 218-229
    • Dykstra, B.1
  • 11
    • 84857873445 scopus 로고    scopus 로고
    • Hematopoietic stem cell subtypes expand differentially during development and display distinct lymphopoietic programs
    • Benz, C. et al. 2012. Hematopoietic stem cell subtypes expand differentially during development and display distinct lymphopoietic programs. Cell Stem. Cell 10: 273-283.
    • (2012) Cell Stem. Cell , vol.10 , pp. 273-283
    • Benz, C.1
  • 12
    • 77950626633 scopus 로고    scopus 로고
    • How the niche regulates hematopoietic stem cells
    • Renstrom, J. et al. 2010. How the niche regulates hematopoietic stem cells. Chem. Biol. Interact. 184: 7-15.
    • (2010) Chem. Biol. Interact. , vol.184 , pp. 7-15
    • Renstrom, J.1
  • 13
    • 0030831130 scopus 로고    scopus 로고
    • Identification of clonogenic common lymphoid progenitors in mouse bone marrow
    • Kondo, M., I.L. Weissman & K. Akashi. 1997. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91: 661-672.
    • (1997) Cell , vol.91 , pp. 661-672
    • Kondo, M.1    Weissman, I.L.2    Akashi, K.3
  • 14
    • 0018102359 scopus 로고
    • The relationship between the spleen colony-forming cell and the haemopoietic stem cell
    • Schofield, R. 1978. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4: 7-25.
    • (1978) Blood Cells , vol.4 , pp. 7-25
    • Schofield, R.1
  • 15
    • 1642603951 scopus 로고    scopus 로고
    • Socializing with the neighbors: stem cells and their niche
    • Fuchs, E., T. Tumbar & G. Guasch. 2004. Socializing with the neighbors: stem cells and their niche. Cell 116: 769-778.
    • (2004) Cell , vol.116 , pp. 769-778
    • Fuchs, E.1    Tumbar, T.2    Guasch, G.3
  • 16
    • 39149144034 scopus 로고    scopus 로고
    • Stem cells and niches: mechanisms that promote stem cell maintenance throughout life
    • Morrison, S.J. & A.C. Spradling. 2008. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132: 598-611.
    • (2008) Cell , vol.132 , pp. 598-611
    • Morrison, S.J.1    Spradling, A.C.2
  • 17
    • 66049149851 scopus 로고    scopus 로고
    • Bone and blood vessels: the hard and the soft of hematopoietic stem cell niches
    • Garrett, R.W. & S.G. Emerson. 2009. Bone and blood vessels: the hard and the soft of hematopoietic stem cell niches. Cell Stem. Cell 4: 503-506.
    • (2009) Cell Stem. Cell , vol.4 , pp. 503-506
    • Garrett, R.W.1    Emerson, S.G.2
  • 18
    • 79959810834 scopus 로고    scopus 로고
    • Control of hematopoietic stem cells by the bone marrow stromal niche: the role of reticular cells
    • Nagasawa, T., Y. Omatsu & T. Sugiyama. 2011. Control of hematopoietic stem cells by the bone marrow stromal niche: the role of reticular cells. Trends Immunol. 32: 315-320.
    • (2011) Trends Immunol. , vol.32 , pp. 315-320
    • Nagasawa, T.1    Omatsu, Y.2    Sugiyama, T.3
  • 19
    • 0019968565 scopus 로고
    • The relative spatial distribution of erythroid progenitor cells (BFUe and CFUe) in the normal mouse femur
    • Frassoni, F., N.G. Testa & B.I. Lord. 1982. The relative spatial distribution of erythroid progenitor cells (BFUe and CFUe) in the normal mouse femur. Cell Tissue Kinet. 15: 447-455.
    • (1982) Cell Tissue Kinet. , vol.15 , pp. 447-455
    • Frassoni, F.1    Testa, N.G.2    Lord, B.I.3
  • 20
    • 0242268524 scopus 로고    scopus 로고
    • Osteoblastic cells regulate the haematopoietic stem cell niche
    • Calvi, L.M. et al. 2003. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425: 841-846.
    • (2003) Nature , vol.425 , pp. 841-846
    • Calvi, L.M.1
  • 21
    • 0242363225 scopus 로고    scopus 로고
    • Identification of the haematopoietic stem cell niche and control of the niche size
    • Zhang, J. et al. 2003. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425: 836-841.
    • (2003) Nature , vol.425 , pp. 836-841
    • Zhang, J.1
  • 22
    • 58149260269 scopus 로고    scopus 로고
    • Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche
    • Lo Celso, C. et al. 2009. Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 457: 92-96.
    • (2009) Nature , vol.457 , pp. 92-96
    • Lo Celso, C.1
  • 23
    • 58149250287 scopus 로고    scopus 로고
    • Detection of functional haematopoietic stem cell niche using real-time imaging
    • Xie, Y. et al. 2009. Detection of functional haematopoietic stem cell niche using real-time imaging. Nature 457: 97-101.
    • (2009) Nature , vol.457 , pp. 97-101
    • Xie, Y.1
  • 24
    • 77957326036 scopus 로고    scopus 로고
    • Early B cell factor 2 regulates hematopoietic stem cell homeostasis in a cell-nonautonomous manner
    • Kieslinger, M. et al. 2010. Early B cell factor 2 regulates hematopoietic stem cell homeostasis in a cell-nonautonomous manner. Cell Stem. Cell 7: 496-507.
    • (2010) Cell Stem. Cell , vol.7 , pp. 496-507
    • Kieslinger, M.1
  • 25
    • 77955646193 scopus 로고    scopus 로고
    • Mesenchymal and haematopoietic stem cells form a unique bone marrow niche
    • Mendez-Ferrer, S. et al. 2010. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466: 829-834.
    • (2010) Nature , vol.466 , pp. 829-834
    • Mendez-Ferrer, S.1
  • 26
    • 33845445939 scopus 로고    scopus 로고
    • Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches
    • Sugiyama, T. et al. 2006. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25: 977-988.
    • (2006) Immunity , vol.25 , pp. 977-988
    • Sugiyama, T.1
  • 27
    • 84856147560 scopus 로고    scopus 로고
    • Endothelial and perivascular cells maintain haematopoietic stem cells
    • Ding, L. et al. 2012. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481: 457-462.
    • (2012) Nature , vol.481 , pp. 457-462
    • Ding, L.1
  • 28
    • 81855183667 scopus 로고    scopus 로고
    • Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche
    • Yamazaki, S. et al. 2011. Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 147: 1146-1158.
    • (2011) Cell , vol.147 , pp. 1146-1158
    • Yamazaki, S.1
  • 29
    • 84875539909 scopus 로고    scopus 로고
    • Mesenchymal stem cell: keystone of the hematopoietic stem cell niche and a stepping-stone for regenerative medicine
    • Frenette, P.S. et al. 2013. Mesenchymal stem cell: keystone of the hematopoietic stem cell niche and a stepping-stone for regenerative medicine. Annu. Rev. Immunol. 31: 285-316.
    • (2013) Annu. Rev. Immunol. , vol.31 , pp. 285-316
    • Frenette, P.S.1
  • 30
    • 77956574958 scopus 로고    scopus 로고
    • Isolation and characterization of endosteal niche cell populations that regulate hematopoietic stem cells
    • Nakamura, Y. et al. 2010. Isolation and characterization of endosteal niche cell populations that regulate hematopoietic stem cells. Blood 116: 1422-1432.
    • (2010) Blood , vol.116 , pp. 1422-1432
    • Nakamura, Y.1
  • 31
    • 84881095160 scopus 로고    scopus 로고
    • Clonal precursor of bone, cartilage, and hematopoietic niche stromal cells
    • Chan, C.K. et al. 2013. Clonal precursor of bone, cartilage, and hematopoietic niche stromal cells. Proc. Natl. Acad. Sci. USA 110: 12643-12648.
    • (2013) Proc. Natl. Acad. Sci. USA , vol.110 , pp. 12643-12648
    • Chan, C.K.1
  • 32
    • 70449701931 scopus 로고    scopus 로고
    • Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow
    • Morikawa, S. et al. 2009. Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J. Exp. Med. 206: 2483-2496.
    • (2009) J. Exp. Med. , vol.206 , pp. 2483-2496
    • Morikawa, S.1
  • 33
    • 84880652108 scopus 로고    scopus 로고
    • PDGFRalpha and CD51 mark human nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion
    • Pinho, S. et al. 2013. PDGFRalpha and CD51 mark human nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. J. Exp. Med. 210: 1351-1367.
    • (2013) J. Exp. Med. , vol.210 , pp. 1351-1367
    • Pinho, S.1
  • 34
    • 41149109622 scopus 로고    scopus 로고
    • Uncertainty in the niches that maintain haematopoietic stem cells
    • Kiel, M.J. & S.J. Morrison. 2008. Uncertainty in the niches that maintain haematopoietic stem cells. Nat. Rev. Immunol 8: 290-301.
    • (2008) Nat. Rev. Immunol , vol.8 , pp. 290-301
    • Kiel, M.J.1    Morrison, S.J.2
  • 35
    • 73349116207 scopus 로고    scopus 로고
    • Defects in osteoblast function but no changes in long-term repopulating potential of hematopoietic stem cells in a mouse chronic inflammatory arthritis model
    • Ma, Y.D. et al. 2009. Defects in osteoblast function but no changes in long-term repopulating potential of hematopoietic stem cells in a mouse chronic inflammatory arthritis model. Blood 114: 4402-4410.
    • (2009) Blood , vol.114 , pp. 4402-4410
    • Ma, Y.D.1
  • 36
    • 34547670604 scopus 로고    scopus 로고
    • Lack of evidence that hematopoietic stem cells depend on N-cadherin-mediated adhesion to osteoblasts for their maintenance
    • Kiel, M.J., G.L. Radice & S.J. Morrison. 2007. Lack of evidence that hematopoietic stem cells depend on N-cadherin-mediated adhesion to osteoblasts for their maintenance. Cell Stem. Cell 1: 204-217.
    • (2007) Cell Stem. Cell , vol.1 , pp. 204-217
    • Kiel, M.J.1    Radice, G.L.2    Morrison, S.J.3
  • 37
    • 61849092556 scopus 로고    scopus 로고
    • Endothelial progenitor cell infusion induces hematopoietic stem cell reconstitution in vivo
    • Salter, A.B. et al. 2009. Endothelial progenitor cell infusion induces hematopoietic stem cell reconstitution in vivo. Blood 113: 2104-2107.
    • (2009) Blood , vol.113 , pp. 2104-2107
    • Salter, A.B.1
  • 38
    • 73149094299 scopus 로고    scopus 로고
    • Endothelial cells mediate the regeneration of hematopoietic stem cells
    • Li, B. et al. 2010. Endothelial cells mediate the regeneration of hematopoietic stem cells. Stem. Cell. Res. 4: 17-24.
    • (2010) Stem. Cell. Res. , vol.4 , pp. 17-24
    • Li, B.1
  • 39
    • 59249094358 scopus 로고    scopus 로고
    • Hematopoietic stem cells do not depend on N-cadherin to regulate their maintenance
    • Kiel, M.J. et al. 2009. Hematopoietic stem cells do not depend on N-cadherin to regulate their maintenance. Cell Stem. Cell 4: 170-179.
    • (2009) Cell Stem. Cell , vol.4 , pp. 170-179
    • Kiel, M.J.1
  • 40
    • 84869155711 scopus 로고    scopus 로고
    • Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance
    • Winkler, I.G. et al. 2012. Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance. Nat. Med. 18: 1651-1657.
    • (2012) Nat. Med. , vol.18 , pp. 1651-1657
    • Winkler, I.G.1
  • 41
    • 56549128268 scopus 로고    scopus 로고
    • Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair
    • Wilson, A. et al. 2008. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135: 1118-1129.
    • (2008) Cell , vol.135 , pp. 1118-1129
    • Wilson, A.1
  • 42
    • 0030786589 scopus 로고    scopus 로고
    • Early transplantation to a normal microenvironment prevents the development of steel hematopoietic stem cell defects
    • Barker, J.E. 1997. Early transplantation to a normal microenvironment prevents the development of steel hematopoietic stem cell defects. Exp. Hematol. 25: 542-547.
    • (1997) Exp. Hematol. , vol.25 , pp. 542-547
    • Barker, J.E.1
  • 43
    • 63949087179 scopus 로고    scopus 로고
    • Hematopoietic stem cell transplantation without irradiation
    • Waskow, C. et al. 2009. Hematopoietic stem cell transplantation without irradiation. Nat. Methods 6: 267-269.
    • (2009) Nat. Methods , vol.6 , pp. 267-269
    • Waskow, C.1
  • 44
    • 0036753694 scopus 로고    scopus 로고
    • Viable c-Kit(W/W) mutants reveal pivotal role for c-kit in the maintenance of lymphopoiesis
    • Waskow, C. et al. 2002. Viable c-Kit(W/W) mutants reveal pivotal role for c-kit in the maintenance of lymphopoiesis. Immunity 17: 277-288.
    • (2002) Immunity , vol.17 , pp. 277-288
    • Waskow, C.1
  • 45
    • 78751559016 scopus 로고    scopus 로고
    • Loss of Cxcl12/Sdf-1 in adult mice decreases the quiescent state of hematopoietic stem/progenitor cells and alters the pattern of hematopoietic regeneration after myelosuppression
    • Tzeng, Y.S. et al. 2011. Loss of Cxcl12/Sdf-1 in adult mice decreases the quiescent state of hematopoietic stem/progenitor cells and alters the pattern of hematopoietic regeneration after myelosuppression. Blood 117: 429-439.
    • (2011) Blood , vol.117 , pp. 429-439
    • Tzeng, Y.S.1
  • 46
    • 0032482926 scopus 로고    scopus 로고
    • Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice
    • Ma, Q. et al. 1998. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc. Natl. Acad. Sci. USA 95: 9448-9453.
    • (1998) Proc. Natl. Acad. Sci. USA , vol.95 , pp. 9448-9453
    • Ma, Q.1
  • 47
    • 0032507962 scopus 로고    scopus 로고
    • Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development
    • Zou, Y.R. et al. 1998. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393: 595-599.
    • (1998) Nature , vol.393 , pp. 595-599
    • Zou, Y.R.1
  • 48
    • 0033119201 scopus 로고    scopus 로고
    • The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment
    • Ma, Q., D. Jones & T.A. Springer. 1999. The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment. Immunity 10: 463-471.
    • (1999) Immunity , vol.10 , pp. 463-471
    • Ma, Q.1    Jones, D.2    Springer, T.A.3
  • 49
    • 84874655208 scopus 로고    scopus 로고
    • Nrf2 regulates haematopoietic stem cell function
    • Tsai, J.J. et al. 2013. Nrf2 regulates haematopoietic stem cell function. Nat. Cell Biol. 15: 309-316.
    • (2013) Nat. Cell Biol. , vol.15 , pp. 309-316
    • Tsai, J.J.1
  • 50
    • 69549086437 scopus 로고    scopus 로고
    • Dissection of PIM serine/threonine kinases in FLT3-ITD-induced leukemogenesis reveals PIM1 as regulator of CXCL12-CXCR4-mediated homing and migration
    • Grundler, R. et al. 2009. Dissection of PIM serine/threonine kinases in FLT3-ITD-induced leukemogenesis reveals PIM1 as regulator of CXCL12-CXCR4-mediated homing and migration. J. Exp. Med. 206: 1957-1970.
    • (2009) J. Exp. Med. , vol.206 , pp. 1957-1970
    • Grundler, R.1
  • 51
    • 73349123461 scopus 로고    scopus 로고
    • BMP4 regulates the hematopoietic stem cell niche
    • Goldman, D.C. et al. 2009. BMP4 regulates the hematopoietic stem cell niche. Blood 114: 4393-4401.
    • (2009) Blood , vol.114 , pp. 4393-4401
    • Goldman, D.C.1
  • 52
    • 39749178390 scopus 로고    scopus 로고
    • Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo
    • Fleming, H.E. et al. 2008. Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem. Cell 2: 274-283.
    • (2008) Cell Stem. Cell , vol.2 , pp. 274-283
    • Fleming, H.E.1
  • 53
    • 80052654597 scopus 로고    scopus 로고
    • Stromal pleiotrophin regulates repopulation behavior of hematopoietic stem cells
    • Istvanffy, R. et al. 2011. Stromal pleiotrophin regulates repopulation behavior of hematopoietic stem cells. Blood 118: 2712-2722.
    • (2011) Blood , vol.118 , pp. 2712-2722
    • Istvanffy, R.1
  • 54
    • 67849122659 scopus 로고    scopus 로고
    • Secreted frizzled-related protein 1 extrinsically regulates cycling activity and maintenance of hematopoietic stem cells
    • Renstrom, J. et al. 2009. Secreted frizzled-related protein 1 extrinsically regulates cycling activity and maintenance of hematopoietic stem cells. Cell Stem. Cell 5: 157-167.
    • (2009) Cell Stem. Cell , vol.5 , pp. 157-167
    • Renstrom, J.1
  • 55
    • 36749001043 scopus 로고    scopus 로고
    • Critical role of thrombopoietin in maintaining adult quiescent hematopoietic stem cells
    • Qian, H. et al. 2007. Critical role of thrombopoietin in maintaining adult quiescent hematopoietic stem cells. Cell Stem. Cell 1: 671-684.
    • (2007) Cell Stem. Cell , vol.1 , pp. 671-684
    • Qian, H.1
  • 56
    • 77950862042 scopus 로고    scopus 로고
    • Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia
    • Raaijmakers, M.H. et al. 2010. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 464: 852-857.
    • (2010) Nature , vol.464 , pp. 852-857
    • Raaijmakers, M.H.1
  • 57
    • 63849140348 scopus 로고    scopus 로고
    • SHIP is required for a functional hematopoietic stem cell niche
    • Hazen, A.L. et al. 2009. SHIP is required for a functional hematopoietic stem cell niche. Blood 113: 2924-2933.
    • (2009) Blood , vol.113 , pp. 2924-2933
    • Hazen, A.L.1
  • 58
    • 34250363611 scopus 로고    scopus 로고
    • Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment
    • Walkley, C.R. et al. 2007. Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment. Cell 129: 1081-1095.
    • (2007) Cell , vol.129 , pp. 1081-1095
    • Walkley, C.R.1
  • 59
    • 84877976230 scopus 로고    scopus 로고
    • NFAT signaling in osteoblasts regulates the hematopoietic niche in the bone microenvironment
    • Sesler, C.L. & M. Zayzafoon 2013. NFAT signaling in osteoblasts regulates the hematopoietic niche in the bone microenvironment. Clin. Dev. Immunol. 2013: 107321.
    • (2013) Clin. Dev. Immunol. , vol.2013 , pp. 107321
    • Sesler, C.L.1    Zayzafoon, M.2
  • 60
    • 34547925581 scopus 로고    scopus 로고
    • Cross-talk between Wnt signaling pathways in human mesenchymal stem cells leads to functional antagonism during osteogenic differentiation
    • Baksh, D., G.M. Boland & R.S. Tuan. 2007. Cross-talk between Wnt signaling pathways in human mesenchymal stem cells leads to functional antagonism during osteogenic differentiation. J. Cell Biochem. 101: 1109-1124.
    • (2007) J. Cell Biochem. , vol.101 , pp. 1109-1124
    • Baksh, D.1    Boland, G.M.2    Tuan, R.S.3
  • 61
    • 0035879356 scopus 로고    scopus 로고
    • Wnt signaling regulates hemopoiesis through stromal cells
    • Yamane, T. et al. 2001. Wnt signaling regulates hemopoiesis through stromal cells. J. Immunol. 167: 765-772.
    • (2001) J. Immunol. , vol.167 , pp. 765-772
    • Yamane, T.1
  • 62
    • 0032406715 scopus 로고    scopus 로고
    • Mechanisms of Wnt signaling in development
    • Wodarz, A. & R. Nusse. 1998. Mechanisms of Wnt signaling in development. Annu. Rev. Cell Dev. Biol. 14: 59-88.
    • (1998) Annu. Rev. Cell Dev. Biol. , vol.14 , pp. 59-88
    • Wodarz, A.1    Nusse, R.2
  • 63
    • 0030989287 scopus 로고    scopus 로고
    • A role for the Wnt gene family in hematopoiesis: expansion of multilineage progenitor cells
    • Austin, T.W. et al. 1997. A role for the Wnt gene family in hematopoiesis: expansion of multilineage progenitor cells. Blood 89: 3624-3635.
    • (1997) Blood , vol.89 , pp. 3624-3635
    • Austin, T.W.1
  • 64
    • 0032212190 scopus 로고    scopus 로고
    • Role of members of the Wnt gene family in human hematopoiesis
    • Van Den Berg, D.J. et al. 1998. Role of members of the Wnt gene family in human hematopoiesis. Blood 92: 3189-3202.
    • (1998) Blood , vol.92 , pp. 3189-3202
    • Van Den Berg, D.J.1
  • 65
    • 67650230896 scopus 로고    scopus 로고
    • Wnt/beta-catenin signaling: components, mechanisms, and diseases
    • MacDonald, B.T., K. Tamai & X. He. 2009. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev. Cell 17: 9-26.
    • (2009) Dev. Cell , vol.17 , pp. 9-26
    • MacDonald, B.T.1    Tamai, K.2    He, X.3
  • 66
    • 1642499734 scopus 로고    scopus 로고
    • Beta-catenin is dispensable for hematopoiesis and lymphopoiesis
    • Cobas, M. et al. 2004. Beta-catenin is dispensable for hematopoiesis and lymphopoiesis. J. Exp. Med. 199: 221-229.
    • (2004) J. Exp. Med. , vol.199 , pp. 221-229
    • Cobas, M.1
  • 67
    • 38049105637 scopus 로고    scopus 로고
    • Long-term, multilineage hematopoiesis occurs in the combined absence of beta-catenin and gamma-catenin
    • Jeannet, G. et al. 2008. Long-term, multilineage hematopoiesis occurs in the combined absence of beta-catenin and gamma-catenin. Blood 111: 142-149.
    • (2008) Blood , vol.111 , pp. 142-149
    • Jeannet, G.1
  • 68
    • 38049139201 scopus 로고    scopus 로고
    • Simultaneous loss of beta- and gamma-catenin does not perturb hematopoiesis or lymphopoiesis
    • Koch, U. et al. 2008. Simultaneous loss of beta- and gamma-catenin does not perturb hematopoiesis or lymphopoiesis. Blood 111: 160-164.
    • (2008) Blood , vol.111 , pp. 160-164
    • Koch, U.1
  • 69
    • 33748850636 scopus 로고    scopus 로고
    • Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block
    • Kirstetter, P. et al. 2006. Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block. Nat. Immunol. 7: 1048-1056.
    • (2006) Nat. Immunol. , vol.7 , pp. 1048-1056
    • Kirstetter, P.1
  • 70
    • 80053907201 scopus 로고    scopus 로고
    • Canonical wnt signaling regulates hematopoiesis in a dosage-dependent fashion
    • Luis, T.C. et al. 2011. Canonical wnt signaling regulates hematopoiesis in a dosage-dependent fashion. Cell Stem. Cell 9: 345-356.
    • (2011) Cell Stem. Cell , vol.9 , pp. 345-356
    • Luis, T.C.1
  • 71
    • 0028157392 scopus 로고
    • Wnt-3a regulates somite and tailbud formation in the mouse embryo
    • Takada, S. et al. 1994. Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes. Dev. 8: 174-189.
    • (1994) Genes. Dev. , vol.8 , pp. 174-189
    • Takada, S.1
  • 72
    • 60249101799 scopus 로고    scopus 로고
    • Wnt3a deficiency irreversibly impairs hematopoietic stem cell self-renewal and leads to defects in progenitor cell differentiation
    • Luis, T.C. et al. 2009. Wnt3a deficiency irreversibly impairs hematopoietic stem cell self-renewal and leads to defects in progenitor cell differentiation. Blood 113: 546-554.
    • (2009) Blood , vol.113 , pp. 546-554
    • Luis, T.C.1
  • 73
    • 0041695485 scopus 로고    scopus 로고
    • A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling
    • Veeman, M.T., J.D. Axelrod & R.T. Moon. 2003. A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev. Cell 5: 367-377.
    • (2003) Dev. Cell , vol.5 , pp. 367-377
    • Veeman, M.T.1    Axelrod, J.D.2    Moon, R.T.3
  • 74
    • 78650205344 scopus 로고    scopus 로고
    • Maintenance of HSC by Wnt5a secreting AGM-derived stromal cell line
    • e111-e115
    • Buckley, S.M. et al. 2011. Maintenance of HSC by Wnt5a secreting AGM-derived stromal cell line. Exp. Hematol. 39: 114-123 e111-e115.
    • (2011) Exp. Hematol. , vol.39 , pp. 114-123
    • Buckley, S.M.1
  • 75
    • 84888021623 scopus 로고    scopus 로고
    • A canonical to non-canonical Wnt signalling switch in haematopoietic stem-cell ageing
    • Florian, M.C. et al. 2013. A canonical to non-canonical Wnt signalling switch in haematopoietic stem-cell ageing. Nature 503: 392-396.
    • (2013) Nature , vol.503 , pp. 392-396
    • Florian, M.C.1
  • 76
    • 0032938813 scopus 로고    scopus 로고
    • A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo
    • Yamaguchi, T.P. et al. 1999. A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development 126: 1211-1223.
    • (1999) Development , vol.126 , pp. 1211-1223
    • Yamaguchi, T.P.1
  • 77
    • 0345356929 scopus 로고    scopus 로고
    • Wnt5a inhibits B cell proliferation and functions as a tumor suppressor in hematopoietic tissue
    • Liang, H. et al. 2003. Wnt5a inhibits B cell proliferation and functions as a tumor suppressor in hematopoietic tissue. Cancer Cell 4: 349-360.
    • (2003) Cancer Cell , vol.4 , pp. 349-360
    • Liang, H.1
  • 78
    • 0033711624 scopus 로고    scopus 로고
    • Wnt signaling regulates B lymphocyte proliferation through a LEF-1 dependent mechanism
    • Reya, T. et al. 2000. Wnt signaling regulates B lymphocyte proliferation through a LEF-1 dependent mechanism. Immunity 13: 15-24.
    • (2000) Immunity , vol.13 , pp. 15-24
    • Reya, T.1
  • 79
    • 84858007236 scopus 로고    scopus 로고
    • Wnt5a-Ror2 signaling between osteoblast-lineage cells and osteoclast precursors enhances osteoclastogenesis
    • Maeda, K. et al. 2012. Wnt5a-Ror2 signaling between osteoblast-lineage cells and osteoclast precursors enhances osteoclastogenesis. Nat. Med. 18: 405-412.
    • (2012) Nat. Med. , vol.18 , pp. 405-412
    • Maeda, K.1
  • 80
    • 34848922753 scopus 로고    scopus 로고
    • Wnt5a inhibits canonical Wnt signaling in hematopoietic stem cells and enhances repopulation
    • Nemeth, M.J. et al. 2007. Wnt5a inhibits canonical Wnt signaling in hematopoietic stem cells and enhances repopulation. Proc. Natl. Acad. Sci. USA 104: 15436-15441.
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 15436-15441
    • Nemeth, M.J.1
  • 81
    • 70349310357 scopus 로고    scopus 로고
    • Activation of Wnt5A signaling is required for CXC chemokine ligand 12-mediated T-cell migration
    • Ghosh, M.C. et al. 2009. Activation of Wnt5A signaling is required for CXC chemokine ligand 12-mediated T-cell migration. Blood 114: 1366-1373.
    • (2009) Blood , vol.114 , pp. 1366-1373
    • Ghosh, M.C.1
  • 82
    • 0034214847 scopus 로고    scopus 로고
    • The Wnt/Ca2 +pathway: a new vertebrate Wnt signaling pathway takes shape
    • Kuhl, M. et al. 2000. The Wnt/Ca2 +pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet. 16: 279-283.
    • (2000) Trends Genet. , vol.16 , pp. 279-283
    • Kuhl, M.1
  • 83
    • 84860634046 scopus 로고    scopus 로고
    • Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation
    • Florian, M.C. et al. 2012. Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem. Cell 10: 520-530.
    • (2012) Cell Stem. Cell , vol.10 , pp. 520-530
    • Florian, M.C.1
  • 84
    • 84884221690 scopus 로고    scopus 로고
    • A fully human inhibitory monoclonal antibody to the Wnt receptor RYK
    • Halford, M.M. et al. 2013. A fully human inhibitory monoclonal antibody to the Wnt receptor RYK. PLoS One 8: e75447.
    • (2013) PLoS One , vol.8
    • Halford, M.M.1
  • 85
    • 55749102279 scopus 로고    scopus 로고
    • Alternative wnt signaling is initiated by distinct receptors
    • van Amerongen, R., A. Mikels & R. Nusse. 2008. Alternative wnt signaling is initiated by distinct receptors. Sci. Signal 1: re9.
    • (2008) Sci. Signal , vol.1
    • van Amerongen, R.1    Mikels, A.2    Nusse, R.3
  • 86
    • 84891786037 scopus 로고    scopus 로고
    • Wnt5a regulates hematopoietic stem cell proliferation and repopulation through the Ryk receptor
    • Povinelli, B.J. & M.J. Nemeth. 2013. Wnt5a regulates hematopoietic stem cell proliferation and repopulation through the Ryk receptor. Stem Cells 32: 105-115.
    • (2013) Stem Cells , vol.32 , pp. 105-115
    • Povinelli, B.J.1    Nemeth, M.J.2
  • 88
    • 0038783316 scopus 로고    scopus 로고
    • Secreted antagonists of the Wnt signalling pathway
    • Kawano, Y. & R. Kypta. 2003. Secreted antagonists of the Wnt signalling pathway. J. Cell Sci. 116: 2627-2634.
    • (2003) J. Cell Sci. , vol.116 , pp. 2627-2634
    • Kawano, Y.1    Kypta, R.2
  • 89
    • 12144291274 scopus 로고    scopus 로고
    • Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer
    • Suzuki, H. et al. 2004. Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat. Genet. 36: 417-422.
    • (2004) Nat. Genet. , vol.36 , pp. 417-422
    • Suzuki, H.1
  • 90
    • 84860505844 scopus 로고    scopus 로고
    • SFRP1 and SFRP2 dose-dependently regulate midbrain dopamine neuron development in vivo and in embryonic stem cells
    • Kele, J. et al. 2012. SFRP1 and SFRP2 dose-dependently regulate midbrain dopamine neuron development in vivo and in embryonic stem cells. Stem. Cells 30: 865-875.
    • (2012) Stem. Cells , vol.30 , pp. 865-875
    • Kele, J.1
  • 91
    • 33645746278 scopus 로고    scopus 로고
    • Sfrp1 and Sfrp2 regulate anteroposterior axis elongation and somite segmentation during mouse embryogenesis
    • Satoh, W. et al. 2006. Sfrp1 and Sfrp2 regulate anteroposterior axis elongation and somite segmentation during mouse embryogenesis. Development 133: 989-999.
    • (2006) Development , vol.133 , pp. 989-999
    • Satoh, W.1
  • 92
    • 39549107806 scopus 로고    scopus 로고
    • Sfrp1, Sfrp2, and Sfrp5 regulate the Wnt/beta-catenin and the planar cell polarity pathways during early trunk formation in mouse
    • Satoh, W. et al. 2008. Sfrp1, Sfrp2, and Sfrp5 regulate the Wnt/beta-catenin and the planar cell polarity pathways during early trunk formation in mouse. Genesis 46: 92-103.
    • (2008) Genesis , vol.46 , pp. 92-103
    • Satoh, W.1
  • 93
    • 58949095738 scopus 로고    scopus 로고
    • Sfrp1 and Sfrp2 are required for normal male sexual development in mice
    • Warr, N. et al. 2009. Sfrp1 and Sfrp2 are required for normal male sexual development in mice. Dev. Biol. 326: 273-284.
    • (2009) Dev. Biol. , vol.326 , pp. 273-284
    • Warr, N.1
  • 94
    • 77952544910 scopus 로고    scopus 로고
    • New treatment targets in osteoporosis
    • Roux, S. 2010. New treatment targets in osteoporosis. Joint Bone Spine 77: 222-228.
    • (2010) Joint Bone Spine , vol.77 , pp. 222-228
    • Roux, S.1
  • 95
    • 70349969528 scopus 로고    scopus 로고
    • Wnt modulators, SFRP-1, and SFRP-2 are expressed in osteoblasts and differentially regulate hematopoietic stem cells
    • Nakajima, H. et al. 2009. Wnt modulators, SFRP-1, and SFRP-2 are expressed in osteoblasts and differentially regulate hematopoietic stem cells. Biochem. Biophys. Res. Commun. 390: 65-70.
    • (2009) Biochem. Biophys. Res. Commun. , vol.390 , pp. 65-70
    • Nakajima, H.1
  • 96
    • 18244427021 scopus 로고    scopus 로고
    • Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway
    • Mao, J. et al. 2001. Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway. Mol. Cell 7: 801-809.
    • (2001) Mol. Cell , vol.7 , pp. 801-809
    • Mao, J.1
  • 97
    • 70350357044 scopus 로고    scopus 로고
    • Wif-1 is expressed at cartilage-mesenchyme interfaces and impedes Wnt3a-mediated inhibition of chondrogenesis
    • Surmann-Schmitt, C. et al. 2009. Wif-1 is expressed at cartilage-mesenchyme interfaces and impedes Wnt3a-mediated inhibition of chondrogenesis. J. Cell Sci. 122: 3627-3637.
    • (2009) J. Cell Sci. , vol.122 , pp. 3627-3637
    • Surmann-Schmitt, C.1
  • 98
    • 79961020791 scopus 로고    scopus 로고
    • Modular mechanism of Wnt signaling inhibition by Wnt inhibitory factor 1
    • Malinauskas, T. et al. 2011. Modular mechanism of Wnt signaling inhibition by Wnt inhibitory factor 1. Nat. Struct. Mol. Biol. 18: 886-893.
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 886-893
    • Malinauskas, T.1
  • 99
    • 80052392777 scopus 로고    scopus 로고
    • Wnt-inhibitory factor 1 dysregulation of the bone marrow niche exhausts hematopoietic stem cells
    • Schaniel, C. et al. 2011. Wnt-inhibitory factor 1 dysregulation of the bone marrow niche exhausts hematopoietic stem cells. Blood 118: 2420-2429.
    • (2011) Blood , vol.118 , pp. 2420-2429
    • Schaniel, C.1
  • 100
    • 57849108116 scopus 로고    scopus 로고
    • Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells
    • Colmone, A. et al. 2008. Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science 322: 1861-1865.
    • (2008) Science , vol.322 , pp. 1861-1865
    • Colmone, A.1
  • 101
    • 84872534918 scopus 로고    scopus 로고
    • RNA trafficking by acute myelogenous leukemia exosomes
    • Huan, J. et al. 2013. RNA trafficking by acute myelogenous leukemia exosomes. Cancer Res. 73: 918-929.
    • (2013) Cancer Res. , vol.73 , pp. 918-929
    • Huan, J.1
  • 102
    • 84872387409 scopus 로고    scopus 로고
    • Protein kinase c-beta-dependent activation of NF-kappaB in stromal cells is indispensable for the survival of chronic lymphocytic leukemia B cells in vivo
    • Lutzny, G. et al. 2013. Protein kinase c-beta-dependent activation of NF-kappaB in stromal cells is indispensable for the survival of chronic lymphocytic leukemia B cells in vivo. Cancer Cell 23: 77-92.
    • (2013) Cancer Cell , vol.23 , pp. 77-92
    • Lutzny, G.1
  • 103
    • 84883740609 scopus 로고    scopus 로고
    • Insufficient stromal support in MDS results from molecular and functional deficits of mesenchymal stromal cells
    • Geyh, S. et al. 2013. Insufficient stromal support in MDS results from molecular and functional deficits of mesenchymal stromal cells. Leukemia 27: 1841-1851.
    • (2013) Leukemia , vol.27 , pp. 1841-1851
    • Geyh, S.1
  • 104
    • 84855858755 scopus 로고    scopus 로고
    • Functional inhibition of osteoblastic cells in an in vivo mouse model of myeloid leukemia
    • Frisch, B.J. et al. 2012. Functional inhibition of osteoblastic cells in an in vivo mouse model of myeloid leukemia. Blood 119: 540-550.
    • (2012) Blood , vol.119 , pp. 540-550
    • Frisch, B.J.1
  • 105
    • 84884164883 scopus 로고    scopus 로고
    • Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche
    • Schepers, K. et al. 2013. Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem. Cell 13: 285-299.
    • (2013) Cell Stem. Cell , vol.13 , pp. 285-299
    • Schepers, K.1
  • 106
    • 20244364979 scopus 로고    scopus 로고
    • Stroma-mediated dysregulation of myelopoiesis in mice lacking I kappa B alpha
    • Rupec, R.A. et al. 2005. Stroma-mediated dysregulation of myelopoiesis in mice lacking I kappa B alpha. Immunity 22: 479-491.
    • (2005) Immunity , vol.22 , pp. 479-491
    • Rupec, R.A.1
  • 107
    • 20944450265 scopus 로고    scopus 로고
    • Flt3 tandem duplication mutations cooperate with Wnt signaling in leukemic signal transduction
    • Tickenbrock, L. et al. 2005. Flt3 tandem duplication mutations cooperate with Wnt signaling in leukemic signal transduction. Blood 105: 3699-3706.
    • (2005) Blood , vol.105 , pp. 3699-3706
    • Tickenbrock, L.1
  • 108
    • 16444374026 scopus 로고    scopus 로고
    • Constitutive activation of the Wnt/beta-catenin signalling pathway in acute myeloid leukaemia
    • Simon, M. et al. 2005. Constitutive activation of the Wnt/beta-catenin signalling pathway in acute myeloid leukaemia. Oncogene 24: 2410-2420.
    • (2005) Oncogene , vol.24 , pp. 2410-2420
    • Simon, M.1
  • 109
    • 77950287628 scopus 로고    scopus 로고
    • The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML
    • Wang, Y. et al. 2010. The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science 327: 1650-1653.
    • (2010) Science , vol.327 , pp. 1650-1653
    • Wang, Y.1
  • 110
    • 36649002031 scopus 로고    scopus 로고
    • Loss of beta-catenin impairs the renewal of normal and CML stem cells in vivo
    • Zhao, C. et al. 2007. Loss of beta-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell 12: 528-541.
    • (2007) Cancer Cell , vol.12 , pp. 528-541
    • Zhao, C.1
  • 111
    • 62649139996 scopus 로고    scopus 로고
    • Glycogen synthase kinase 3beta missplicing contributes to leukemia stem cell generation
    • Abrahamsson, A.E. et al. 2009. Glycogen synthase kinase 3beta missplicing contributes to leukemia stem cell generation. Proc. Natl. Acad. Sci. USA 106: 3925-3929.
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 3925-3929
    • Abrahamsson, A.E.1
  • 112
    • 84887583109 scopus 로고    scopus 로고
    • Ubiquitin-mediated interaction of p210 BCR/ABL with beta-catenin supports disease progression in a murine model for chronic myelogenous leukemia
    • Chen, R. et al. 2013. Ubiquitin-mediated interaction of p210 BCR/ABL with beta-catenin supports disease progression in a murine model for chronic myelogenous leukemia. Blood 122: 2114-2124.
    • (2013) Blood , vol.122 , pp. 2114-2124
    • Chen, R.1
  • 113
    • 84887160302 scopus 로고    scopus 로고
    • [Abnormal methylation patterns of SFRP1 gene in cells of leukemia and inhibitation of arsenie trioxide on the SFRP1 gene]
    • Wang, Y., X.X. Zhu & C.S. Zhu. 2013. [Abnormal methylation patterns of SFRP1 gene in cells of leukemia and inhibitation of arsenie trioxide on the SFRP1 gene]. Zhonghua Xue. Ye. Xue. Za. Zhi. 34: 157-159.
    • (2013) Zhonghua Xue. Ye. Xue. Za. Zhi. , vol.34 , pp. 157-159
    • Wang, Y.1    Zhu, X.X.2    Zhu, C.S.3
  • 114
    • 77956963007 scopus 로고    scopus 로고
    • Evidence for non-functional Dickkopf-1 (DKK-1) signaling in chronic lymphocytic leukemia (CLL)
    • Filipovich, A. et al. 2010. Evidence for non-functional Dickkopf-1 (DKK-1) signaling in chronic lymphocytic leukemia (CLL). Eur. J. Haematol. 85: 309-313.
    • (2010) Eur. J. Haematol. , vol.85 , pp. 309-313
    • Filipovich, A.1
  • 115
    • 84861831963 scopus 로고    scopus 로고
    • Concurrent epigenetic silencing of wnt/beta-catenin pathway inhibitor genes in B cell chronic lymphocytic leukaemia
    • Moskalev, E.A. et al. 2012. Concurrent epigenetic silencing of wnt/beta-catenin pathway inhibitor genes in B cell chronic lymphocytic leukaemia. BMC Cancer 12: 213.
    • (2012) BMC Cancer , vol.12 , pp. 213
    • Moskalev, E.A.1
  • 116
    • 84855990101 scopus 로고    scopus 로고
    • Distinct association between aberrant methylation of Wnt inhibitors and genetic alterations in acute myeloid leukaemia
    • Hou, H.A. et al. 2011. Distinct association between aberrant methylation of Wnt inhibitors and genetic alterations in acute myeloid leukaemia. Br. J. Cancer 105: 1927-1933.
    • (2011) Br. J. Cancer , vol.105 , pp. 1927-1933
    • Hou, H.A.1
  • 117
    • 84055213121 scopus 로고    scopus 로고
    • Secreted-frizzled related protein 1 is a transcriptional repression target of the t(8;21) fusion protein in acute myeloid leukemia
    • Cheng, C.K. et al. 2011. Secreted-frizzled related protein 1 is a transcriptional repression target of the t(8;21) fusion protein in acute myeloid leukemia. Blood 118: 6638-6648.
    • (2011) Blood , vol.118 , pp. 6638-6648
    • Cheng, C.K.1
  • 118
    • 84887424411 scopus 로고    scopus 로고
    • Differential regulation of myeloid leukemias by the bone marrow microenvironment
    • Krause, D.S. et al. 2013. Differential regulation of myeloid leukemias by the bone marrow microenvironment. Nat. Med. 19: 1513-1517.
    • (2013) Nat. Med. , vol.19 , pp. 1513-1517
    • Krause, D.S.1
  • 119
    • 79952724283 scopus 로고    scopus 로고
    • The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in
    • Ehninger, A. & A. Trumpp. 2011. The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in. J. Exp. Med. 208: 421-428.
    • (2011) J. Exp. Med. , vol.208 , pp. 421-428
    • Ehninger, A.1    Trumpp, A.2
  • 120
    • 84886947010 scopus 로고    scopus 로고
    • Arteriolar niches maintain haematopoietic stem cell quiescence
    • Kunisaki, Y. et al. 2013. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502: 637-643.
    • (2013) Nature , vol.502 , pp. 637-643
    • Kunisaki, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.