메뉴 건너뛰기




Volumn 35, Issue , 2015, Pages 7-15

Production of natural products through metabolic engineering of Saccharomyces cerevisiae

Author keywords

[No Author keywords available]

Indexed keywords

BIOCONVERSION; BIOSYNTHESIS; METABOLISM; METABOLITES; MICROORGANISMS; YEAST;

EID: 84919797930     PISSN: 09581669     EISSN: 18790429     Source Type: Journal    
DOI: 10.1016/j.copbio.2014.12.004     Document Type: Review
Times cited : (168)

References (59)
  • 1
    • 84862983651 scopus 로고    scopus 로고
    • Mining the biodiversity of plants: a revolution in the making
    • De Luca V., Salim V., Atsumi S.M., Yu F. Mining the biodiversity of plants: a revolution in the making. Science 2012, 336:1658-1661.
    • (2012) Science , vol.336 , pp. 1658-1661
    • De Luca, V.1    Salim, V.2    Atsumi, S.M.3    Yu, F.4
  • 2
    • 84857917000 scopus 로고    scopus 로고
    • Recent advances towards development and commercialization of plant cell culture processes for the synthesis of biomolecules
    • Wilson S.A., Roberts S.C. Recent advances towards development and commercialization of plant cell culture processes for the synthesis of biomolecules. Plant Biotechnol J 2012, 10:249-268.
    • (2012) Plant Biotechnol J , vol.10 , pp. 249-268
    • Wilson, S.A.1    Roberts, S.C.2
  • 3
    • 42549109672 scopus 로고    scopus 로고
    • Pharmaceutically active natural product synthesis and supply via plant cell culture technology
    • Kolewe M.E., Gaurav V., Roberts S.C. Pharmaceutically active natural product synthesis and supply via plant cell culture technology. Mol Pharm 2008, 5:243-256.
    • (2008) Mol Pharm , vol.5 , pp. 243-256
    • Kolewe, M.E.1    Gaurav, V.2    Roberts, S.C.3
  • 4
    • 0029776005 scopus 로고    scopus 로고
    • Yeast expression of animal and plant P450s in optimized redox environments
    • Pompon D., Louerat B., Bronine A., Urban P. Yeast expression of animal and plant P450s in optimized redox environments. Methods Enzymol 1996, 272:51-64.
    • (1996) Methods Enzymol , vol.272 , pp. 51-64
    • Pompon, D.1    Louerat, B.2    Bronine, A.3    Urban, P.4
  • 5
    • 84875279038 scopus 로고    scopus 로고
    • Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism
    • Chen Y., Daviet L., Schalk M., Siewers V., Nielsen J. Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Metab Eng 2013, 15:48-54.
    • (2013) Metab Eng , vol.15 , pp. 48-54
    • Chen, Y.1    Daviet, L.2    Schalk, M.3    Siewers, V.4    Nielsen, J.5
  • 6
    • 84884351687 scopus 로고    scopus 로고
    • Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism
    • Krivoruchko A., Serrano-Amatriain C., Chen Y., Siewers V., Nielsen J. Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism. J Ind Microbiol Biotechnol 2013, 40:1051-1056.
    • (2013) J Ind Microbiol Biotechnol , vol.40 , pp. 1051-1056
    • Krivoruchko, A.1    Serrano-Amatriain, C.2    Chen, Y.3    Siewers, V.4    Nielsen, J.5
  • 7
    • 33847378479 scopus 로고    scopus 로고
    • Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids
    • Shiba Y., Paradise E.M., Kirby J., Ro D.K., Keasling J.D. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metab Eng 2007, 9:160-168.
    • (2007) Metab Eng , vol.9 , pp. 160-168
    • Shiba, Y.1    Paradise, E.M.2    Kirby, J.3    Ro, D.K.4    Keasling, J.D.5
  • 8
    • 84879603106 scopus 로고    scopus 로고
    • Improved polyhydroxybutyrate production by Saccharomyces cerevisiae through the use of the phosphoketolase pathway
    • Kocharin K., Siewers V., Nielsen J. Improved polyhydroxybutyrate production by Saccharomyces cerevisiae through the use of the phosphoketolase pathway. Biotechnol Bioeng 2013, 110:2216-2224.
    • (2013) Biotechnol Bioeng , vol.110 , pp. 2216-2224
    • Kocharin, K.1    Siewers, V.2    Nielsen, J.3
  • 9
    • 84896932547 scopus 로고    scopus 로고
    • Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis
    • Kozak B.U., van Rossum H.M., Benjamin K.R., Wu L., Daran J.M., Pronk J.T., van Maris A.J. Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis. Metab Engit 2014, 21:46-59.
    • (2014) Metab Engit , vol.21 , pp. 46-59
    • Kozak, B.U.1    van Rossum, H.M.2    Benjamin, K.R.3    Wu, L.4    Daran, J.M.5    Pronk, J.T.6    van Maris, A.J.7
  • 11
    • 40049097594 scopus 로고    scopus 로고
    • Microbially derived artemisinin: a biotechnology solution to the global problem of access to affordable antimalarial drugs
    • Hale V., Keasling J.D., Renninger N., Diagana T.T. Microbially derived artemisinin: a biotechnology solution to the global problem of access to affordable antimalarial drugs. Am J Trop Med Hyg 2007, 77:198-202.
    • (2007) Am J Trop Med Hyg , vol.77 , pp. 198-202
    • Hale, V.1    Keasling, J.D.2    Renninger, N.3    Diagana, T.T.4
  • 15
    • 84907822164 scopus 로고    scopus 로고
    • Biosynthesis of taxadiene in Saccharomyces cerevisiae: selection of geranylgeranyl diphosphate synthase directed by a computer-aided docking strategy
    • Ding M.Z., Yan H.F., Li L.F., Zhai F., Shang L.Q., Yin Z., Yuan Y.J. Biosynthesis of taxadiene in Saccharomyces cerevisiae: selection of geranylgeranyl diphosphate synthase directed by a computer-aided docking strategy. PLoS ONE 2014, 9:e109348.
    • (2014) PLoS ONE , vol.9 , pp. e109348
    • Ding, M.Z.1    Yan, H.F.2    Li, L.F.3    Zhai, F.4    Shang, L.Q.5    Yin, Z.6    Yuan, Y.J.7
  • 16
    • 27844511101 scopus 로고    scopus 로고
    • Danshen: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use
    • Zhou L., Zuo Z., Chow M.S. Danshen: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J Clin Pharmacol 2005, 45:1345-1359.
    • (2005) J Clin Pharmacol , vol.45 , pp. 1345-1359
    • Zhou, L.1    Zuo, Z.2    Chow, M.S.3
  • 17
    • 84863116515 scopus 로고    scopus 로고
    • Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production
    • Zhou Y.J., Gao W., Rong Q., Jin G., Chu H., Liu W., Yang W., Zhu Z., Li G., Zhu G., et al. Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production. J Am Chem Soc 2012, 134:3234-3241.
    • (2012) J Am Chem Soc , vol.134 , pp. 3234-3241
    • Zhou, Y.J.1    Gao, W.2    Rong, Q.3    Jin, G.4    Chu, H.5    Liu, W.6    Yang, W.7    Zhu, Z.8    Li, G.9    Zhu, G.10
  • 18
    • 84866744325 scopus 로고    scopus 로고
    • Production of miltiradiene by metabolically engineered Saccharomyces cerevisiae
    • Dai Z., Liu Y., Huang L., Zhang X. Production of miltiradiene by metabolically engineered Saccharomyces cerevisiae. Biotechnol Bioeng 2012, 109:2845-2853.
    • (2012) Biotechnol Bioeng , vol.109 , pp. 2845-2853
    • Dai, Z.1    Liu, Y.2    Huang, L.3    Zhang, X.4
  • 19
    • 84880380223 scopus 로고    scopus 로고
    • CYP76AH1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeasts
    • Guo J., Zhou Y.J., Hillwig M.L., Shen Y., Yang L., Wang Y., Zhang X., Liu W., Peters R.J., Chen X., et al. CYP76AH1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeasts. Proc Natl Acad Sci U S A 2013, 110:12108-12113.
    • (2013) Proc Natl Acad Sci U S A , vol.110 , pp. 12108-12113
    • Guo, J.1    Zhou, Y.J.2    Hillwig, M.L.3    Shen, Y.4    Yang, L.5    Wang, Y.6    Zhang, X.7    Liu, W.8    Peters, R.J.9    Chen, X.10
  • 20
    • 79954627696 scopus 로고    scopus 로고
    • Ginsenosides from American ginseng: chemical and pharmacological diversity
    • Qi L.W., Wang C.Z., Yuan C.S. Ginsenosides from American ginseng: chemical and pharmacological diversity. Phytochemistry 2011, 72:689-699.
    • (2011) Phytochemistry , vol.72 , pp. 689-699
    • Qi, L.W.1    Wang, C.Z.2    Yuan, C.S.3
  • 22
    • 0030772492 scopus 로고    scopus 로고
    • Effects of overproduction of the catalytic domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase on squalene synthesis in Saccharomyces cerevisiae
    • Donald K.A., Hampton R.Y., Fritz I.B. Effects of overproduction of the catalytic domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase on squalene synthesis in Saccharomyces cerevisiae. Appl Environ Microbiol 1997, 63:3341-3344.
    • (1997) Appl Environ Microbiol , vol.63 , pp. 3341-3344
    • Donald, K.A.1    Hampton, R.Y.2    Fritz, I.B.3
  • 23
    • 84880599354 scopus 로고    scopus 로고
    • Enhancing beta-carotene production in Saccharomyces cerevisiae by metabolic engineering
    • Li Q., Sun Z., Li J., Zhang Y. Enhancing beta-carotene production in Saccharomyces cerevisiae by metabolic engineering. FEMS Microbiol Lett 2013, 345:94-101.
    • (2013) FEMS Microbiol Lett , vol.345 , pp. 94-101
    • Li, Q.1    Sun, Z.2    Li, J.3    Zhang, Y.4
  • 24
    • 1442283623 scopus 로고
    • Saccharomyces cerevisiae contains two functional genes encoding 3-hydroxy-3-methylglutaryl-coenzyme A reductase
    • Basson M.E., Thorsness M., Rine J. Saccharomyces cerevisiae contains two functional genes encoding 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Proc Natl Acad Sci U S A 1986, 83:5563-5567.
    • (1986) Proc Natl Acad Sci U S A , vol.83 , pp. 5563-5567
    • Basson, M.E.1    Thorsness, M.2    Rine, J.3
  • 25
    • 84865545171 scopus 로고    scopus 로고
    • Combined metabolic engineering of precursor and co-factor supply to increase alpha-santalene production by Saccharomyces cerevisiae
    • Scalcinati G., Partow S., Siewers V., Schalk M., Daviet L., Nielsen J. Combined metabolic engineering of precursor and co-factor supply to increase alpha-santalene production by Saccharomyces cerevisiae. Microb Cell Fact 2012, 11:117.
    • (2012) Microb Cell Fact , vol.11 , pp. 117
    • Scalcinati, G.1    Partow, S.2    Siewers, V.3    Schalk, M.4    Daviet, L.5    Nielsen, J.6
  • 26
    • 38449112770 scopus 로고    scopus 로고
    • Production of plant sesquiterpenes in Saccharomyces cerevisiae: effect of ERG9 repression on sesquiterpene biosynthesis
    • Asadollahi M.A., Maury J., Moller K., Nielsen K.F., Schalk M., Clark A., Nielsen J. Production of plant sesquiterpenes in Saccharomyces cerevisiae: effect of ERG9 repression on sesquiterpene biosynthesis. Biotechnol Bioeng 2008, 99:666-677.
    • (2008) Biotechnol Bioeng , vol.99 , pp. 666-677
    • Asadollahi, M.A.1    Maury, J.2    Moller, K.3    Nielsen, K.F.4    Schalk, M.5    Clark, A.6    Nielsen, J.7
  • 27
    • 84862827747 scopus 로고    scopus 로고
    • Dynamic control of gene expression in Saccharomyces cerevisiae engineered for the production of plant sesquitepene alpha-santalene in a fed-batch mode
    • Scalcinati G., Knuf C., Partow S., Chen Y., Maury J., Schalk M., Daviet L., Nielsen J., Siewers V. Dynamic control of gene expression in Saccharomyces cerevisiae engineered for the production of plant sesquitepene alpha-santalene in a fed-batch mode. Metab Eng 2012, 14:91-103.
    • (2012) Metab Eng , vol.14 , pp. 91-103
    • Scalcinati, G.1    Knuf, C.2    Partow, S.3    Chen, Y.4    Maury, J.5    Schalk, M.6    Daviet, L.7    Nielsen, J.8    Siewers, V.9
  • 29
    • 79551478567 scopus 로고    scopus 로고
    • Diversion of flux toward sesquiterpene production in Saccharomyces cerevisiae by fusion of host and heterologous enzymes
    • Albertsen L., Chen Y., Bach L.S., Rattleff S., Maury J., Brix S., Nielsen J., Mortensen U.H. Diversion of flux toward sesquiterpene production in Saccharomyces cerevisiae by fusion of host and heterologous enzymes. Appl Environ Microbiol 2011, 77:1033-1040.
    • (2011) Appl Environ Microbiol , vol.77 , pp. 1033-1040
    • Albertsen, L.1    Chen, Y.2    Bach, L.S.3    Rattleff, S.4    Maury, J.5    Brix, S.6    Nielsen, J.7    Mortensen, U.H.8
  • 30
    • 84888771270 scopus 로고    scopus 로고
    • Improving carotenoids production in yeast via adaptive laboratory evolution
    • Reyes L.H., Gomez J.M., Kao K.C. Improving carotenoids production in yeast via adaptive laboratory evolution. Metab Eng 2014, 21:26-33.
    • (2014) Metab Eng , vol.21 , pp. 26-33
    • Reyes, L.H.1    Gomez, J.M.2    Kao, K.C.3
  • 31
    • 0026012220 scopus 로고
    • Aromatic amino acid biosynthesis in the yeast Saccharomyces cerevisiae: a model system for the regulation of a eukaryotic biosynthetic pathway
    • Braus G.H. Aromatic amino acid biosynthesis in the yeast Saccharomyces cerevisiae: a model system for the regulation of a eukaryotic biosynthetic pathway. Microbiol Rev 1991, 55:349-370.
    • (1991) Microbiol Rev , vol.55 , pp. 349-370
    • Braus, G.H.1
  • 32
    • 0034840421 scopus 로고    scopus 로고
    • Quantification of intracellular amino acids in batch cultures of Saccharomyces cerevisiae
    • Hans M.A., Heinzle E., Wittmann C. Quantification of intracellular amino acids in batch cultures of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2001, 56:776-779.
    • (2001) Appl Microbiol Biotechnol , vol.56 , pp. 776-779
    • Hans, M.A.1    Heinzle, E.2    Wittmann, C.3
  • 33
    • 44749095048 scopus 로고    scopus 로고
    • Alleviation of feedback inhibition in Saccharomyces cerevisiae aromatic amino acid biosynthesis: quantification of metabolic impact
    • Luttik M.A., Vuralhan Z., Suir E., Braus G.H., Pronk J.T., Daran J.M. Alleviation of feedback inhibition in Saccharomyces cerevisiae aromatic amino acid biosynthesis: quantification of metabolic impact. Metab Eng 2008, 10:141-153.
    • (2008) Metab Eng , vol.10 , pp. 141-153
    • Luttik, M.A.1    Vuralhan, Z.2    Suir, E.3    Braus, G.H.4    Pronk, J.T.5    Daran, J.M.6
  • 35
    • 84919787681 scopus 로고    scopus 로고
    • Rational and combinatorial approaches to engineering styrene production by Saccharomyces cerevisiae
    • McKenna R., Thompson B., Pugh S., Nielsen D.R. Rational and combinatorial approaches to engineering styrene production by Saccharomyces cerevisiae. Microb Cell Fact 2014, 13:123.
    • (2014) Microb Cell Fact , vol.13 , pp. 123
    • McKenna, R.1    Thompson, B.2    Pugh, S.3    Nielsen, D.R.4
  • 37
    • 49949088247 scopus 로고    scopus 로고
    • Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae
    • Hawkins K.M., Smolke C.D. Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae. Nat Chem Biol 2008, 4:564-573.
    • (2008) Nat Chem Biol , vol.4 , pp. 564-573
    • Hawkins, K.M.1    Smolke, C.D.2
  • 39
    • 33745962138 scopus 로고    scopus 로고
    • Therapeutic potential of resveratrol: the in vivo evidence
    • Baur J.A., Sinclair D.A. Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 2006, 5:493-506.
    • (2006) Nat Rev Drug Discov , vol.5 , pp. 493-506
    • Baur, J.A.1    Sinclair, D.A.2
  • 41
    • 77952268311 scopus 로고    scopus 로고
    • Considerable increase in resveratrol production by recombinant industrial yeast strains with use of rich medium
    • Sydor T., Schaffer S., Boles E. Considerable increase in resveratrol production by recombinant industrial yeast strains with use of rich medium. Appl Environ Microbiol 2010, 76:3361-3363.
    • (2010) Appl Environ Microbiol , vol.76 , pp. 3361-3363
    • Sydor, T.1    Schaffer, S.2    Boles, E.3
  • 42
    • 80052033347 scopus 로고    scopus 로고
    • Stepwise increase of resveratrol biosynthesis in yeast Saccharomyces cerevisiae by metabolic engineering
    • Wang Y., Halls C., Zhang J., Matsuno M., Zhang Y., Yu O. Stepwise increase of resveratrol biosynthesis in yeast Saccharomyces cerevisiae by metabolic engineering. Metab Eng 2011, 13:455-463.
    • (2011) Metab Eng , vol.13 , pp. 455-463
    • Wang, Y.1    Halls, C.2    Zhang, J.3    Matsuno, M.4    Zhang, Y.5    Yu, O.6
  • 43
    • 84855229099 scopus 로고    scopus 로고
    • Synthetic scaffolds increased resveratrol biosynthesis in engineered yeast cells
    • Wang Y., Yu O. Synthetic scaffolds increased resveratrol biosynthesis in engineered yeast cells. J Biotechnol 2012, 157:258-260.
    • (2012) J Biotechnol , vol.157 , pp. 258-260
    • Wang, Y.1    Yu, O.2
  • 45
    • 84864960823 scopus 로고    scopus 로고
    • Production of resveratrol from tyrosine in metabolically engineered Saccharomyces cerevisiae
    • Shin S.Y., Jung S.M., Kim M.D., Han N.S., Seo J.H. Production of resveratrol from tyrosine in metabolically engineered Saccharomyces cerevisiae. Enzyme Microb Technol 2012, 51:211-216.
    • (2012) Enzyme Microb Technol , vol.51 , pp. 211-216
    • Shin, S.Y.1    Jung, S.M.2    Kim, M.D.3    Han, N.S.4    Seo, J.H.5
  • 46
    • 84903817857 scopus 로고    scopus 로고
    • A plant malonyl-CoA synthetase enhances lipid content and polyketide yield in yeast cells
    • Wang Y., Chen H., Yu O. A plant malonyl-CoA synthetase enhances lipid content and polyketide yield in yeast cells. Appl Microbiol Biotechnol 2014, 98:5435-5447.
    • (2014) Appl Microbiol Biotechnol , vol.98 , pp. 5435-5447
    • Wang, Y.1    Chen, H.2    Yu, O.3
  • 47
    • 1642576078 scopus 로고    scopus 로고
    • Reconstitution of the entry point of plant phenylpropanoid metabolism in yeast (Saccharomyces cerevisiae): implications for control of metabolic flux into the phenylpropanoid pathway
    • Ro D.K., Douglas C.J. Reconstitution of the entry point of plant phenylpropanoid metabolism in yeast (Saccharomyces cerevisiae): implications for control of metabolic flux into the phenylpropanoid pathway. J Biol Chem 2004, 279:2600-2607.
    • (2004) J Biol Chem , vol.279 , pp. 2600-2607
    • Ro, D.K.1    Douglas, C.J.2
  • 48
    • 20444422841 scopus 로고    scopus 로고
    • Metabolic engineering of the phenylpropanoid pathway in Saccharomyces cerevisiae
    • Jiang H., Wood K.V., Morgan J.A. Metabolic engineering of the phenylpropanoid pathway in Saccharomyces cerevisiae. Appl Environ Microbiol 2005, 71:2962-2969.
    • (2005) Appl Environ Microbiol , vol.71 , pp. 2962-2969
    • Jiang, H.1    Wood, K.V.2    Morgan, J.A.3
  • 49
    • 25144431998 scopus 로고    scopus 로고
    • Biosynthesis of natural flavanones in Saccharomyces cerevisiae
    • Yan Y., Kohli A., Koffas M.A. Biosynthesis of natural flavanones in Saccharomyces cerevisiae. Appl Environ Microbiol 2005, 71:5610-5613.
    • (2005) Appl Environ Microbiol , vol.71 , pp. 5610-5613
    • Yan, Y.1    Kohli, A.2    Koffas, M.A.3
  • 51
    • 78449290452 scopus 로고    scopus 로고
    • New insights into the formation of fungal aromatic polyketides
    • Crawford J.M., Townsend C.A. New insights into the formation of fungal aromatic polyketides. Nat Rev Microbiol 2010, 8:879-889.
    • (2010) Nat Rev Microbiol , vol.8 , pp. 879-889
    • Crawford, J.M.1    Townsend, C.A.2
  • 52
    • 0031905709 scopus 로고    scopus 로고
    • Production of a polyketide natural product in nonpolyketide-producing prokaryotic and eukaryotic hosts
    • Kealey J.T., Liu L., Santi D.V., Betlach M.C., Barr P.J. Production of a polyketide natural product in nonpolyketide-producing prokaryotic and eukaryotic hosts. Proc Natl Acad Sci U S A 1998, 95:505-509.
    • (1998) Proc Natl Acad Sci U S A , vol.95 , pp. 505-509
    • Kealey, J.T.1    Liu, L.2    Santi, D.V.3    Betlach, M.C.4    Barr, P.J.5
  • 53
    • 50249105159 scopus 로고    scopus 로고
    • Production of the polyketide 6-MSA in yeast engineered for increased malonyl-CoA supply
    • Wattanachaisaereekul S., Lantz A.E., Nielsen M.L., Nielsen J. Production of the polyketide 6-MSA in yeast engineered for increased malonyl-CoA supply. Metab Eng 2008, 10:246-254.
    • (2008) Metab Eng , vol.10 , pp. 246-254
    • Wattanachaisaereekul, S.1    Lantz, A.E.2    Nielsen, M.L.3    Nielsen, J.4
  • 54
    • 84905818450 scopus 로고    scopus 로고
    • Improving polyketide and fatty acid synthesis by engineering of the yeast acetyl-CoA carboxylase
    • Choi J.W., Da Silva N.A. Improving polyketide and fatty acid synthesis by engineering of the yeast acetyl-CoA carboxylase. J Biotechnol 2014, 187:56-59.
    • (2014) J Biotechnol , vol.187 , pp. 56-59
    • Choi, J.W.1    Da Silva, N.A.2
  • 55
    • 84875688760 scopus 로고    scopus 로고
    • Reconstruction of the biosynthetic pathway for the core fungal polyketide scaffold rubrofusarin in Saccharomyces cerevisiae
    • Rugbjerg P., Naesby M., Mortensen U.H., Frandsen R.J. Reconstruction of the biosynthetic pathway for the core fungal polyketide scaffold rubrofusarin in Saccharomyces cerevisiae. Microb Cell Fact 2013, 12:31.
    • (2013) Microb Cell Fact , vol.12 , pp. 31
    • Rugbjerg, P.1    Naesby, M.2    Mortensen, U.H.3    Frandsen, R.J.4
  • 56
    • 84864526044 scopus 로고    scopus 로고
    • Identification of olivetolic acid cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides
    • Gagne S.J., Stout J.M., Liu E., Boubakir Z., Clark S.M., Page J.E. Identification of olivetolic acid cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides. Proc Natl Acad Sci U S A 2012, 109:12811-12816.
    • (2012) Proc Natl Acad Sci U S A , vol.109 , pp. 12811-12816
    • Gagne, S.J.1    Stout, J.M.2    Liu, E.3    Boubakir, Z.4    Clark, S.M.5    Page, J.E.6
  • 58
    • 84933518878 scopus 로고    scopus 로고
    • Recent applications of synthetic biology tools for yeast metabolic engineering
    • Jensen M.K., Keasling J.D. Recent applications of synthetic biology tools for yeast metabolic engineering. FEMS Yeast Res 2014, 10.1111/1567-1364.12185.
    • (2014) FEMS Yeast Res
    • Jensen, M.K.1    Keasling, J.D.2
  • 59
    • 84935472715 scopus 로고    scopus 로고
    • Advances in yeast genome engineering
    • David F., Siewers V. Advances in yeast genome engineering. FEMS Yeast Res 2014, 10.1111/1567-1364.12200.
    • (2014) FEMS Yeast Res
    • David, F.1    Siewers, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.