-
1
-
-
78649704325
-
Autophagy and metabolism
-
J. D. Rabinowitz, E. White, Autophagy and metabolism. Science 330, 1344-1348 (2010).
-
(2010)
Science
, vol.330
, pp. 1344-1348
-
-
Rabinowitz, J.D.1
White, E.2
-
2
-
-
84873469666
-
Nutrient sensing, metabolism, and cell growth control
-
H. X. Yuan, Y. Xiong, K. L. Guan, Nutrient sensing, metabolism, and cell growth control. Mol. Cell 49, 379-387 (2013).
-
(2013)
Mol. Cell
, vol.49
, pp. 379-387
-
-
Yuan, H.X.1
Xiong, Y.2
Guan, K.L.3
-
3
-
-
79952284127
-
Hallmarks of cancer: The next generation
-
D. Hanahan, R. A. Weinberg, Hallmarks of cancer: The next generation. Cell 144, 646-674 (2011).
-
(2011)
Cell
, vol.144
, pp. 646-674
-
-
Hanahan, D.1
Weinberg, R.A.2
-
4
-
-
43749083041
-
Brick by brick: Metabolism and tumor cell growth
-
R. J. Deberardinis, N. Sayed, D. Ditsworth, C. B. Thompson, Brick by brick: Metabolism and tumor cell growth. Curr. Opin. Genet. Dev. 18, 54-61 (2008).
-
(2008)
Curr. Opin. Genet. Dev
, vol.18
, pp. 54-61
-
-
Deberardinis, R.J.1
Sayed, N.2
Ditsworth, D.3
Thompson, C.B.4
-
5
-
-
37449024702
-
The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation
-
R. J. DeBerardinis, J. J. Lum, G. Hatzivassiliou, C. B. Thompson, The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 7, 11-20 (2008).
-
(2008)
Cell Metab
, vol.7
, pp. 11-20
-
-
Deberardinis, R.J.1
Lum, J.J.2
Hatzivassiliou, G.3
Thompson, C.B.4
-
6
-
-
32044465506
-
TOR signaling in growth and metabolism
-
S. Wullschleger, R. Loewith, M. N. Hall, TOR signaling in growth and metabolism. Cell 124, 471-484 (2006).
-
(2006)
Cell
, vol.124
, pp. 471-484
-
-
Wullschleger, S.1
Loewith, R.2
Hall, M.N.3
-
7
-
-
83455177213
-
Target of rapamycin TOR) in nutrient signaling and growth control
-
R. Loewith, M. N. Hall, Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 189, 1177-1201 (2011).
-
(2011)
Genetics
, vol.189
, pp. 1177-1201
-
-
Loewith, R.1
Hall, M.N.2
-
8
-
-
67349217986
-
Molecular mechanisms of mTOR-mediated translational control
-
X. M. Ma, J. Blenis, Molecular mechanisms of mTOR-mediated translational control. Nat. Rev. Mol. Cell. Biol. 10, 307-318 (2009).
-
(2009)
Nat. Rev. Mol. Cell. Biol
, vol.10
, pp. 307-318
-
-
Ma, X.M.1
Blenis, J.2
-
10
-
-
84866076360
-
Nutritional control of growth and development in yeast
-
J. R. Broach, Nutritional control of growth and development in yeast. Genetics 192, 73-105 (2012).
-
(2012)
Genetics
, vol.192
, pp. 73-105
-
-
Broach, J.R.1
-
11
-
-
77951768486
-
Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
-
Y. Sancak, L. Bar-Peled, R. Zoncu, A. L. Markhard, S. Nada, D. M. Sabatini, Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141, 290-303 (2010).
-
(2010)
Cell
, vol.141
, pp. 290-303
-
-
Sancak, Y.1
Bar-Peled, L.2
Zoncu, R.3
Markhard, A.L.4
Nada, S.5
Sabatini, D.M.6
-
12
-
-
48649085816
-
Regulation of TORC1 by Rag GTPases in nutrient response
-
E. Kim, P. Goraksha-Hicks, L. Li, T. P. Neufeld, K. L. Guan, Regulation of TORC1 by Rag GTPases in nutrient response. Nat. Cell Biol. 10, 935-945 (2008).
-
(2008)
Nat. Cell Biol
, vol.10
, pp. 935-945
-
-
Kim, E.1
Goraksha-Hicks, P.2
Li, L.3
Neufeld, T.P.4
Guan, K.L.5
-
13
-
-
69749113579
-
The Vam6 GEF controls TORC1 by activating the EGO complex
-
M. Binda, M. P. Péli-Gulli, G. Bonfils, N. Panchaud, J. Urban, T. W. Sturgill, R. Loewith, C. De Virgilio, The Vam6 GEF controls TORC1 by activating the EGO complex. Mol. Cell 35, 563-573 (2009).
-
(2009)
Mol. Cell
, vol.35
, pp. 563-573
-
-
Binda, M.1
Péli-Gulli, M.P.2
Bonfils, G.3
Panchaud, N.4
Urban, J.5
Sturgill, T.W.6
Loewith, R.7
De Virgilio, C.8
-
14
-
-
67651235863
-
A genome-wide screen for regulators of TORC1 in response to amino acid starvation reveals a conserved Npr2/3 complex
-
T. K. Neklesa, R. W. Davis, A genome-wide screen for regulators of TORC1 in response to amino acid starvation reveals a conserved Npr2/3 complex. PLOS Genet. 5, e1000515 (2009).
-
(2009)
PLOS Genet
, vol.5
, pp. e1000515
-
-
Neklesa, T.K.1
Davis, R.W.2
-
15
-
-
77950523750
-
Npr2, yeast homolog of the human tumor suppressor NPRL2, is a target of Grr1 required for adaptation to growth on diverse nitrogen sources
-
N. Spielewoy, M. Guaderrama, J. A. Wohlschlegel, M. Ashe, J. R. Yates III, C. Wittenberg, Npr2, yeast homolog of the human tumor suppressor NPRL2, is a target of Grr1 required for adaptation to growth on diverse nitrogen sources. Eukaryot. Cell 9, 592-601 (2010).
-
(2010)
Eukaryot. Cell
, vol.9
, pp. 592-601
-
-
Spielewoy, N.1
Guaderrama, M.2
Wohlschlegel, J.A.3
Ashe, M.4
Yates, J.R.5
Wittenberg, C.6
-
16
-
-
0028840055
-
A second nitrogen permease regulator in Saccharomyces cerevisiae
-
G. Rousselet, M. Simon, P. Ripoche, J. M. Buhler, A second nitrogen permease regulator in Saccharomyces cerevisiae. FEBS Lett. 359, 215-219 (1995).
-
(1995)
FEBS Lett
, vol.359
, pp. 215-219
-
-
Rousselet, G.1
Simon, M.2
Ripoche, P.3
Buhler, J.M.4
-
17
-
-
79957971892
-
A conserved coatomer-related complex containing Sec13 and Seh1 dynamically associates with the vacuole in Saccharomyces cerevisiae
-
S. Dokudovskaya, F. Waharte, A. Schlessinger, U. Pieper, D. P. Devos, I. M. Cristea, R. Williams, J. Salamero, B. T. Chait, A. Sali, M. C. Field, M. P. Rout, C. Dargemont, A conserved coatomer-related complex containing Sec13 and Seh1 dynamically associates with the vacuole in Saccharomyces cerevisiae. Mol. Cell. Proteomics 10, M110.006478 (2011).
-
(2011)
Mol. Cell. Proteomics
, vol.10
, pp. M110006478
-
-
Dokudovskaya, S.1
Waharte, F.2
Schlessinger, A.3
Pieper, U.4
Devos, D.P.5
Cristea, I.M.6
Williams, R.7
Salamero, J.8
Chait, B.T.9
Sali, A.10
Field, M.C.11
Rout, M.P.12
Dargemont, C.13
-
18
-
-
80655144720
-
Selective regulation of autophagy by the Iml1-Npr2-Npr3 complex in the absence of nitrogen starvation
-
X. Wu, B. P. Tu, Selective regulation of autophagy by the Iml1-Npr2-Npr3 complex in the absence of nitrogen starvation. Mol. Biol. Cell 22, 4124-4133 (2011).
-
(2011)
Mol. Biol. Cell
, vol.22
, pp. 4124-4133
-
-
Wu, X.1
Tu, B.P.2
-
19
-
-
84878353147
-
Amino acid deprivation inhibits TORC1 through a GTPase-activating protein complex for the Rag family GTPase Gtr1
-
N. Panchaud, M. P. Peli-Gulli, C. De Virgilio, Amino acid deprivation inhibits TORC1 through a GTPase-activating protein complex for the Rag family GTPase Gtr1. Sci. Signal. 6, ra42 (2013).
-
(2013)
Sci. Signal
, vol.6
, pp. ra42
-
-
Panchaud, N.1
Peli-Gulli, M.P.2
De Virgilio, C.3
-
20
-
-
84878357685
-
A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1
-
L. Bar-Peled, L. Chantranupong, A. D. Cherniack,W. W. Chen, K. A. Ottina, B. C. Grabiner, E. D. Spear, S. L. Carter, M. Meyerson, D. M. Sabatini, A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 340, 1100-1106 (2013).
-
(2013)
Science
, vol.340
, pp. 1100-1106
-
-
Bar-Peled, L.1
Chantranupong, L.2
Cherniack, A.D.3
Chen, W.W.4
Ottina, K.A.5
Grabiner, B.C.6
Spear, E.D.7
Carter, S.L.8
Meyerson, M.9
Sabatini, D.M.10
-
21
-
-
84880535847
-
Methionine inhibits autophagy and promotes growth by inducing the SAM-responsive methylation of PP2A
-
B. M. Sutter, X. Wu, S. Laxman, B. P. Tu, Methionine inhibits autophagy and promotes growth by inducing the SAM-responsive methylation of PP2A. Cell 154, 403-415 (2013).
-
(2013)
Cell
, vol.154
, pp. 403-415
-
-
Sutter, B.M.1
Wu, X.2
Laxman, S.3
Tu, B.P.4
-
22
-
-
4644279735
-
Functional characterization of the candidate tumor suppressor gene NPRL2/G21 located in 3p21.3C
-
J. Li, F. Wang, K. Haraldson, A. Protopopov, F. M. Duh, L. Geil, I. Kuzmin, J. D. Minna, E. Stanbridge, E. Braga, V. I. Kashuba, G. Klein, M. I. Lerman, E. R. Zabarovsky, Functional characterization of the candidate tumor suppressor gene NPRL2/G21 located in 3p21.3C. Cancer Res. 64, 6438-6443 (2004).
-
(2004)
Cancer Res
, vol.64
, pp. 6438-6443
-
-
Li, J.1
Wang, F.2
Haraldson, K.3
Protopopov, A.4
Duh, F.M.5
Geil, L.6
Kuzmin, I.7
Minna, J.D.8
Stanbridge, E.9
Braga, E.10
Kashuba, V.I.11
Klein, G.12
Lerman, M.I.13
Zabarovsky, E.R.14
-
23
-
-
0037037787
-
Tumor suppressor genes on chromosome 3p involved in the pathogenesis of lung and other cancers
-
E. R. Zabarovsky, M. I. Lerman, J. D. Minna, Tumor suppressor genes on chromosome 3p involved in the pathogenesis of lung and other cancers. Oncogene 21, 6915-6935 (2002).
-
(2002)
Oncogene
, vol.21
, pp. 6915-6935
-
-
Zabarovsky, E.R.1
Lerman, M.I.2
Minna, J.D.3
-
24
-
-
0042844651
-
Anticancer drug resistance induced by disruption of the Saccharomyces cerevisiae NPR2 gene: A novel component involved in cisplatin-and doxorubicinprovoked cell kill
-
P. W. Schenk, M. Brok, A. W. Boersma, J. A. Brandsma, H. Den Dulk, H. Burger, G. Stoter, J. Brouwer, K. Nooter, Anticancer drug resistance induced by disruption of the Saccharomyces cerevisiae NPR2 gene: A novel component involved in cisplatin-and doxorubicinprovoked cell kill. Mol. Pharmacol. 64, 259-268 (2003).
-
(2003)
Mol. Pharmacol
, vol.64
, pp. 259-268
-
-
Schenk, P.W.1
Brok, M.2
Boersma, A.W.3
Brandsma, J.A.4
Den Dulk, H.5
Burger, H.6
Stoter, G.7
Brouwer, J.8
Nooter, K.9
-
25
-
-
0019750424
-
Regulation of glucose metabolism in growing yeast cells
-
A. Fiechter, G. F. Fuhrmann, O. Käppeli, Regulation of glucose metabolism in growing yeast cells. Adv. Microb. Physiol. 22, 123-183 (1981).
-
(1981)
Adv. Microb. Physiol
, vol.22
, pp. 123-183
-
-
Fiechter, A.1
Fuhrmann, G.F.2
Käppeli, O.3
-
26
-
-
0022989417
-
Regulation of carbon metabolism in Saccharomyces cerevisiae and related yeasts
-
O. Käppeli, Regulation of carbon metabolism in Saccharomyces cerevisiae and related yeasts. Adv. Microb. Physiol. 28, 181-209 (1986).
-
(1986)
Adv. Microb. Physiol
, vol.28
, pp. 181-209
-
-
Käppeli, O.1
-
27
-
-
45849105156
-
The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1
-
Y. Sancak, T. R. Peterson, Y. D. Shaul, R. A. Lindquist, C. C. Thoreen, L. Bar-Peled, D. M. Sabatini, The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320, 1496-1501 (2008).
-
(2008)
Science
, vol.320
, pp. 1496-1501
-
-
Sancak, Y.1
Peterson, T.R.2
Shaul, Y.D.3
Lindquist, R.A.4
Thoreen, C.C.5
Bar-Peled, L.6
Sabatini, D.M.7
-
28
-
-
75149148563
-
Q's next: The diverse functions of glutamine in metabolism, cell biology and cancer
-
R. J. DeBerardinis, T. Cheng, Q's next: The diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 29, 313-324 (2010).
-
(2010)
Oncogene
, vol.29
, pp. 313-324
-
-
Deberardinis, R.J.1
Cheng, T.2
-
29
-
-
0025882878
-
Physiological and genetic analysis of the carbon regulation of the NAD-dependent glutamate dehydrogenase of Saccharomyces cerevisiae
-
P. W. Coschigano, S. M. Miller, B. Magasanik, Physiological and genetic analysis of the carbon regulation of the NAD-dependent glutamate dehydrogenase of Saccharomyces cerevisiae. Mol. Cell. Biol. 11, 4455-4465 (1991).
-
(1991)
Mol. Cell. Biol
, vol.11
, pp. 4455-4465
-
-
Coschigano, P.W.1
Miller, S.M.2
Magasanik, B.3
-
30
-
-
84858183302
-
Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae
-
P. O. Ljungdahl, B. Daignan-Fornier, Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics 190, 885-929 (2012).
-
(2012)
Genetics
, vol.190
, pp. 885-929
-
-
Ljungdahl, P.O.1
Daignan-Fornier, B.2
-
32
-
-
0042377362
-
Eukaryotic NAD+ synthetase Qns1 contains an essential, obligate intramolecular thiol glutamine amidotransferase domain related to nitrilase
-
P. Bieganowski, H. C. Pace, C. Brenner, Eukaryotic NAD+ synthetase Qns1 contains an essential, obligate intramolecular thiol glutamine amidotransferase domain related to nitrilase. J. Biol. Chem. 278, 33049-33055 (2003).
-
(2003)
J. Biol. Chem
, vol.278
, pp. 33049-33055
-
-
Bieganowski, P.1
Pace, H.C.2
Brenner, C.3
-
33
-
-
0034617076
-
Characterization of two 5-aminoimidazole-4-carboxamide ribonucleotide transformylase/inosine monophosphate cyclohydrolase isozymes from Saccharomyces cerevisiae
-
A. S. Tibbetts, D. R. Appling, Characterization of two 5-aminoimidazole-4-carboxamide ribonucleotide transformylase/inosine monophosphate cyclohydrolase isozymes from Saccharomyces cerevisiae. J. Biol. Chem. 275, 20920-20927 (2000).
-
(2000)
J. Biol. Chem
, vol.275
, pp. 20920-20927
-
-
Tibbetts, A.S.1
Appling, D.R.2
-
34
-
-
0142153893
-
Ammonia assimilation by Saccharomyces cerevisiae
-
B. Magasanik, Ammonia assimilation by Saccharomyces cerevisiae. Eukaryot. Cell 2, 827-829 (2003).
-
(2003)
Eukaryot. Cell
, vol.2
, pp. 827-829
-
-
Magasanik, B.1
-
35
-
-
0035941209
-
NADP-glutamate dehydrogenase isoenzymes of Saccharomyces cerevisiae Purification, kinetic properties, and physiological roles
-
A. DeLuna, A. Avendano, L. Riego, A. Gonzalez, NADP-glutamate dehydrogenase isoenzymes of Saccharomyces cerevisiae. Purification, kinetic properties, and physiological roles. J. Biol. Chem. 276, 43775-43783 (2001).
-
(2001)
J. Biol. Chem
, vol.276
, pp. 43775-43783
-
-
Deluna, A.1
Avendano, A.2
Riego, L.3
Gonzalez, A.4
-
36
-
-
0025063371
-
Role of NAD-linked glutamate dehydrogenase in nitrogen metabolism in Saccharomyces cerevisiae
-
S. M. Miller, B. Magasanik, Role of NAD-linked glutamate dehydrogenase in nitrogen metabolism in Saccharomyces cerevisiae. J. Bacteriol. 172, 4927-4935 (1990).
-
(1990)
J. Bacteriol
, vol.172
, pp. 4927-4935
-
-
Miller, S.M.1
Magasanik, B.2
-
37
-
-
0028925047
-
Saccharomyces cerevisiae has a single glutamate synthase gene coding for a plant-like high-molecular-weight polypeptide
-
C. Cogoni, L. Valenzuela, D. González-Halphen, H. Olivera, G. Macino, P. Ballario, A. González, Saccharomyces cerevisiae has a single glutamate synthase gene coding for a plant-like high-molecular-weight polypeptide. J. Bacteriol. 177, 792-798 (1995).
-
(1995)
J. Bacteriol
, vol.177
, pp. 792-798
-
-
Cogoni, C.1
Valenzuela, L.2
González-Halphen, D.3
Olivera, H.4
Macino, G.5
Ballario, P.6
González, A.7
-
38
-
-
0001840999
-
Nitrogen metabolism in Saccharomyces cerevisiae
-
J. N. Strathern, E. W. Jones, J. R. Broach, Eds. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
-
T. G. Cooper, Nitrogen metabolism in Saccharomyces cerevisiae, in The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression, J. N. Strathern, E. W. Jones, J. R. Broach, Eds. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1982), pp. 39-99.
-
(1982)
The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression
, pp. 39-99
-
-
Cooper, T.G.1
-
39
-
-
0037094434
-
Nitrogen regulation in Saccharomyces cerevisiae
-
B. Magasanik, C. A. Kaiser, Nitrogen regulation in Saccharomyces cerevisiae. Gene 290, 1-18 (2002).
-
(2002)
Gene
, vol.290
, pp. 1-18
-
-
Magasanik, B.1
Kaiser, C.A.2
-
40
-
-
0036024577
-
Transmitting the signal of excess nitrogen in Saccharomyces cerevisiae from the Tor proteins to the GATA factors: Connecting the dots
-
T. G. Cooper, Transmitting the signal of excess nitrogen in Saccharomyces cerevisiae from the Tor proteins to the GATA factors: Connecting the dots. FEMS Microbiol. Rev. 26, 223-238 (2002).
-
(2002)
FEMS Microbiol. Rev
, vol.26
, pp. 223-238
-
-
Cooper, T.G.1
-
41
-
-
84884544927
-
Five conditions commonly used to down-regulate tor complex 1 generate different physiological situations exhibiting distinct requirements and outcomes
-
J. J. Tate, T. G. Cooper, Five conditions commonly used to down-regulate tor complex 1 generate different physiological situations exhibiting distinct requirements and outcomes. J. Biol. Chem. 288, 27243-27262 (2013).
-
(2013)
J. Biol. Chem
, vol.288
, pp. 27243-27262
-
-
Tate, J.J.1
Cooper, T.G.2
-
42
-
-
0033540030
-
The TOR signalling pathway controls nuclear localization of nutrientregulated transcription factors
-
T. Beck, M. N. Hall, The TOR signalling pathway controls nuclear localization of nutrientregulated transcription factors. Nature 402, 689-692 (1999).
-
(1999)
Nature
, vol.402
, pp. 689-692
-
-
Beck, T.1
Hall, M.N.2
-
43
-
-
33748767906
-
Ammonia-specific regulation of Gln3 localization in Saccharomyces cerevisiae by protein kinase Npr1
-
J. J. Tate, R. Rai, T. G. Cooper, Ammonia-specific regulation of Gln3 localization in Saccharomyces cerevisiae by protein kinase Npr1. J. Biol. Chem. 281, 28460-28469 (2006).
-
(2006)
J. Biol. Chem
, vol.281
, pp. 28460-28469
-
-
Tate, J.J.1
Rai, R.2
Cooper, T.G.3
-
44
-
-
34547121478
-
Stress-responsive Gln3 localization in Saccharomyces cerevisiae is separable from and can overwhelm nitrogen source regulation
-
J. J. Tate, T. G. Cooper, Stress-responsive Gln3 localization in Saccharomyces cerevisiae is separable from and can overwhelm nitrogen source regulation. J. Biol. Chem. 282, 18467-18480 (2007).
-
(2007)
J. Biol. Chem
, vol.282
, pp. 18467-18480
-
-
Tate, J.J.1
Cooper, T.G.2
-
45
-
-
73449118235
-
Monitoring mitophagy in yeast: The Om45-GFP processing assay
-
T. Kanki, D. Kang, D. J. Klionsky, Monitoring mitophagy in yeast: The Om45-GFP processing assay. Autophagy 5, 1186-1189 (2009).
-
(2009)
Autophagy
, vol.5
, pp. 1186-1189
-
-
Kanki, T.1
Kang, D.2
Klionsky, D.J.3
-
46
-
-
0035890316
-
Protein phosphatase methyltransferase 1 (Ppm1p) is the sole activity responsible for modification of the major forms of protein phosphatase 2A in yeast
-
H. R. Kalhor, K. Luk, A. Ramos, P. Zobel-Thropp, S. Clarke, Protein phosphatase methyltransferase 1 (Ppm1p) is the sole activity responsible for modification of the major forms of protein phosphatase 2A in yeast. Arch. Biochem. Biophys. 395, 239-245 (2001).
-
(2001)
Arch. Biochem. Biophys
, vol.395
, pp. 239-245
-
-
Kalhor, H.R.1
Luk, K.2
Ramos, A.3
Zobel-Thropp, P.4
Clarke, S.5
-
47
-
-
0032771639
-
Saccharomyces cerevisiae putative G protein, Gtr1p, which forms complexes with itself and a novel protein designated as Gtr2p, negatively regulates the Ran/Gsp1p G protein cycle through Gtr2p
-
N. Nakashima, E. Noguchi, T. Nishimoto, Saccharomyces cerevisiae putative G protein, Gtr1p, which forms complexes with itself and a novel protein designated as Gtr2p, negatively regulates the Ran/Gsp1p G protein cycle through Gtr2p. Genetics 152, 853-867 (1999).
-
(1999)
Genetics
, vol.152
, pp. 853-867
-
-
Nakashima, N.1
Noguchi, E.2
Nishimoto, T.3
-
48
-
-
34249813098
-
Sch9 is a major target of TORC1 in Saccharomyces cerevisiae
-
J. Urban, A. Soulard, A. Huber, S. Lippman, D. Mukhopadhyay, O. Deloche, V. Wanke, D. Anrather, G. Ammerer, H. Riezman, J. R. Broach, C. De Virgilio, M. N. Hall, R. Loewith, Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol. Cell 26, 663-674 (2007).
-
(2007)
Mol. Cell
, vol.26
, pp. 663-674
-
-
Urban, J.1
Soulard, A.2
Huber, A.3
Lippman, S.4
Mukhopadhyay, D.5
Deloche, O.6
Wanke, V.7
Anrather, D.8
Ammerer, G.9
Riezman, H.10
Broach, J.R.11
De Virgilio, C.12
Hall, M.N.13
Loewith, R.14
-
49
-
-
84877927481
-
MTOR in aging, metabolism, and cancer
-
M. Cornu, V. Albert, M. N. Hall, mTOR in aging, metabolism, and cancer. Curr. Opin. Genet. Dev. 23, 53-62 (2013).
-
(2013)
Curr. Opin. Genet. Dev
, vol.23
, pp. 53-62
-
-
Cornu, M.1
Albert, V.2
Hall, M.N.3
-
50
-
-
84880536607
-
Sulfur amino acids regulate translational capacity and metabolic homeostasis through modulation of tRNA thiolation
-
S. Laxman, B. M. Sutter, X. Wu, S. Kumar, X. Guo, D. C. Trudgian, H. Mirzaei, B. P. Tu, Sulfur amino acids regulate translational capacity and metabolic homeostasis through modulation of tRNA thiolation. Cell 154, 416-429 (2013).
-
(2013)
Cell
, vol.154
, pp. 416-429
-
-
Laxman, S.1
Sutter, B.M.2
Wu, X.3
Kumar, S.4
Guo, X.5
Trudgian, D.C.6
Mirzaei, H.7
Tu, B.P.8
-
51
-
-
84906971940
-
Nitrogen source activates TOR (target of rapamycin) complex 1 via glutamine and independently of Gtr/Rag proteins
-
D. Stracka, S. Jozefczuk, F. Rudroff, U. Sauer, M. N. Hall, Nitrogen source activates TOR (target of rapamycin) complex 1 via glutamine and independently of Gtr/Rag proteins. J. Biol. Chem. 289, 25010-25020 (2014).
-
(2014)
J. Biol. Chem
, vol.289
, pp. 25010-25020
-
-
Stracka, D.1
Jozefczuk, S.2
Rudroff, F.3
Sauer, U.4
Hall, M.N.5
-
52
-
-
0025942492
-
GRR1 of Saccharomyces cerevisiae is required for glucose repression and encodes a protein with leucine-rich repeats
-
J. S. Flick, M. Johnston, GRR1 of Saccharomyces cerevisiae is required for glucose repression and encodes a protein with leucine-rich repeats. Mol. Cell. Biol. 11, 5101-5112 (1991).
-
(1991)
Mol. Cell. Biol
, vol.11
, pp. 5101-5112
-
-
Flick, J.S.1
Johnston, M.2
-
53
-
-
0028230982
-
Multiple mechanisms provide rapid and stringent glucose repression of GAL gene expression in Saccharomyces cerevisiae
-
M. Johnston, J. S. Flick, T. Pexton, Multiple mechanisms provide rapid and stringent glucose repression of GAL gene expression in Saccharomyces cerevisiae. Mol. Cell. Biol. 14, 3834-3841 (1994).
-
(1994)
Mol. Cell. Biol
, vol.14
, pp. 3834-3841
-
-
Johnston, M.1
Flick, J.S.2
Pexton, T.3
-
54
-
-
59049087460
-
Bidirectional transport of amino acids regulates mTOR and autophagy
-
P. Nicklin, P. Bergman, B. Zhang, E. Triantafellow, H. Wang, B. Nyfeler, H. Yang, M. Hild, C. Kung, C. Wilson, V. E. Myer, J. P. MacKeigan, J. A. Porter, Y. K.Wang, L. C. Cantley, P. M. Finan, L. O. Murphy, Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136, 521-534 (2009).
-
(2009)
Cell
, vol.136
, pp. 521-534
-
-
Nicklin, P.1
Bergman, P.2
Zhang, B.3
Triantafellow, E.4
Wang, H.5
Nyfeler, B.6
Yang, H.7
Hild, M.8
Kung, C.9
Wilson, C.10
Myer, V.E.11
Mackeigan, J.P.12
Porter, J.A.13
Wang, K.Y.14
Cantley, L.C.15
Finan, P.M.16
Murphy, L.O.17
-
55
-
-
84864931233
-
Glutaminolysis activates Rag-mTORC1 signaling
-
R. V. Durán, W. Oppliger, A. M. Robitaille, L. Heiserich, R. Skendaj, E. Gottlieb, M. N. Hall, Glutaminolysis activates Rag-mTORC1 signaling. Mol. Cell 47, 349-358 (2012).
-
(2012)
Mol. Cell
, vol.47
, pp. 349-358
-
-
Durán, R.V.1
Oppliger, W.2
Robitaille, A.M.3
Heiserich, L.4
Skendaj, R.5
Gottlieb, E.6
Hall, M.N.7
-
56
-
-
84872272443
-
Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex
-
S. G. Kim, G. R. Hoffman, G. Poulogiannis, G. R. Buel, Y. J. Jang, K. W. Lee, B. Y. Kim, R. L. Erikson, L. C. Cantley, A. Y. Choo, J. Blenis, Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex. Mol. Cell 49, 172-185 (2013).
-
(2013)
Mol. Cell
, vol.49
, pp. 172-185
-
-
Kim, S.G.1
Hoffman, G.R.2
Poulogiannis, G.3
Buel, G.R.4
Jang, Y.J.5
Lee, K.W.6
Kim, B.Y.7
Erikson, R.L.8
Cantley, L.C.9
Choo, A.Y.10
Blenis, J.11
-
57
-
-
84877720366
-
The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4
-
A. Csibi, S. M. Fendt, C. Li, G. Poulogiannis, A. Y. Choo, D. J. Chapski, S. M. Jeong, J. M. Dempsey, A. Parkhitko, T. Morrison, E. P. Henske, M. C. Haigis, L. C. Cantley, G. Stephanopoulos, J. Yu, J. Blenis, The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell 153, 840-854 (2013).
-
(2013)
Cell
, vol.153
, pp. 840-854
-
-
Csibi, A.1
Fendt, S.M.2
Li, C.3
Poulogiannis, G.4
Choo, A.Y.5
Chapski, D.J.6
Jeong, S.M.7
Dempsey, J.M.8
Parkhitko, A.9
Morrison, T.10
Henske, E.P.11
Haigis, M.C.12
Cantley, L.C.13
Stephanopoulos, G.14
Yu, J.15
Blenis, J.16
-
58
-
-
37449034854
-
Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis
-
R. J. DeBerardinis, A. Mancuso, E. Daikhin, I. Nissim, M. Yudkoff, S.Wehrli, C. B. Thompson, Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl. Acad. Sci. U.S.A. 104, 19345-19350 (2007).
-
(2007)
Proc. Natl. Acad. Sci. U.S.A
, vol.104
, pp. 19345-19350
-
-
Deberardinis, R.J.1
Mancuso, A.2
Daikhin, E.3
Nissim, I.4
Yudkoff, M.5
Wehrli, S.6
Thompson, C.B.7
-
59
-
-
84883497454
-
Glutamine and cancer: Cell biology, physiology, and clinical opportunities
-
C. T. Hensley, A. T. Wasti, R. J. DeBerardinis, Glutamine and cancer: Cell biology, physiology, and clinical opportunities. J. Clin. Invest. 123, 3678-3684 (2013).
-
(2013)
J. Clin. Invest
, vol.123
, pp. 3678-3684
-
-
Hensley, C.T.1
Wasti, A.T.2
Deberardinis, R.J.3
-
60
-
-
0034856827
-
Glutamine and cancer
-
discussion 2550S-2551S
-
M. A. Medina, Glutamine and cancer. J. Nutr. 131, 2539S-2542S; discussion 2550S-2551S (2001).
-
(2001)
J. Nutr
, vol.131
, pp. 2539S-2542S
-
-
Medina, M.A.1
-
61
-
-
0031820288
-
Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae
-
M. S. Longtine, A. McKenzie III, D. J. Demarini, N. G. Shah, A. Wach, A. Brachat, P. Philippsen, J. R. Pringle, Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953-961 (1998).
-
(1998)
Yeast
, vol.14
, pp. 953-961
-
-
Longtine, M.S.1
McKenzie, A.2
Demarini, D.J.3
Shah, N.G.4
Wach, A.5
Brachat, A.6
Philippsen, P.7
Pringle, J.R.8
-
62
-
-
0035877623
-
Yeast vectors for integration at the HO locus
-
W. P. Voth, J. D. Richards, J. M. Shaw, D. J. Stillman, Yeast vectors for integration at the HO locus. Nucleic Acids Res. 29, E59 (2001).
-
(2001)
Nucleic Acids Res
, vol.29
, pp. E59
-
-
Voth, W.P.1
Richards, J.D.2
Shaw, J.M.3
Stillman, D.J.4
-
63
-
-
36749067297
-
Cyclic changes in metabolic state during the life of a yeast cell
-
B. P. Tu, R. E. Mohler, J. C. Liu, K. M. Dombek, E. T. Young, R. E. Synovec, S. L. McKnight, Cyclic changes in metabolic state during the life of a yeast cell. Proc. Natl. Acad. Sci. U.S.A. 104, 16886-16891 (2007).
-
(2007)
Proc. Natl. Acad. Sci. U.S.A
, vol.104
, pp. 16886-16891
-
-
Tu, B.P.1
Mohler, R.E.2
Liu, J.C.3
Dombek, K.M.4
Young, E.T.5
Synovec, R.E.6
McKnight, S.L.7
-
64
-
-
0032441150
-
Cluster analysis and display of genomewide expression patterns
-
M. B.Eisen, P. T.Spellman,P. O. Brown,D. Botstein,Cluster analysis and display of genomewide expression patterns. Proc. Natl. Acad. Sci. U.S.A. 95, 14863-14868 (1998).
-
(1998)
Proc. Natl. Acad. Sci. U.S.A
, vol.95
, pp. 14863-14868
-
-
Eisen, B.M.1
Spellman, T.P.2
Brown, P.O.3
Botstein, D.4
-
65
-
-
3142756502
-
Open source clustering software
-
M. J. de Hoon, S. Imoto, J. Nolan, S. Miyano, Open source clustering software. Bioinformatics 20, 1453-1454 (2004).
-
(2004)
Bioinformatics
, vol.20
, pp. 1453-1454
-
-
De Hoon, M.J.1
Imoto, S.2
Nolan, J.3
Miyano, S.4
-
66
-
-
0034214335
-
An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains
-
J. P. van Dijken, J. Bauer, L. Brambilla, P. Duboc, J. M. Francois, C. Gancedo, M. L. Giuseppin, J. J. Heijnen, M. Hoare, H. C. Lange, E. A. Madden, P. Niederberger, J. Nielsen, J. L. Parrou, T.Petit,D.Porro,M.Reuss, N. vanRiel, M. Rizzi, H.Y. Steensma, C. T. Verrips, J. Vindelov, J. T. Pronk, An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enzyme Microb. Technol. 26, 706-714 (2000).
-
(2000)
Enzyme Microb. Technol
, vol.26
, pp. 706-714
-
-
Van Dijken, J.P.1
Bauer, J.2
Brambilla, L.3
Duboc, P.4
Francois, J.M.5
Gancedo, C.6
Giuseppin, M.L.7
Heijnen, J.J.8
Hoare, M.9
Lange, H.C.10
Madden, E.A.11
Niederberger, P.12
Nielsen, J.13
Parrou, J.L.14
Petit, T.15
Porro, D.16
Reuss, M.17
Vanriel, N.18
Rizzi, M.19
Steensma, H.Y.20
Verrips, C.T.21
Vindelov, J.22
Pronk, J.T.23
more..
|