메뉴 건너뛰기




Volumn 18, Issue 8, 2014, Pages 1491-1508

A systems biology view of blood vessel growth and remodelling

Author keywords

Angiogenesis; Computational model; Mathematical model; Multi scale modelling; Systems biology

Indexed keywords

ANGIOGENESIS; ANIMAL; BIOLOGICAL MODEL; CYTOLOGY; HUMAN; SYSTEMS BIOLOGY; VASCULAR ENDOTHELIUM;

EID: 84912572768     PISSN: 15821838     EISSN: None     Source Type: Journal    
DOI: 10.1111/jcmm.12164     Document Type: Article
Times cited : (125)

References (219)
  • 1
    • 30744479430 scopus 로고    scopus 로고
    • Angiogenesis in life, disease and medicine
    • Carmeliet P. Angiogenesis in life, disease and medicine. Nature. 2005; 438: 932-6.
    • (2005) Nature , vol.438 , pp. 932-936
    • Carmeliet, P.1
  • 2
    • 77951498400 scopus 로고    scopus 로고
    • Multifaceted role of vascular endothelial growth factor signaling in adult tissue physiology: an emerging concept with clinical implications
    • Sung H-K, Michael IP, Nagy A. Multifaceted role of vascular endothelial growth factor signaling in adult tissue physiology: an emerging concept with clinical implications. Curr Opin Hematol. 2010; 17: 206-12.
    • (2010) Curr Opin Hematol , vol.17 , pp. 206-212
    • Sung, H.-K.1    Michael, I.P.2    Nagy, A.3
  • 3
    • 59849107870 scopus 로고    scopus 로고
    • Invited review: activity-induced angiogenesis
    • Egginton S. Invited review: activity-induced angiogenesis. Pflugers Arch. 2009; 457: 963-77.
    • (2009) Pflugers Arch , vol.457 , pp. 963-977
    • Egginton, S.1
  • 4
    • 0037699955 scopus 로고    scopus 로고
    • Angiogenesis in health and disease
    • Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003; 9: 653-60.
    • (2003) Nat Med , vol.9 , pp. 653-660
    • Carmeliet, P.1
  • 5
    • 84877123237 scopus 로고    scopus 로고
    • Predicting the future: towards symbiotic computational and experimental angiogenesis research
    • Bentley K, Jones M, Cruys B. Predicting the future: towards symbiotic computational and experimental angiogenesis research. Exp Cell Res. 2013; 319: 1240-6.
    • (2013) Exp Cell Res , vol.319 , pp. 1240-1246
    • Bentley, K.1    Jones, M.2    Cruys, B.3
  • 6
    • 16244410511 scopus 로고    scopus 로고
    • Angiogenesis and microvascular remodeling: a brief history and future roadmap
    • Skalak TC. Angiogenesis and microvascular remodeling: a brief history and future roadmap. Microcirculation. 2005; 12: 47-58.
    • (2005) Microcirculation , vol.12 , pp. 47-58
    • Skalak, T.C.1
  • 7
    • 39749140405 scopus 로고    scopus 로고
    • HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha
    • Arany Z, Foo SY, Ma Y, et al. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature. 2008; 451: 1008-12.
    • (2008) Nature , vol.451 , pp. 1008-1012
    • Arany, Z.1    Foo, S.Y.2    Ma, Y.3
  • 8
    • 59649112848 scopus 로고    scopus 로고
    • Regulation of angiogenesis by oxygen and metabolism
    • Fraisl P, Mazzone M, Schmidt T, et al. Regulation of angiogenesis by oxygen and metabolism. Dev Cell. 2009; 16: 167-79.
    • (2009) Dev Cell , vol.16 , pp. 167-179
    • Fraisl, P.1    Mazzone, M.2    Schmidt, T.3
  • 9
    • 80053086676 scopus 로고    scopus 로고
    • Fluid forces control endothelial sprouting
    • Song JW, Munn LL. Fluid forces control endothelial sprouting. Proc Natl Acad Sci USA. 2011; 108: 15342-7.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 15342-15347
    • Song, J.W.1    Munn, L.L.2
  • 10
    • 0026525559 scopus 로고
    • Angiogenesis in skeletal and cardiac muscle
    • Hudlicka O, Brown M, Egginton S. Angiogenesis in skeletal and cardiac muscle. Physiol Rev. 1992; 72: 369-417.
    • (1992) Physiol Rev , vol.72 , pp. 369-417
    • Hudlicka, O.1    Brown, M.2    Egginton, S.3
  • 11
    • 67649195467 scopus 로고    scopus 로고
    • Adaptation of skeletal muscle microvasculature to increased or decreased blood flow: role of shear stress, nitric oxide and vascular endothelial growth factor
    • Hudlicka O, Brown MD. Adaptation of skeletal muscle microvasculature to increased or decreased blood flow: role of shear stress, nitric oxide and vascular endothelial growth factor. J Vasc Res. 2009; 46: 504-12.
    • (2009) J Vasc Res , vol.46 , pp. 504-512
    • Hudlicka, O.1    Brown, M.D.2
  • 12
    • 0142245805 scopus 로고    scopus 로고
    • Modulation of physiological angiogenesis in skeletal muscle by mechanical forces: involvement of VEGF and metalloproteinases
    • Brown MD, Hudlicka O. Modulation of physiological angiogenesis in skeletal muscle by mechanical forces: involvement of VEGF and metalloproteinases. Angiogenesis. 2003; 6: 1-14.
    • (2003) Angiogenesis , vol.6 , pp. 1-14
    • Brown, M.D.1    Hudlicka, O.2
  • 13
    • 0002084286 scopus 로고
    • Studies on the growth of bloodvessels in the tail of the frog larva: by observation and experiment on the living animal
    • Clark ER. Studies on the growth of bloodvessels in the tail of the frog larva: by observation and experiment on the living animal. Am J Anat. 1918; 23: 37-88.
    • (1918) Am J Anat , vol.23 , pp. 37-88
    • Clark, E.R.1
  • 14
    • 0007959527 scopus 로고
    • Ueber die abhangigkeit der Bindegewehsneubildung in der Arterieintima von der mechanischen Bedingungen des Blutumlaufes
    • Thoma R. Ueber die abhangigkeit der Bindegewehsneubildung in der Arterieintima von der mechanischen Bedingungen des Blutumlaufes. Arch Pathol Anat Physiol Klin Med. 1883; 93: 433-505.
    • (1883) Arch Pathol Anat Physiol Klin Med , vol.93 , pp. 433-505
    • Thoma, R.1
  • 15
    • 84911539247 scopus 로고
    • The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue
    • Krogh A. The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue. J Physiol. 1919; 52: 409-15.
    • (1919) J Physiol , vol.52 , pp. 409-415
    • Krogh, A.1
  • 16
    • 79961017301 scopus 로고    scopus 로고
    • Modeling of angioadaptation: insights for vascular development
    • Pries AR, Reglin B, Secomb TW. Modeling of angioadaptation: insights for vascular development. Int J Dev Biol. 2011; 55: 399-405.
    • (2011) Int J Dev Biol , vol.55 , pp. 399-405
    • Pries, A.R.1    Reglin, B.2    Secomb, T.W.3
  • 17
    • 57149084258 scopus 로고    scopus 로고
    • Modeling structural adaptation of microcirculation
    • Pries AR, Secomb TW. Modeling structural adaptation of microcirculation. Microcirculation. 2008; 15: 753-64.
    • (2008) Microcirculation , vol.15 , pp. 753-764
    • Pries, A.R.1    Secomb, T.W.2
  • 18
    • 31944446946 scopus 로고    scopus 로고
    • Remodeling of blood vessels: responses of diameter and wall thickness to hemodynamic and metabolic stimuli
    • Pries AR, Reglin B, Secomb TW. Remodeling of blood vessels: responses of diameter and wall thickness to hemodynamic and metabolic stimuli. Hypertension. 2005; 46: 725-31.
    • (2005) Hypertension , vol.46 , pp. 725-731
    • Pries, A.R.1    Reglin, B.2    Secomb, T.W.3
  • 19
    • 0031852651 scopus 로고    scopus 로고
    • Structural adaptation and stability of microvascular networks: theory and simulations
    • Pries AR, Secomb TW, Gaehtgens P. Structural adaptation and stability of microvascular networks: theory and simulations. Am J Physiol. 1998; 275: H349-60.
    • (1998) Am J Physiol , vol.275 , pp. H349-H360
    • Pries, A.R.1    Secomb, T.W.2    Gaehtgens, P.3
  • 20
    • 72249086773 scopus 로고    scopus 로고
    • Structural adaptation of microvessel diameters in response to metabolic stimuli: where are the oxygen sensors?
    • Reglin B, Secomb TW, Pries AR. Structural adaptation of microvessel diameters in response to metabolic stimuli: where are the oxygen sensors? Am J Physiol Heart Circ Physiol. 2009; 297: H2206-19.
    • (2009) Am J Physiol Heart Circ Physiol , vol.297 , pp. H2206-H2219
    • Reglin, B.1    Secomb, T.W.2    Pries, A.R.3
  • 21
    • 33744504824 scopus 로고    scopus 로고
    • A computational model of oxygen transport in skeletal muscle for sprouting and splitting modes of angiogenesis
    • Ji JW, Tsoukias NM, Goldman D, et al. A computational model of oxygen transport in skeletal muscle for sprouting and splitting modes of angiogenesis. J Theor Biol. 2006; 241: 94-108.
    • (2006) J Theor Biol , vol.241 , pp. 94-108
    • Ji, J.W.1    Tsoukias, N.M.2    Goldman, D.3
  • 23
    • 3042513739 scopus 로고    scopus 로고
    • Interactions between NO and O2 in the microcirculation: a mathematical analysis
    • Lamkin-Kennard KA, Buerk DG, Jaron D. Interactions between NO and O2 in the microcirculation: a mathematical analysis. Microvasc Res. 2004; 68: 38-50.
    • (2004) Microvasc Res , vol.68 , pp. 38-50
    • Lamkin-Kennard, K.A.1    Buerk, D.G.2    Jaron, D.3
  • 24
    • 0035087563 scopus 로고    scopus 로고
    • Structural and biophysical simulation of angiogenesis and vascular remodeling
    • Godde R, Kurz H. Structural and biophysical simulation of angiogenesis and vascular remodeling. Dev Dyn. 2001; 220: 387-401.
    • (2001) Dev Dyn , vol.220 , pp. 387-401
    • Godde, R.1    Kurz, H.2
  • 25
    • 33745559710 scopus 로고    scopus 로고
    • The role of nitric oxide in tumour progression
    • Fukumura D, Kashiwagi S, Jain RK. The role of nitric oxide in tumour progression. Nat Rev Cancer. 2006; 6: 521-34.
    • (2006) Nat Rev Cancer , vol.6 , pp. 521-534
    • Fukumura, D.1    Kashiwagi, S.2    Jain, R.K.3
  • 26
    • 57149116523 scopus 로고    scopus 로고
    • Theoretical models of microvascular oxygen transport to tissue
    • Goldman D. Theoretical models of microvascular oxygen transport to tissue. Microcirculation. 2008; 15: 795-811.
    • (2008) Microcirculation , vol.15 , pp. 795-811
    • Goldman, D.1
  • 27
    • 84873379789 scopus 로고    scopus 로고
    • Modelling tumour oxygenation, reoxygenation and implications on treatment outcome
    • 2013
    • Toma-Dasu I, Dasu A. Modelling tumour oxygenation, reoxygenation and implications on treatment outcome. Comput Math Methods Med. 2013; 2013: 141087.
    • (2013) Comput Math Methods Med , pp. 141087
    • Toma-Dasu, I.1    Dasu, A.2
  • 28
    • 84555189342 scopus 로고    scopus 로고
    • Mathematical and computational models of oxidative and nitrosative stress
    • Kavdia M. Mathematical and computational models of oxidative and nitrosative stress. Crit Rev Biomed Eng. 2011; 39: 461-72.
    • (2011) Crit Rev Biomed Eng , vol.39 , pp. 461-472
    • Kavdia, M.1
  • 29
    • 84866509205 scopus 로고    scopus 로고
    • Effects of fiber type and size on the heterogeneity of oxygen distribution in exercising skeletal muscle
    • Liu G, Mac Gabhann F, Popel AS. Effects of fiber type and size on the heterogeneity of oxygen distribution in exercising skeletal muscle. PLoS ONE. 2012; 7: e44375.
    • (2012) PLoS ONE , vol.7
    • Liu, G.1    Mac Gabhann, F.2    Popel, A.S.3
  • 30
    • 78650367018 scopus 로고    scopus 로고
    • Deterministic and stochastic aspects of VEGF-A production and the cooperative behavior of tumoral cell colony
    • Laise P, Di Patti F, Fanelli D, et al. Deterministic and stochastic aspects of VEGF-A production and the cooperative behavior of tumoral cell colony. J Theor Biol. 2011; 272: 55-63.
    • (2011) J Theor Biol , vol.272 , pp. 55-63
    • Laise, P.1    Di Patti, F.2    Fanelli, D.3
  • 31
    • 33748774664 scopus 로고    scopus 로고
    • A computational model of intracellular oxygen sensing by hypoxia-inducible factor HIF1 alpha
    • Qutub AA, Popel AS. A computational model of intracellular oxygen sensing by hypoxia-inducible factor HIF1 alpha. J Cell Sci. 2006; 119: 3467-80.
    • (2006) J Cell Sci , vol.119 , pp. 3467-3480
    • Qutub, A.A.1    Popel, A.S.2
  • 32
    • 32944463899 scopus 로고    scopus 로고
    • Angiogenesis
    • Folkman J. Angiogenesis. Annu Rev Med. 2006; 57: 1-18.
    • (2006) Annu Rev Med , vol.57 , pp. 1-18
    • Folkman, J.1
  • 33
    • 0022253881 scopus 로고
    • A mathematical model of tumour-induced capillary growth
    • Balding D, McElwain DL. A mathematical model of tumour-induced capillary growth. J Theor Biol. 1985; 114: 53-73.
    • (1985) J Theor Biol , vol.114 , pp. 53-73
    • Balding, D.1    McElwain, D.L.2
  • 34
    • 0032170064 scopus 로고    scopus 로고
    • Continuous and discrete mathematical models of tumor-induced angiogenesis
    • Anderson AR, Chaplain MA. Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull Math Biol. 1998; 60: 857-99.
    • (1998) Bull Math Biol , vol.60 , pp. 857-899
    • Anderson, A.R.1    Chaplain, M.A.2
  • 35
    • 58349120594 scopus 로고    scopus 로고
    • Multiscale modelling and nonlinear simulation of vascular tumour growth
    • Macklin P, McDougall S, Anderson AR, et al. Multiscale modelling and nonlinear simulation of vascular tumour growth. J Math Biol. 2009; 58: 765-98.
    • (2009) J Math Biol , vol.58 , pp. 765-798
    • Macklin, P.1    McDougall, S.2    Anderson, A.R.3
  • 36
    • 70449397345 scopus 로고    scopus 로고
    • 3D multi-cell simulation of tumor growth and angiogenesis
    • Shirinifard A, Gens JS, Zaitlen BL, et al. 3D multi-cell simulation of tumor growth and angiogenesis. PLoS ONE. 2009; 4: e7190.
    • (2009) PLoS ONE , vol.4
    • Shirinifard, A.1    Gens, J.S.2    Zaitlen, B.L.3
  • 37
    • 77952954625 scopus 로고    scopus 로고
    • Three-dimensional multispecies nonlinear tumor growth-II: tumor invasion and angiogenesis
    • Frieboes HB, Jin F, Chuang YL, et al. Three-dimensional multispecies nonlinear tumor growth-II: tumor invasion and angiogenesis. J Theor Biol. 2010; 264: 1254-78.
    • (2010) J Theor Biol , vol.264 , pp. 1254-1278
    • Frieboes, H.B.1    Jin, F.2    Chuang, Y.L.3
  • 38
    • 84858853541 scopus 로고    scopus 로고
    • Integrating intracellular dynamics using CompuCell 3D and Bionetsolver: applications to multiscale modelling of cancer cell growth and invasion
    • Andasari V, Roper RT, Swat MH, et al. Integrating intracellular dynamics using CompuCell 3D and Bionetsolver: applications to multiscale modelling of cancer cell growth and invasion. PLoS ONE. 2012; 7: e33726.
    • (2012) PLoS ONE , vol.7
    • Andasari, V.1    Roper, R.T.2    Swat, M.H.3
  • 39
    • 33745918670 scopus 로고    scopus 로고
    • Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies
    • McDougall SR, Anderson AR, Chaplain MA. Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J Theor Biol. 2006; 241: 564-89.
    • (2006) J Theor Biol , vol.241 , pp. 564-589
    • McDougall, S.R.1    Anderson, A.R.2    Chaplain, M.A.3
  • 40
    • 79960096827 scopus 로고    scopus 로고
    • Normalization of the vasculature for treatment of cancer and other diseases
    • Goel S, Duda DG, Xu L, et al. Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev. 2011; 91: 1071-121.
    • (2011) Physiol Rev , vol.91 , pp. 1071-1121
    • Goel, S.1    Duda, D.G.2    Xu, L.3
  • 41
    • 84886675563 scopus 로고    scopus 로고
    • Vascular normalization as a therapeutic strategy for malignant and nonmalignant disease
    • Goel S, Wong AH, Jain RK. Vascular normalization as a therapeutic strategy for malignant and nonmalignant disease. Cold Spring Harb Perspect Med. 2012; 2: a006486.
    • (2012) Cold Spring Harb Perspect Med , vol.2 , pp. a006486
    • Goel, S.1    Wong, A.H.2    Jain, R.K.3
  • 42
    • 84858172352 scopus 로고    scopus 로고
    • Computational models of VEGF-associated angiogenic processes in cancer
    • Stefanini MO, Qutub AA, Mac Gabhann F, et al. Computational models of VEGF-associated angiogenic processes in cancer. Math Med Biol. 2012; 29: 85-94.
    • (2012) Math Med Biol , vol.29 , pp. 85-94
    • Stefanini, M.O.1    Qutub, A.A.2    Mac Gabhann, F.3
  • 45
    • 84868364853 scopus 로고    scopus 로고
    • Multiscale imaging and computational modeling of blood flow in the tumor vasculature
    • Kim E, Stamatelos S, Cebulla J, et al. Multiscale imaging and computational modeling of blood flow in the tumor vasculature. Ann Biomed Eng. 2012; 40: 2425-41.
    • (2012) Ann Biomed Eng , vol.40 , pp. 2425-2441
    • Kim, E.1    Stamatelos, S.2    Cebulla, J.3
  • 46
    • 79961066993 scopus 로고    scopus 로고
    • Emerging paradigms and questions on pro-angiogenic bone marrow-derived myelomonocytic cells
    • Laurent J, Touvrey C, Botta F, et al. Emerging paradigms and questions on pro-angiogenic bone marrow-derived myelomonocytic cells. Int J Dev Biol. 2011; 55: 527-34.
    • (2011) Int J Dev Biol , vol.55 , pp. 527-534
    • Laurent, J.1    Touvrey, C.2    Botta, F.3
  • 47
    • 0030221622 scopus 로고    scopus 로고
    • A model of wound-healing angiogenesis in soft tissue
    • Pettet GJ, Byrne HM, McElwain DL, et al. A model of wound-healing angiogenesis in soft tissue. Math Biosci. 1996; 136: 35-63.
    • (1996) Math Biosci , vol.136 , pp. 35-63
    • Pettet, G.J.1    Byrne, H.M.2    McElwain, D.L.3
  • 48
    • 70349728574 scopus 로고    scopus 로고
    • A mathematical model of ischemic cutaneous wounds
    • Xue C, Friedman A, Sen CK. A mathematical model of ischemic cutaneous wounds. Proc Natl Acad Sci USA. 2009; 106: 16782-7.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 16782-16787
    • Xue, C.1    Friedman, A.2    Sen, C.K.3
  • 49
    • 1342346686 scopus 로고    scopus 로고
    • Spatial and temporal control of angiogenesis and arterialization using focal applications of VEGF164 and Ang-1
    • Peirce SM, Price RJ, Skalak TC. Spatial and temporal control of angiogenesis and arterialization using focal applications of VEGF164 and Ang-1. Am J Physiol Heart Circ Physiol. 2004; 286: H918-25.
    • (2004) Am J Physiol Heart Circ Physiol , vol.286 , pp. H918-H925
    • Peirce, S.M.1    Price, R.J.2    Skalak, T.C.3
  • 50
    • 79957925832 scopus 로고    scopus 로고
    • Vascular endothelial growth factors and receptors: anti-angiogenic therapy in the treatment of cancer
    • Tugues S, Koch S, Gualandi L, et al. Vascular endothelial growth factors and receptors: anti-angiogenic therapy in the treatment of cancer. Mol Aspects Med. 2011; 32: 88-111.
    • (2011) Mol Aspects Med , vol.32 , pp. 88-111
    • Tugues, S.1    Koch, S.2    Gualandi, L.3
  • 51
    • 0037815292 scopus 로고    scopus 로고
    • VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia
    • Gerhardt H, Golding M, Fruttiger M, et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol. 2003; 161: 1163-77.
    • (2003) J Cell Biol , vol.161 , pp. 1163-1177
    • Gerhardt, H.1    Golding, M.2    Fruttiger, M.3
  • 52
    • 57149102486 scopus 로고    scopus 로고
    • Systems biology of vascular endothelial growth factors
    • Mac Gabhann F, Popel AS. Systems biology of vascular endothelial growth factors. Microcirculation. 2008; 15: 715-38.
    • (2008) Microcirculation , vol.15 , pp. 715-738
    • Mac Gabhann, F.1    Popel, A.S.2
  • 54
    • 84880742193 scopus 로고    scopus 로고
    • Signal transduction by vascular endothelial growth factor receptors
    • Koch S, Claesson-Welsh L. Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb Perspect Med. 2012; 2: a006502.
    • (2012) Cold Spring Harb Perspect Med , vol.2 , pp. a006502
    • Koch, S.1    Claesson-Welsh, L.2
  • 55
    • 77649096200 scopus 로고    scopus 로고
    • Binding to the extracellular matrix and proteolytic processing: two key mechanisms regulating vascular endothelial growth factor action
    • Ferrara N. Binding to the extracellular matrix and proteolytic processing: two key mechanisms regulating vascular endothelial growth factor action. Mol Biol Cell. 2010; 21: 687-90.
    • (2010) Mol Biol Cell , vol.21 , pp. 687-690
    • Ferrara, N.1
  • 56
    • 33749341278 scopus 로고    scopus 로고
    • Computational model of vascular endothelial growth factor spatial distribution in muscle and pro-angiogenic cell therapy
    • Mac Gabhann F, Ji JW, Popel AS. Computational model of vascular endothelial growth factor spatial distribution in muscle and pro-angiogenic cell therapy. PLoS Comput Biol. 2006; 2: e127.
    • (2006) PLoS Comput Biol , vol.2
    • Mac Gabhann, F.1    Ji, J.W.2    Popel, A.S.3
  • 57
    • 79957902010 scopus 로고    scopus 로고
    • Signal transduction by vascular endothelial growth factor receptors
    • Koch S, Tugues S, Li X, et al. Signal transduction by vascular endothelial growth factor receptors. Biochem J. 2011; 437: 169-83.
    • (2011) Biochem J , vol.437 , pp. 169-183
    • Koch, S.1    Tugues, S.2    Li, X.3
  • 58
    • 34249680152 scopus 로고    scopus 로고
    • Multiscale computational models of pro-angiogenic treatments in peripheral arterial disease
    • Mac Gabhann F, Ji JW, Popel AS. Multiscale computational models of pro-angiogenic treatments in peripheral arterial disease. Ann Biomed Eng. 2007; 35: 982-94.
    • (2007) Ann Biomed Eng , vol.35 , pp. 982-994
    • Mac Gabhann, F.1    Ji, J.W.2    Popel, A.S.3
  • 59
    • 80555154416 scopus 로고    scopus 로고
    • A two-compartment model of VEGF distribution in the mouse
    • Yen P, Finley SD, Engel-Stefanini MO, et al. A two-compartment model of VEGF distribution in the mouse. PLoS ONE. 2011; 6: e27514.
    • (2011) PLoS ONE , vol.6
    • Yen, P.1    Finley, S.D.2    Engel-Stefanini, M.O.3
  • 60
    • 77952651450 scopus 로고    scopus 로고
    • VEGF and soluble VEGF receptor-1 (sFlt-1) distributions in peripheral arterial disease: an in silico model
    • Wu FT, Stefanini MO, Mac Gabhann F, et al. VEGF and soluble VEGF receptor-1 (sFlt-1) distributions in peripheral arterial disease: an in silico model. Am J Physiol Heart Circ Physiol. 2010; 298: H2174-91.
    • (2010) Am J Physiol Heart Circ Physiol , vol.298 , pp. H2174-H2191
    • Wu, F.T.1    Stefanini, M.O.2    Mac Gabhann, F.3
  • 61
    • 71549172503 scopus 로고    scopus 로고
    • Modeling of growth factor-receptor systems from molecular-level protein interaction networks to whole-body compartment models
    • Wu FT, Stefanini MO, Mac Gabhann F, et al. Modeling of growth factor-receptor systems from molecular-level protein interaction networks to whole-body compartment models. Methods Enzymol. 2009; 467: 461-97.
    • (2009) Methods Enzymol , vol.467 , pp. 461-497
    • Wu, F.T.1    Stefanini, M.O.2    Mac Gabhann, F.3
  • 62
    • 84874491536 scopus 로고    scopus 로고
    • VEGF and Notch in tip and stalk cell selection
    • Blanco R, Gerhardt H. VEGF and Notch in tip and stalk cell selection. Cold Spring Harb Perspect Med. 2013; 3: a006569.
    • (2013) Cold Spring Harb Perspect Med , vol.3 , pp. a006569
    • Blanco, R.1    Gerhardt, H.2
  • 63
    • 77950931419 scopus 로고    scopus 로고
    • Matrix metalloproteinases: regulators of the tumor microenvironment
    • Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010; 141: 52-67.
    • (2010) Cell , vol.141 , pp. 52-67
    • Kessenbrock, K.1    Plaks, V.2    Werb, Z.3
  • 64
    • 28444488632 scopus 로고    scopus 로고
    • Distinct modes of collagen type I proteolysis by matrix metalloproteinase (MMP) 2 and membrane type I MMP during the migration of a tip endothelial cell: insights from a computational model
    • Karagiannis ED, Popel AS. Distinct modes of collagen type I proteolysis by matrix metalloproteinase (MMP) 2 and membrane type I MMP during the migration of a tip endothelial cell: insights from a computational model. J Theor Biol. 2006; 238: 124-45.
    • (2006) J Theor Biol , vol.238 , pp. 124-145
    • Karagiannis, E.D.1    Popel, A.S.2
  • 65
    • 4644236059 scopus 로고    scopus 로고
    • A theoretical model of type I collagen proteolysis by matrix metalloproteinase (MMP) 2 and membrane type 1 MMP in the presence of tissue inhibitor of metalloproteinase 2
    • Karagiannis ED, Popel AS. A theoretical model of type I collagen proteolysis by matrix metalloproteinase (MMP) 2 and membrane type 1 MMP in the presence of tissue inhibitor of metalloproteinase 2. J Biol Chem. 2004; 279: 39105-14.
    • (2004) J Biol Chem , vol.279 , pp. 39105-39114
    • Karagiannis, E.D.1    Popel, A.S.2
  • 66
    • 38049136866 scopus 로고    scopus 로고
    • A biochemical model of matrix metalloproteinase 9 activation and inhibition
    • Vempati P, Karagiannis ED, Popel AS. A biochemical model of matrix metalloproteinase 9 activation and inhibition. J Biol Chem. 2007; 282: 37585-96.
    • (2007) J Biol Chem , vol.282 , pp. 37585-37596
    • Vempati, P.1    Karagiannis, E.D.2    Popel, A.S.3
  • 67
    • 77955636443 scopus 로고    scopus 로고
    • Quantifying the proteolytic release of extracellular matrix-sequestered VEGF with a computational model
    • Vempati P, Mac Gabhann F, Popel AS. Quantifying the proteolytic release of extracellular matrix-sequestered VEGF with a computational model. PLoS ONE. 2010; 5: e11860.
    • (2010) PLoS ONE , vol.5
    • Vempati, P.1    Mac Gabhann, F.2    Popel, A.S.3
  • 68
    • 79955380395 scopus 로고    scopus 로고
    • Formation of VEGF isoform-specific spatial distributions governing angiogenesis: computational analysis
    • Vempati P, Popel AS, Mac Gabhann F. Formation of VEGF isoform-specific spatial distributions governing angiogenesis: computational analysis. BMC Syst Biol. 2011; 5: 59.
    • (2011) BMC Syst Biol , vol.5 , pp. 59
    • Vempati, P.1    Popel, A.S.2    Mac Gabhann, F.3
  • 69
    • 58249091885 scopus 로고    scopus 로고
    • VEGF and Notch signaling: the yin and yang of angiogenic sprouting
    • Hellstrom M, Phng LK, Gerhardt H. VEGF and Notch signaling: the yin and yang of angiogenic sprouting. Cell Adh Migr. 2007; 1: 133-6.
    • (2007) Cell Adh Migr , vol.1 , pp. 133-136
    • Hellstrom, M.1    Phng, L.K.2    Gerhardt, H.3
  • 70
    • 22544470038 scopus 로고    scopus 로고
    • A role for axon guidance receptors and ligands in blood vessel development and tumor angiogenesis
    • Klagsbrun M, Eichmann A. A role for axon guidance receptors and ligands in blood vessel development and tumor angiogenesis. Cytokine Growth Factor Rev. 2005; 16: 535-48.
    • (2005) Cytokine Growth Factor Rev , vol.16 , pp. 535-548
    • Klagsbrun, M.1    Eichmann, A.2
  • 71
    • 33847046849 scopus 로고    scopus 로고
    • Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis
    • Hellstrom M, Phng LK, Hofmann JJ, et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature. 2007; 445: 776-80.
    • (2007) Nature , vol.445 , pp. 776-780
    • Hellstrom, M.1    Phng, L.K.2    Hofmann, J.J.3
  • 75
    • 77952671503 scopus 로고    scopus 로고
    • A cell-based model of endothelial cell migration, proliferation and maturation during corneal angiogenesis
    • Jackson T, Zheng X. A cell-based model of endothelial cell migration, proliferation and maturation during corneal angiogenesis. Bull Math Biol. 2010; 72: 830-68.
    • (2010) Bull Math Biol , vol.72 , pp. 830-868
    • Jackson, T.1    Zheng, X.2
  • 76
    • 77957607057 scopus 로고    scopus 로고
    • Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting
    • Jakobsson L, Franco CA, Bentley K, et al. Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol. 2010; 12: 943-53.
    • (2010) Nat Cell Biol , vol.12 , pp. 943-953
    • Jakobsson, L.1    Franco, C.A.2    Bentley, K.3
  • 77
    • 34247569970 scopus 로고    scopus 로고
    • A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis
    • Bauer AL, Jackson TL, Jiang Y. A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis. Biophys J. 2007; 92: 3105-21.
    • (2007) Biophys J , vol.92 , pp. 3105-3121
    • Bauer, A.L.1    Jackson, T.L.2    Jiang, Y.3
  • 78
    • 36348997609 scopus 로고    scopus 로고
    • Agentbased simulation of notch-mediated tip cell selection in angiogenic sprout initialisation
    • Bentley K, Gerhardt H, Bates PA. Agentbased simulation of notch-mediated tip cell selection in angiogenic sprout initialisation. J Theor Biol. 2008; 250: 25-36.
    • (2008) J Theor Biol , vol.250 , pp. 25-36
    • Bentley, K.1    Gerhardt, H.2    Bates, P.A.3
  • 79
    • 69949139925 scopus 로고    scopus 로고
    • Local guidance of emerging vessel sprouts requires soluble Flt-1
    • Chappell JC, Taylor SM, Ferrara N, et al. Local guidance of emerging vessel sprouts requires soluble Flt-1. Dev Cell. 2009; 17: 377-86.
    • (2009) Dev Cell , vol.17 , pp. 377-386
    • Chappell, J.C.1    Taylor, S.M.2    Ferrara, N.3
  • 80
    • 44649128099 scopus 로고    scopus 로고
    • The VEGF receptor Flt-1 spatially modulates Flk-1 signaling and blood vessel branching
    • Kappas NC, Zeng G, Chappell JC, et al. The VEGF receptor Flt-1 spatially modulates Flk-1 signaling and blood vessel branching. J Cell Biol. 2008; 181: 847-58.
    • (2008) J Cell Biol , vol.181 , pp. 847-858
    • Kappas, N.C.1    Zeng, G.2    Chappell, J.C.3
  • 81
    • 84859858720 scopus 로고    scopus 로고
    • Computational modeling of interacting VEGF and soluble VEGF receptor concentration gradients
    • Hashambhoy YL, Chappell JC, Peirce SM, et al. Computational modeling of interacting VEGF and soluble VEGF receptor concentration gradients. Front Physiol. 2011; 2: 62.
    • (2011) Front Physiol , vol.2 , pp. 62
    • Hashambhoy, Y.L.1    Chappell, J.C.2    Peirce, S.M.3
  • 82
    • 77952593669 scopus 로고    scopus 로고
    • A systems biology perspective on sVEGFR1: its biological function, pathogenic role and therapeutic use
    • Wu FT, Stefanini MO, Mac Gabhann F, et al. A systems biology perspective on sVEGFR1: its biological function, pathogenic role and therapeutic use. J Cell Mol Med. 2010; 14: 528-52.
    • (2010) J Cell Mol Med , vol.14 , pp. 528-552
    • Wu, F.T.1    Stefanini, M.O.2    Mac Gabhann, F.3
  • 83
    • 0025991093 scopus 로고
    • Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis
    • Stokes CL, Lauffenburger DA. Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. J Theor Biol. 1991; 152: 377-403.
    • (1991) J Theor Biol , vol.152 , pp. 377-403
    • Stokes, C.L.1    Lauffenburger, D.A.2
  • 84
    • 0025882274 scopus 로고
    • Migration of individual microvessel endothelial cells: stochastic model and parameter measurement
    • Stokes CL, Lauffenburger DA, Williams SK. Migration of individual microvessel endothelial cells: stochastic model and parameter measurement. J Cell Sci. 1991; 99(Pt 2): 419-30.
    • (1991) J Cell Sci , vol.99 , pp. 419-430
    • Stokes, C.L.1    Lauffenburger, D.A.2    Williams, S.K.3
  • 85
    • 55949094110 scopus 로고    scopus 로고
    • A hybrid model for three-dimensional simulations of sprouting angiogenesis
    • Milde F, Bergdorf M, Koumoutsakos P. A hybrid model for three-dimensional simulations of sprouting angiogenesis. Biophys J. 2008; 95: 3146-60.
    • (2008) Biophys J , vol.95 , pp. 3146-3160
    • Milde, F.1    Bergdorf, M.2    Koumoutsakos, P.3
  • 86
    • 79957769556 scopus 로고    scopus 로고
    • Tumor angiogenesis and vascular patterning: a mathematical model
    • Travasso RD, Corvera Poire E, Castro M, et al. Tumor angiogenesis and vascular patterning: a mathematical model. PLoS ONE. 2011; 6: e19989.
    • (2011) PLoS ONE , vol.6
    • Travasso, R.D.1    Corvera Poire, E.2    Castro, M.3
  • 87
    • 68249103288 scopus 로고    scopus 로고
    • Topography of extracellular matrix mediates vascular morphogenesis and migration speeds in angiogenesis
    • Bauer AL, Jackson TL, Jiang Y. Topography of extracellular matrix mediates vascular morphogenesis and migration speeds in angiogenesis. PLoS Comput Biol. 2009; 5: e1000445.
    • (2009) PLoS Comput Biol , vol.5
    • Bauer, A.L.1    Jackson, T.L.2    Jiang, Y.3
  • 88
    • 37249053952 scopus 로고    scopus 로고
    • Dose response of angiogenesis to basic fibroblast growth factor in rat corneal pocket assay: II. Numerical simulations
    • Tong S, Yuan F. Dose response of angiogenesis to basic fibroblast growth factor in rat corneal pocket assay: II. Numerical simulations. Microvasc Res. 2008; 75: 16-24.
    • (2008) Microvasc Res , vol.75 , pp. 16-24
    • Tong, S.1    Yuan, F.2
  • 89
    • 84866463851 scopus 로고    scopus 로고
    • A hybrid discrete-continuum mathematical model of pattern prediction in the developing retinal vasculature
    • McDougall SR, Watson MG, Devlin AH, et al. A hybrid discrete-continuum mathematical model of pattern prediction in the developing retinal vasculature. Bull Math Biol. 2012; 74: 2272-314.
    • (2012) Bull Math Biol , vol.74 , pp. 2272-2314
    • McDougall, S.R.1    Watson, M.G.2    Devlin, A.H.3
  • 90
    • 77952671109 scopus 로고    scopus 로고
    • Receptor cross-talk in angiogenesis: mapping environmental cues to cell phenotype using a stochastic, Boolean signaling network model
    • Bauer AL, Jackson TL, Jiang Y, et al. Receptor cross-talk in angiogenesis: mapping environmental cues to cell phenotype using a stochastic, Boolean signaling network model. J Theor Biol. 2010; 264: 838-46.
    • (2010) J Theor Biol , vol.264 , pp. 838-846
    • Bauer, A.L.1    Jackson, T.L.2    Jiang, Y.3
  • 91
    • 0038179723 scopus 로고    scopus 로고
    • Cost of migration: invasion of malignant gliomas and implications for treatment
    • Giese A, Bjerkvig R, Berens ME, et al. Cost of migration: invasion of malignant gliomas and implications for treatment. J Clin Oncol. 2003; 21: 1624-36.
    • (2003) J Clin Oncol , vol.21 , pp. 1624-1636
    • Giese, A.1    Bjerkvig, R.2    Berens, M.E.3
  • 92
    • 1842632667 scopus 로고    scopus 로고
    • Endothelial cell-cell junctions: happy together
    • Dejana E. Endothelial cell-cell junctions: happy together. Nat Rev Mol Cell Biol. 2004; 5: 261-70.
    • (2004) Nat Rev Mol Cell Biol , vol.5 , pp. 261-270
    • Dejana, E.1
  • 93
    • 29144462629 scopus 로고    scopus 로고
    • Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling
    • Merks RM, Brodsky SV, Goligorksy MS, et al. Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling. Dev Biol. 2006; 289: 44-54.
    • (2006) Dev Biol , vol.289 , pp. 44-54
    • Merks, R.M.1    Brodsky, S.V.2    Goligorksy, M.S.3
  • 94
    • 52949146011 scopus 로고    scopus 로고
    • Contact-inhibited chemotaxis in de novo and sprouting blood-vessel growth
    • Merks RM, Perryn ED, Shirinifard A, et al. Contact-inhibited chemotaxis in de novo and sprouting blood-vessel growth. PLoS Comput Biol. 2008; 4: e1000163.
    • (2008) PLoS Comput Biol , vol.4
    • Merks, R.M.1    Perryn, E.D.2    Shirinifard, A.3
  • 95
    • 65449162276 scopus 로고    scopus 로고
    • Elongation, proliferation & migration differentiate endothelial cell phenotypes and determine capillary sprouting
    • Qutub AA, Popel AS. Elongation, proliferation & migration differentiate endothelial cell phenotypes and determine capillary sprouting. BMC Syst Biol. 2009; 3: 13.
    • (2009) BMC Syst Biol , vol.3 , pp. 13
    • Qutub, A.A.1    Popel, A.S.2
  • 96
    • 0034835509 scopus 로고    scopus 로고
    • Structural adaptation of microvascular networks: functional roles of adaptive responses
    • Pries AR, Reglin B, Secomb TW. Structural adaptation of microvascular networks: functional roles of adaptive responses. Am J Physiol Heart Circ Physiol. 2001; 281: H1015-25.
    • (2001) Am J Physiol Heart Circ Physiol , vol.281 , pp. H1015-H1025
    • Pries, A.R.1    Reglin, B.2    Secomb, T.W.3
  • 97
    • 0035674964 scopus 로고    scopus 로고
    • Structural adaptation of vascular networks: role of the pressure response
    • Pries AR, Reglin B, Secomb TW. Structural adaptation of vascular networks: role of the pressure response. Hypertension. 2001; 38: 1476-9.
    • (2001) Hypertension , vol.38 , pp. 1476-1479
    • Pries, A.R.1    Reglin, B.2    Secomb, T.W.3
  • 98
    • 84876125744 scopus 로고    scopus 로고
    • Cells as state machines: cell behavior patterns arise during capillary formation as a function of BDNF and VEGF
    • Long BL, Rekhi R, Abrego A, et al. Cells as state machines: cell behavior patterns arise during capillary formation as a function of BDNF and VEGF. J Theor Biol. 2013; 326: 43-57.
    • (2013) J Theor Biol , vol.326 , pp. 43-57
    • Long, B.L.1    Rekhi, R.2    Abrego, A.3
  • 99
    • 84876125744 scopus 로고    scopus 로고
    • Cells as state machines: cell behavior patterns arise during capillary formation as a function of BDNF and VEGF
    • Long BL, Rekhi R, Abrego A, et al. Cells as state machines: cell behavior patterns arise during capillary formation as a function of BDNF and VEGF. J Theor Biol. 2013; 326: 43-57.
    • (2013) J Theor Biol , vol.326 , pp. 43-57
    • Long, B.L.1    Rekhi, R.2    Abrego, A.3
  • 100
    • 2942556514 scopus 로고    scopus 로고
    • The VEGF receptor flt-1 (VEGFR-1) is a positive modulator of vascular sprout formation and branching morphogenesis
    • Kearney JB, Kappas NC, Ellerstrom C, et al. The VEGF receptor flt-1 (VEGFR-1) is a positive modulator of vascular sprout formation and branching morphogenesis. Blood. 2004; 103: 4527-35.
    • (2004) Blood , vol.103 , pp. 4527-4535
    • Kearney, J.B.1    Kappas, N.C.2    Ellerstrom, C.3
  • 101
    • 81855180719 scopus 로고    scopus 로고
    • Distinct cellular mechanisms of blood vessel fusion in the zebrafish embryo
    • Herwig L, Blum Y, Krudewig A, et al. Distinct cellular mechanisms of blood vessel fusion in the zebrafish embryo. Curr Biol. 2011; 21: 1942-8.
    • (2011) Curr Biol , vol.21 , pp. 1942-1948
    • Herwig, L.1    Blum, Y.2    Krudewig, A.3
  • 102
    • 77957236069 scopus 로고    scopus 로고
    • Resolving cell-cell junctions: lumen formation in blood vessels
    • Zeeb M, Strilic B, Lammert E. Resolving cell-cell junctions: lumen formation in blood vessels. Curr Opin Cell Biol. 2010; 22: 626-32.
    • (2010) Curr Opin Cell Biol , vol.22 , pp. 626-632
    • Zeeb, M.1    Strilic, B.2    Lammert, E.3
  • 103
    • 73549120589 scopus 로고    scopus 로고
    • Tipping the balance: robustness of tip cell selection, migration and fusion in angiogenesis
    • Bentley K, Mariggi G, Gerhardt H, et al. Tipping the balance: robustness of tip cell selection, migration and fusion in angiogenesis. PLoS Comput Biol. 2009; 5: e1000549.
    • (2009) PLoS Comput Biol , vol.5
    • Bentley, K.1    Mariggi, G.2    Gerhardt, H.3
  • 104
    • 79953265657 scopus 로고    scopus 로고
    • Module- based multiscale simulation of angiogenesis in skeletal muscle
    • Liu G, Qutub AA, Vempati P, et al. Module- based multiscale simulation of angiogenesis in skeletal muscle. Theor Biol Med Model. 2011; 8: 6.
    • (2011) Theor Biol Med Model , vol.8 , pp. 6
    • Liu, G.1    Qutub, A.A.2    Vempati, P.3
  • 105
    • 57149094236 scopus 로고    scopus 로고
    • Microcirculation and the physiome projects
    • Bassingthwaighte JB. Microcirculation and the physiome projects. Microcirculation. 2008; 15: 835-9.
    • (2008) Microcirculation , vol.15 , pp. 835-839
    • Bassingthwaighte, J.B.1
  • 106
    • 84912574574 scopus 로고    scopus 로고
    • The microcirculation physiome
    • Bronzino JD, Peterson DR, editors, 4th ed. Boca Raton, FL: CRC Press, Taylor & Francis Group
    • Popel AS, Pittman RN. The microcirculation physiome. In: Bronzino JD, Peterson DR, editors. The biomedical engineering handbook, 4th ed. Boca Raton, FL: CRC Press, Taylor & Francis Group; 2013, pp. 13.1-7.
    • (2013) The biomedical engineering handbook , pp. 131-137
    • Popel, A.S.1    Pittman, R.N.2
  • 107
    • 0035895762 scopus 로고    scopus 로고
    • Unorthodox angiogenesis in skeletal muscle
    • Egginton S, Zhou AL, Brown MD, et al. Unorthodox angiogenesis in skeletal muscle. Cardiovasc Res. 2001; 49: 634-46.
    • (2001) Cardiovasc Res , vol.49 , pp. 634-646
    • Egginton, S.1    Zhou, A.L.2    Brown, M.D.3
  • 108
    • 6944234979 scopus 로고    scopus 로고
    • Intussusceptive angiogenesis: its emergence, its characteristics, and its significance
    • Burri PH, Hlushchuk R, Djonov V. Intussusceptive angiogenesis: its emergence, its characteristics, and its significance. Dev Dyn. 2004; 231: 474-88.
    • (2004) Dev Dyn , vol.231 , pp. 474-488
    • Burri, P.H.1    Hlushchuk, R.2    Djonov, V.3
  • 109
    • 0002832108 scopus 로고
    • Microscopic observations on the extra-endothelial cells of living mammalian blood vessels
    • Clark ER, Clark EL. Microscopic observations on the extra-endothelial cells of living mammalian blood vessels. Am J Anat. 1940; 66: 1-49.
    • (1940) Am J Anat , vol.66 , pp. 1-49
    • Clark, E.R.1    Clark, E.L.2
  • 110
    • 0025103046 scopus 로고
    • A novel mechanism of capillary growth in the rat pulmonary microcirculation
    • Burri PH, Tarek MR. A novel mechanism of capillary growth in the rat pulmonary microcirculation. Anat Rec. 1990; 228: 35-45.
    • (1990) Anat Rec , vol.228 , pp. 35-45
    • Burri, P.H.1    Tarek, M.R.2
  • 111
    • 84871613471 scopus 로고    scopus 로고
    • VEGF over-expression in skeletal muscle induces angiogenesis by intussusception rather than sprouting
    • Gianni-Barrera R, Trani M, Fontanellaz C, et al. VEGF over-expression in skeletal muscle induces angiogenesis by intussusception rather than sprouting. Angiogenesis. 2013; 16: 123-36.
    • (2013) Angiogenesis , vol.16 , pp. 123-136
    • Gianni-Barrera, R.1    Trani, M.2    Fontanellaz, C.3
  • 112
    • 77952626511 scopus 로고    scopus 로고
    • Inflammation-induced intussusceptive angiogenesis in murine colitis
    • Konerding MA, Turhan A, Ravnic DJ, et al. Inflammation-induced intussusceptive angiogenesis in murine colitis. Anat Rec. 2010; 293: 849-57.
    • (2010) Anat Rec , vol.293 , pp. 849-857
    • Konerding, M.A.1    Turhan, A.2    Ravnic, D.J.3
  • 113
    • 13844280975 scopus 로고    scopus 로고
    • Computational model of flow-tissue interactions in intussusceptive angiogenesis
    • Szczerba D, Szekely G. Computational model of flow-tissue interactions in intussusceptive angiogenesis. J Theor Biol. 2005; 234: 87-97.
    • (2005) J Theor Biol , vol.234 , pp. 87-97
    • Szczerba, D.1    Szekely, G.2
  • 114
    • 70350569953 scopus 로고    scopus 로고
    • A computational model of intussusceptive microvascular growth and remodeling
    • Szczerba D, Kurz H, Szekely G. A computational model of intussusceptive microvascular growth and remodeling. J Theor Biol. 2009; 261: 570-83.
    • (2009) J Theor Biol , vol.261 , pp. 570-583
    • Szczerba, D.1    Kurz, H.2    Szekely, G.3
  • 115
    • 77955177498 scopus 로고    scopus 로고
    • Blood flow shapes intravascular pillar geometry in the chick chorioallantoic membrane
    • Lee GS, Filipovic N, Miele LF, et al. Blood flow shapes intravascular pillar geometry in the chick chorioallantoic membrane. J Angiogenes Res. 2010; 2: 11.
    • (2010) J Angiogenes Res , vol.2 , pp. 11
    • Lee, G.S.1    Filipovic, N.2    Miele, L.F.3
  • 116
    • 0028070419 scopus 로고
    • Modelling of vascular growth processes: a stochastic biophysical approach to embryonic angiogenesis
    • Sandau K, Kurz H. Modelling of vascular growth processes: a stochastic biophysical approach to embryonic angiogenesis. J Microsc. 1994; 175: 205-13.
    • (1994) J Microsc , vol.175 , pp. 205-213
    • Sandau, K.1    Kurz, H.2
  • 117
  • 118
    • 84856014603 scopus 로고    scopus 로고
    • Intussusceptive microvascular growth in tumors
    • Ribatti D, Djonov V. Intussusceptive microvascular growth in tumors. Cancer Lett. 2012; 316: 126-31.
    • (2012) Cancer Lett , vol.316 , pp. 126-131
    • Ribatti, D.1    Djonov, V.2
  • 119
    • 80053320077 scopus 로고    scopus 로고
    • Intussusceptive angiogenesis: pillars against the blood flow
    • Styp-Rekowska B, Hlushchuk R, Pries AR, et al. Intussusceptive angiogenesis: pillars against the blood flow. Acta Physiol. 2011; 202: 213-23.
    • (2011) Acta Physiol , vol.202 , pp. 213-223
    • Styp-Rekowska, B.1    Hlushchuk, R.2    Pries, A.R.3
  • 120
  • 121
    • 65249173169 scopus 로고    scopus 로고
    • Endothelial-mural cell signaling in vascular development and angiogenesis
    • Gaengel K, Genove G, Armulik A, et al. Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol. 2009; 29: 630-8.
    • (2009) Arterioscler Thromb Vasc Biol , vol.29 , pp. 630-638
    • Gaengel, K.1    Genove, G.2    Armulik, A.3
  • 122
    • 2942564086 scopus 로고    scopus 로고
    • Multicellular simulation predicts microvascular patterning and in silico tissue assembly
    • Peirce SM, Van Gieson EJ, Skalak TC. Multicellular simulation predicts microvascular patterning and in silico tissue assembly. FASEB J. 2004; 18: 731-3.
    • (2004) FASEB J , vol.18 , pp. 731-733
    • Peirce, S.M.1    Van Gieson, E.J.2    Skalak, T.C.3
  • 123
    • 0037840352 scopus 로고    scopus 로고
    • A computer algorithm describing the process of vessel formation and maturation, and its use for predicting the effects of anti-angiogenic and anti-maturation therapy on vascular tumor growth
    • Arakelyan L, Vainstein V, Agur Z. A computer algorithm describing the process of vessel formation and maturation, and its use for predicting the effects of anti-angiogenic and anti-maturation therapy on vascular tumor growth. Angiogenesis. 2002; 5: 203-14.
    • (2002) Angiogenesis , vol.5 , pp. 203-214
    • Arakelyan, L.1    Vainstein, V.2    Agur, Z.3
  • 124
    • 74049146291 scopus 로고    scopus 로고
    • A novel imaging-based high-throughput screening approach to anti-angiogenic drug discovery
    • Evensen L, Micklem DR, Link W, et al. A novel imaging-based high-throughput screening approach to anti-angiogenic drug discovery. Cytometry A. 2010; 77: 41-51.
    • (2010) Cytometry A , vol.77 , pp. 41-51
    • Evensen, L.1    Micklem, D.R.2    Link, W.3
  • 125
    • 4644237401 scopus 로고    scopus 로고
    • Regulation of HIF prolyl hydroxylases by hypoxia-inducible factors
    • Aprelikova O, Chandramouli GV, Wood M, et al. Regulation of HIF prolyl hydroxylases by hypoxia-inducible factors. J Cell Biochem. 2004; 92: 491-501.
    • (2004) J Cell Biochem , vol.92 , pp. 491-501
    • Aprelikova, O.1    Chandramouli, G.V.2    Wood, M.3
  • 126
    • 80051551702 scopus 로고    scopus 로고
    • Endothelial cell micropatterning: methods, effects, and applications
    • Anderson DE, Hinds MT. Endothelial cell micropatterning: methods, effects, and applications. Ann Biomed Eng. 2011; 39: 2329-45.
    • (2011) Ann Biomed Eng , vol.39 , pp. 2329-2345
    • Anderson, D.E.1    Hinds, M.T.2
  • 127
    • 77954502719 scopus 로고    scopus 로고
    • Microfluidic culture models of tumor angiogenesis
    • Stroock AD, Fischbach C. Microfluidic culture models of tumor angiogenesis. Tissue Eng Part A. 2010; 16: 2143-6.
    • (2010) Tissue Eng Part A , vol.16 , pp. 2143-2146
    • Stroock, A.D.1    Fischbach, C.2
  • 128
    • 77954510806 scopus 로고    scopus 로고
    • A hybrid continuum-discrete modelling approach to predict and control angiogenesis: analysis of combinatorial growth factor and matrix effects on vessel-sprouting morphology
    • Das A, Lauffenburger D, Asada H, et al. A hybrid continuum-discrete modelling approach to predict and control angiogenesis: analysis of combinatorial growth factor and matrix effects on vessel-sprouting morphology. Philos Transact A Math Phys Eng Sci. 2010; 368: 2937-60.
    • (2010) Philos Transact A Math Phys Eng Sci , vol.368 , pp. 2937-2960
    • Das, A.1    Lauffenburger, D.2    Asada, H.3
  • 129
    • 84874800256 scopus 로고    scopus 로고
    • Endothelial cell phenotypic behaviors cluster into dynamic state transition programs modulated by angiogenic and angiostatic cytokines
    • Rimchala T, Kamm RD, Lauffenburger DA. Endothelial cell phenotypic behaviors cluster into dynamic state transition programs modulated by angiogenic and angiostatic cytokines. Integr Biol. 2013; 5: 510-22.
    • (2013) Integr Biol , vol.5 , pp. 510-522
    • Rimchala, T.1    Kamm, R.D.2    Lauffenburger, D.A.3
  • 130
    • 65549083899 scopus 로고    scopus 로고
    • A critical analysis of current in vitro and in vivo angiogenesis assays
    • Staton CA, Reed MW, Brown NJ. A critical analysis of current in vitro and in vivo angiogenesis assays. Int J Exp Pathol. 2009; 90: 195-221.
    • (2009) Int J Exp Pathol , vol.90 , pp. 195-221
    • Staton, C.A.1    Reed, M.W.2    Brown, N.J.3
  • 131
    • 77949439845 scopus 로고    scopus 로고
    • In vitro angiogenesis: endothelial cell tube formation on gelled basement membrane extract
    • Arnaoutova I, Kleinman HK. In vitro angiogenesis: endothelial cell tube formation on gelled basement membrane extract. Nat Protoc. 2010; 5: 628-35.
    • (2010) Nat Protoc , vol.5 , pp. 628-635
    • Arnaoutova, I.1    Kleinman, H.K.2
  • 132
    • 79551628104 scopus 로고    scopus 로고
    • Imagedbased high-throughput screening for antiangiogenic drug discovery
    • Evensen L, Link W, Lorens JB. Imagedbased high-throughput screening for antiangiogenic drug discovery. Curr Pharm Des. 2010; 16: 3958-63.
    • (2010) Curr Pharm Des , vol.16 , pp. 3958-3963
    • Evensen, L.1    Link, W.2    Lorens, J.B.3
  • 133
    • 84934440196 scopus 로고    scopus 로고
    • Imagebased high-throughput screening for inhibitors of angiogenesis
    • Evensen L, Link W, Lorens JB. Imagebased high-throughput screening for inhibitors of angiogenesis. Methods Mol Biol. 2013; 931: 139-51.
    • (2013) Methods Mol Biol , vol.931 , pp. 139-151
    • Evensen, L.1    Link, W.2    Lorens, J.B.3
  • 134
    • 84876491305 scopus 로고    scopus 로고
    • 3D quantitative analyses of angiogenic sprout growth dynamics
    • Shirinifard A, McCollum CW, Bolin MB, et al. 3D quantitative analyses of angiogenic sprout growth dynamics. Dev Dyn. 2013; 242: 518-26.
    • (2013) Dev Dyn , vol.242 , pp. 518-526
    • Shirinifard, A.1    McCollum, C.W.2    Bolin, M.B.3
  • 135
    • 47749154829 scopus 로고    scopus 로고
    • Regulating the angiogenic balance in tissues
    • Pollina EA, Legesse-Miller A, Haley EM, et al. Regulating the angiogenic balance in tissues. Cell Cycle. 2008; 7: 2056-70.
    • (2008) Cell Cycle , vol.7 , pp. 2056-2070
    • Pollina, E.A.1    Legesse-Miller, A.2    Haley, E.M.3
  • 136
    • 79955141845 scopus 로고    scopus 로고
    • Importance of antiangiogenic factors in the regulation of skeletal muscle angiogenesis
    • Olfert IM, Birot O. Importance of antiangiogenic factors in the regulation of skeletal muscle angiogenesis. Microcirculation. 2011; 18: 316-30.
    • (2011) Microcirculation , vol.18 , pp. 316-330
    • Olfert, I.M.1    Birot, O.2
  • 137
    • 79956218863 scopus 로고    scopus 로고
    • Ranibizumab and bevacizumab for neovascular age-related macular degeneration
    • Martin DF, Maguire MG, Ying GS, et al. Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N Engl J Med. 2011; 364: 1897-908.
    • (2011) N Engl J Med , vol.364 , pp. 1897-1908
    • Martin, D.F.1    Maguire, M.G.2    Ying, G.S.3
  • 139
    • 33947416658 scopus 로고    scopus 로고
    • Sunitinib: a VEGF and PDGF receptor protein kinase and angiogenesis inhibitor
    • Roskoski R Jr. Sunitinib: a VEGF and PDGF receptor protein kinase and angiogenesis inhibitor. Biochem Biophys Res Commun. 2007; 356: 323-8.
    • (2007) Biochem Biophys Res Commun , vol.356 , pp. 323-328
    • Roskoski Jr., R.1
  • 140
    • 82555173128 scopus 로고    scopus 로고
    • Phase I/II and pharmacodynamic study of dovitinib (TKI258), an inhibitor of fibroblast growth factor receptors and VEGF receptors, in patients with advanced melanoma
    • Kim KB, Chesney J, Robinson D, et al. Phase I/II and pharmacodynamic study of dovitinib (TKI258), an inhibitor of fibroblast growth factor receptors and VEGF receptors, in patients with advanced melanoma. Clin Cancer Res. 2011; 17: 7451-61.
    • (2011) Clin Cancer Res , vol.17 , pp. 7451-7461
    • Kim, K.B.1    Chesney, J.2    Robinson, D.3
  • 141
    • 56249131779 scopus 로고    scopus 로고
    • A RNA antagonist of hypoxia-inducible factor-1alpha, EZN-2968, inhibits tumor cell growth
    • Greenberger LM, Horak ID, Filpula D, et al. A RNA antagonist of hypoxia-inducible factor-1alpha, EZN-2968, inhibits tumor cell growth. Mol Cancer Ther. 2008; 7: 3598-608.
    • (2008) Mol Cancer Ther , vol.7 , pp. 3598-3608
    • Greenberger, L.M.1    Horak, I.D.2    Filpula, D.3
  • 142
    • 77749332056 scopus 로고    scopus 로고
    • A phase 1 trial of ABT-510 concurrent with standard chemoradiation for patients with newly diagnosed glioblastoma
    • Nabors LB, Fiveash JB, Markert JM, et al. A phase 1 trial of ABT-510 concurrent with standard chemoradiation for patients with newly diagnosed glioblastoma. Arch Neurol. 2010; 67: 313-9.
    • (2010) Arch Neurol , vol.67 , pp. 313-319
    • Nabors, L.B.1    Fiveash, J.B.2    Markert, J.M.3
  • 143
    • 77955347059 scopus 로고    scopus 로고
    • AMG-386, a selective angiopoietin-1/-2-neutralizing peptibody for the potential treatment of cancer
    • Neal J, Wakelee H. AMG-386, a selective angiopoietin-1/-2-neutralizing peptibody for the potential treatment of cancer. Curr Opin Mol Ther. 2010; 12: 487-95.
    • (2010) Curr Opin Mol Ther , vol.12 , pp. 487-495
    • Neal, J.1    Wakelee, H.2
  • 144
    • 67349287066 scopus 로고    scopus 로고
    • VEGF gene therapy fails to improve perfusion of ischemic myocardium in patients with advanced coronary disease: results of the NORTHERN Trial
    • Stewart DJ, Kutryk MJB, Fitchett D, et al. VEGF gene therapy fails to improve perfusion of ischemic myocardium in patients with advanced coronary disease: results of the NORTHERN Trial. Mol Ther. 2009; 17: 1109-15.
    • (2009) Mol Ther , vol.17 , pp. 1109-1115
    • Stewart, D.J.1    Kutryk, M.J.B.2    Fitchett, D.3
  • 145
    • 80054960235 scopus 로고    scopus 로고
    • Effect of hypoxia-inducible factor-1alpha gene therapy on walking performance in patients with intermittent claudication
    • Creager MA, Olin JW, Belch JJ, et al. Effect of hypoxia-inducible factor-1alpha gene therapy on walking performance in patients with intermittent claudication. Circulation. 2011; 124: 1765-73.
    • (2011) Circulation , vol.124 , pp. 1765-1773
    • Creager, M.A.1    Olin, J.W.2    Belch, J.J.3
  • 146
    • 84855226725 scopus 로고    scopus 로고
    • 2010 clinical trial/clinical science abstracts
    • AHA. 2010 clinical trial/clinical science abstracts. Circulation. 2010; 122: 2215.
    • (2010) Circulation , vol.122 , pp. 2215
  • 147
    • 77957734075 scopus 로고    scopus 로고
    • Gene therapy from the perspective of systems biology
    • Mac Gabhann F, Annex BH, Popel AS. Gene therapy from the perspective of systems biology. Curr Opin Mol Ther. 2010; 12: 570-7.
    • (2010) Curr Opin Mol Ther , vol.12 , pp. 570-577
    • Mac Gabhann, F.1    Annex, B.H.2    Popel, A.S.3
  • 148
    • 80051517366 scopus 로고    scopus 로고
    • Safety of vascular endothelial and hepatocyte growth factor gene therapy in patients with critical limb ischemia
    • Anghel A, Taranu G, Seclaman E, et al. Safety of vascular endothelial and hepatocyte growth factor gene therapy in patients with critical limb ischemia. Curr Neurovasc Res. 2011; 8: 183-9.
    • (2011) Curr Neurovasc Res , vol.8 , pp. 183-189
    • Anghel, A.1    Taranu, G.2    Seclaman, E.3
  • 149
    • 77954944628 scopus 로고    scopus 로고
    • Normal ranges of angiogenesis regulatory proteins in human platelets
    • Peterson JE, Zurakowski D, Italiano JE Jr, et al. Normal ranges of angiogenesis regulatory proteins in human platelets. Am J Hematol. 2010; 85: 487-93.
    • (2010) Am J Hematol , vol.85 , pp. 487-493
    • Peterson, J.E.1    Zurakowski, D.2    Italiano Jr., J.E.3
  • 150
    • 79251577730 scopus 로고    scopus 로고
    • The platelet contribution to cancer progression
    • Bambace NM, Holmes CE. The platelet contribution to cancer progression. J Thromb Haemost. 2011; 9: 237-49.
    • (2011) J Thromb Haemost , vol.9 , pp. 237-249
    • Bambace, N.M.1    Holmes, C.E.2
  • 151
    • 54549107723 scopus 로고    scopus 로고
    • The role of platelet activation in tumor metastasis
    • Borsig L. The role of platelet activation in tumor metastasis. Expert Rev Anticancer Ther. 2008; 8: 1247-55.
    • (2008) Expert Rev Anticancer Ther , vol.8 , pp. 1247-1255
    • Borsig, L.1
  • 152
    • 67650999097 scopus 로고    scopus 로고
    • Platelets: guardians of tumor vasculature
    • Ho-Tin-Noe B, Goerge T, Wagner DD. Platelets: guardians of tumor vasculature. Cancer Res. 2009; 69: 5623-6.
    • (2009) Cancer Res , vol.69 , pp. 5623-5626
    • Ho-Tin-Noe, B.1    Goerge, T.2    Wagner, D.D.3
  • 153
    • 80051566129 scopus 로고    scopus 로고
    • Release of angiogenesis regulatory proteins from platelet alpha granules: modulation of physiologic and pathologic angiogenesis
    • Battinelli EM, Markens BA, Italiano JE Jr. Release of angiogenesis regulatory proteins from platelet alpha granules: modulation of physiologic and pathologic angiogenesis. Blood. 2011; 118: 1359-69.
    • (2011) Blood , vol.118 , pp. 1359-1369
    • Battinelli, E.M.1    Markens, B.A.2    Italiano Jr., J.E.3
  • 154
    • 38949178835 scopus 로고    scopus 로고
    • Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released
    • Italiano JE Jr, Richardson JL, Patel-Hett S, et al. Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood. 2008; 111: 1227-33.
    • (2008) Blood , vol.111 , pp. 1227-1233
    • Italiano Jr., J.E.1    Richardson, J.L.2    Patel-Hett, S.3
  • 155
    • 34848854906 scopus 로고    scopus 로고
    • Platelets take up the monoclonal antibody bevacizumab
    • Verheul HM, Lolkema MP, Qian DZ, et al. Platelets take up the monoclonal antibody bevacizumab. Clin Cancer Res. 2007; 13: 5341-7.
    • (2007) Clin Cancer Res , vol.13 , pp. 5341-5347
    • Verheul, H.M.1    Lolkema, M.P.2    Qian, D.Z.3
  • 156
    • 63249123192 scopus 로고    scopus 로고
    • Hypoxia-inducible factor in cancer angiogenesis: structure, regulation and clinical perspectives
    • Otrock ZK, Hatoum HA, Awada AH, et al. Hypoxia-inducible factor in cancer angiogenesis: structure, regulation and clinical perspectives. Crit Rev Oncol Hematol. 2009; 70: 093-102.
    • (2009) Crit Rev Oncol Hematol , vol.70 , pp. 093-102
    • Otrock, Z.K.1    Hatoum, H.A.2    Awada, A.H.3
  • 157
    • 1842682380 scopus 로고    scopus 로고
    • Hypoxiainducible factor 1-related diseases and prospective therapeutic tools
    • Park J-W, Chun Y-S, Kim M-S. Hypoxiainducible factor 1-related diseases and prospective therapeutic tools. J Pharmacol Sci. 2004; 94: 221-32.
    • (2004) J Pharmacol Sci , vol.94 , pp. 221-232
    • Park, J.-W.1    Chun, Y.-S.2    Kim, M.-S.3
  • 158
    • 72849115544 scopus 로고    scopus 로고
    • Development of HIF-1 inhibitors for cancer therapy
    • Onnis B, Rapisarda A, Melillo G. Development of HIF-1 inhibitors for cancer therapy. J Cell Mol Med. 2009; 13: 2780-6.
    • (2009) J Cell Mol Med , vol.13 , pp. 2780-2786
    • Onnis, B.1    Rapisarda, A.2    Melillo, G.3
  • 159
    • 4444369682 scopus 로고    scopus 로고
    • Antitumor activity and pharmacodynamic properties of PX-478, an inhibitor of hypoxia-inducible factor-1a
    • Welsh S, Williams R, Kirkpatrick L, et al. Antitumor activity and pharmacodynamic properties of PX-478, an inhibitor of hypoxia-inducible factor-1a. Mol Cancer Ther. 2004; 3: 233-44.
    • (2004) Mol Cancer Ther , vol.3 , pp. 233-244
    • Welsh, S.1    Williams, R.2    Kirkpatrick, L.3
  • 160
    • 67349241646 scopus 로고    scopus 로고
    • Gene regulation in response to graded hypoxia: the non-redundant roles of the oxygen sensors PHD and FIH in the HIF pathway
    • Dayan F, Monticelli M, Pouyssegur J, et al. Gene regulation in response to graded hypoxia: the non-redundant roles of the oxygen sensors PHD and FIH in the HIF pathway. J Theor Biol. 2009; 259: 304-16.
    • (2009) J Theor Biol , vol.259 , pp. 304-316
    • Dayan, F.1    Monticelli, M.2    Pouyssegur, J.3
  • 161
    • 49449117608 scopus 로고    scopus 로고
    • Reactive oxygen species regulate hypoxia-inducible factor 1alpha differentially in cancer and ischemia
    • Qutub AA, Popel AS. Reactive oxygen species regulate hypoxia-inducible factor 1alpha differentially in cancer and ischemia. Mol Cell Biol. 2008; 28: 5106-19.
    • (2008) Mol Cell Biol , vol.28 , pp. 5106-5119
    • Qutub, A.A.1    Popel, A.S.2
  • 162
    • 34548381311 scopus 로고    scopus 로고
    • Pathway switching explains the sharp response characteristic of hypoxia response network
    • Yu Y, Wang G, Simha R, et al. Pathway switching explains the sharp response characteristic of hypoxia response network. PLoS Comput Biol. 2007; 3: e171.
    • (2007) PLoS Comput Biol , vol.3
    • Yu, Y.1    Wang, G.2    Simha, R.3
  • 163
    • 34249803191 scopus 로고    scopus 로고
    • An in silico model for HIF-a regulation and hypoxia response in tumor cells
    • Yucel MA, Kurnaz IA. An in silico model for HIF-a regulation and hypoxia response in tumor cells. Biotechnol Bioeng. 2007; 97: 588-600.
    • (2007) Biotechnol Bioeng , vol.97 , pp. 588-600
    • Yucel, M.A.1    Kurnaz, I.A.2
  • 164
    • 84877917354 scopus 로고    scopus 로고
    • A dynamic model of the hypoxia-inducible factor 1-alpha (HIF-1alpha) network
    • Nguyen LK, Cavadas MA, Scholz CC, et al. A dynamic model of the hypoxia-inducible factor 1-alpha (HIF-1alpha) network. J Cell Sci. 2013; 126: 1454-63.
    • (2013) J Cell Sci , vol.126 , pp. 1454-1463
    • Nguyen, L.K.1    Cavadas, M.A.2    Scholz, C.C.3
  • 165
    • 77956274693 scopus 로고    scopus 로고
    • Identification of optimal drug combinations targeting cellular networks: integrating phospho-proteomics and computational network analysis
    • Iadevaia S, Lu Y, Morales FC, et al. Identification of optimal drug combinations targeting cellular networks: integrating phospho-proteomics and computational network analysis. Cancer Res. 2010; 70: 6704-14.
    • (2010) Cancer Res , vol.70 , pp. 6704-6714
    • Iadevaia, S.1    Lu, Y.2    Morales, F.C.3
  • 166
    • 69749126765 scopus 로고    scopus 로고
    • Inverse system perturbations as a new methodology for identifying transcriptomic signaling participants in balanced biological processes
    • Hauser K, Abdollahi A, Huber PE. Inverse system perturbations as a new methodology for identifying transcriptomic signaling participants in balanced biological processes. Cell Cycle. 2009; 8: 2718-22.
    • (2009) Cell Cycle , vol.8 , pp. 2718-2722
    • Hauser, K.1    Abdollahi, A.2    Huber, P.E.3
  • 167
    • 81355160889 scopus 로고    scopus 로고
    • Pharmacokinetics and pharmacodynamics of VEGF-neutralizing antibodies
    • Finley SD, Engel-Stefanini MO, Imoukhuede PI, et al. Pharmacokinetics and pharmacodynamics of VEGF-neutralizing antibodies. BMC Syst Biol. 2011; 5: 193.
    • (2011) BMC Syst Biol , vol.5 , pp. 193
    • Finley, S.D.1    Engel-Stefanini, M.O.2    Imoukhuede, P.I.3
  • 168
    • 33846025118 scopus 로고    scopus 로고
    • Targeting neuropilin-1 to inhibit VEGF signaling in cancer: comparison of therapeutic approaches
    • Mac Gabhann F, Popel AS. Targeting neuropilin-1 to inhibit VEGF signaling in cancer: comparison of therapeutic approaches. PLoS Comput Biol. 2006; 2: e180.
    • (2006) PLoS Comput Biol , vol.2
    • Mac Gabhann, F.1    Popel, A.S.2
  • 169
    • 78649952814 scopus 로고    scopus 로고
    • Increase of plasma VEGF after intravenous administration of bevacizumab is predicted by a pharmacokinetic model
    • Stefanini MO, Wu FT, Mac Gabhann F, et al. Increase of plasma VEGF after intravenous administration of bevacizumab is predicted by a pharmacokinetic model. Cancer Res. 2010; 70: 9886-94.
    • (2010) Cancer Res , vol.70 , pp. 9886-9894
    • Stefanini, M.O.1    Wu, F.T.2    Mac Gabhann, F.3
  • 170
    • 0141481981 scopus 로고    scopus 로고
    • A mathematical model of the contribution of endothelial progenitor cells to angiogenesis in tumors: implications for antiangiogenic therapy
    • Stoll BR, Migliorini C, Kadambi A, et al. A mathematical model of the contribution of endothelial progenitor cells to angiogenesis in tumors: implications for antiangiogenic therapy. Blood. 2003; 102: 2555-61.
    • (2003) Blood , vol.102 , pp. 2555-2561
    • Stoll, B.R.1    Migliorini, C.2    Kadambi, A.3
  • 171
    • 84878877091 scopus 로고    scopus 로고
    • Effect of tumor microenvironment on tumor VEGF during anti-VEGF treatment: systems biology predictions
    • Finley SD, Popel AS. Effect of tumor microenvironment on tumor VEGF during anti-VEGF treatment: systems biology predictions. J Nat Cancer Inst. 2013; 105: 802-11.
    • (2013) J Nat Cancer Inst , vol.105 , pp. 802-811
    • Finley, S.D.1    Popel, A.S.2
  • 172
    • 33750319800 scopus 로고    scopus 로고
    • The anti-VEGF antibody bevacizumab potently reduces the growth rate of highrisk neuroblastoma xenografts
    • Segerstrom L, Fuchs D, Backman U, et al. The anti-VEGF antibody bevacizumab potently reduces the growth rate of highrisk neuroblastoma xenografts. Pediatr Res. 2006; 60: 576-81.
    • (2006) Pediatr Res , vol.60 , pp. 576-581
    • Segerstrom, L.1    Fuchs, D.2    Backman, U.3
  • 173
    • 30944452436 scopus 로고    scopus 로고
    • Surrogate markers for antiangiogenic therapy and dose-limiting toxicities for bevacizumab with radiation and chemotherapy: continued experience of a Phase I trial in rectal cancer patients
    • Willet CG, Boucher Y, Duda DG, et al. Surrogate markers for antiangiogenic therapy and dose-limiting toxicities for bevacizumab with radiation and chemotherapy: continued experience of a Phase I trial in rectal cancer patients. J Clin Oncol. 2005; 23: 8136-9.
    • (2005) J Clin Oncol , vol.23 , pp. 8136-8139
    • Willet, C.G.1    Boucher, Y.2    Duda, D.G.3
  • 174
    • 0042343801 scopus 로고    scopus 로고
    • A randomized trial of bevacizumab, an antivascular endothelial growth factor antibody, for metastatic renal cancer
    • Yang JC, Haworth L, Sherry RM, et al. A randomized trial of bevacizumab, an antivascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med. 2003; 349: 427-34.
    • (2003) N Engl J Med , vol.349 , pp. 427-434
    • Yang, J.C.1    Haworth, L.2    Sherry, R.M.3
  • 175
    • 84862768329 scopus 로고    scopus 로고
    • Predicting the effects of anti-angiogenic agents targeting specific VEGF isoforms
    • Finley SD, Popel AS. Predicting the effects of anti-angiogenic agents targeting specific VEGF isoforms. AAPS J. 2012; 14: 500-9.
    • (2012) AAPS J , vol.14 , pp. 500-509
    • Finley, S.D.1    Popel, A.S.2
  • 176
    • 36749040908 scopus 로고    scopus 로고
    • VEGF Trap complex formation measures production rates of VEGF, providing a biomarker for predicting efficacious angiogenic blockade
    • Rudge JS, Holash J, Hylton D, et al. VEGF Trap complex formation measures production rates of VEGF, providing a biomarker for predicting efficacious angiogenic blockade. Proc Natl Acad Sci USA. 2007; 104: 18363-70.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 18363-18370
    • Rudge, J.S.1    Holash, J.2    Hylton, D.3
  • 177
    • 40649097554 scopus 로고    scopus 로고
    • Wound angiogenesis as a function of tissue oxygen tension: a mathematical model
    • Schugart RC, Friedman A, Zhao R, et al. Wound angiogenesis as a function of tissue oxygen tension: a mathematical model. Proc Natl Acad Sci USA. 2008; 105: 2628-33.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 2628-2633
    • Schugart, R.C.1    Friedman, A.2    Zhao, R.3
  • 178
    • 36849032983 scopus 로고    scopus 로고
    • Skeletal muscle VEGF gradients in peripheral arterial disease: simulations of rest and exercise
    • Ji JW, Mac Gabhann F, Popel AS. Skeletal muscle VEGF gradients in peripheral arterial disease: simulations of rest and exercise. Am J Physiol Heart Circ Physiol. 2007; 293: H3740-9.
    • (2007) Am J Physiol Heart Circ Physiol , vol.293 , pp. H3740-H3749
    • Ji, J.W.1    Mac Gabhann, F.2    Popel, A.S.3
  • 179
    • 36348931644 scopus 로고    scopus 로고
    • A simple mechanistic model of sprout spacing in tumour-associated angiogenesis
    • Addison-Smith B, McElwain DLS, Maini PK. A simple mechanistic model of sprout spacing in tumour-associated angiogenesis. J Theor Biol. 2008; 250: 1-15.
    • (2008) J Theor Biol , vol.250 , pp. 1-15
    • Addison-Smith, B.1    McElwain, D.L.S.2    Maini, P.K.3
  • 180
    • 0036664608 scopus 로고    scopus 로고
    • Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies
    • McDougall SR, Anderson ARA, Chaplain MAJ, et al. Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies. Bull Math Biol. 2002; 64: 673-702.
    • (2002) Bull Math Biol , vol.64 , pp. 673-702
    • McDougall, S.R.1    Anderson, A.R.A.2    Chaplain, M.A.J.3
  • 181
    • 80053157310 scopus 로고    scopus 로고
    • An agent-based model for the investigation of neovascularization within porous scaffolds
    • Artel A, Mehdizadeh H, Chiu YC, et al. An agent-based model for the investigation of neovascularization within porous scaffolds. Tissue Eng Part A. 2011; 17: 2133-41.
    • (2011) Tissue Eng Part A , vol.17 , pp. 2133-2141
    • Artel, A.1    Mehdizadeh, H.2    Chiu, Y.C.3
  • 182
    • 26844479092 scopus 로고    scopus 로고
    • Mathematical modelling of flow in 2D and 3D vascular networks: applications to anti-angiogenic and chemotherapeutic drug strategies
    • Stephanou A, McDougall SR, Anderson ARA, et al. Mathematical modelling of flow in 2D and 3D vascular networks: applications to anti-angiogenic and chemotherapeutic drug strategies. Math Comput Model. 2005; 41: 1137-56.
    • (2005) Math Comput Model , vol.41 , pp. 1137-1156
    • Stephanou, A.1    McDougall, S.R.2    Anderson, A.R.A.3
  • 183
    • 82655164839 scopus 로고    scopus 로고
    • Dll4-Notch signaling as a therapeutic target in tumor angiogenesis
    • Kuhnert F, Kirshner JR, Thurston G. Dll4-Notch signaling as a therapeutic target in tumor angiogenesis. Vascular Cell. 2011; 3: 20.
    • (2011) Vascular Cell , vol.3 , pp. 20
    • Kuhnert, F.1    Kirshner, J.R.2    Thurston, G.3
  • 184
    • 84858248356 scopus 로고    scopus 로고
    • Anti-DLL4, a cancer therapeutic with multiple mechanisms of action
    • Gurney A, Hoey T. Anti-DLL4, a cancer therapeutic with multiple mechanisms of action. Vascular Cell. 2011; 3: 18.
    • (2011) Vascular Cell , vol.3 , pp. 18
    • Gurney, A.1    Hoey, T.2
  • 185
    • 79551510137 scopus 로고    scopus 로고
    • Notch1 loss of heterozygosity causes vascular tumors and lethal hemorrhage in mice
    • Liu Z, Turkoz A, Jackson EN, et al. Notch1 loss of heterozygosity causes vascular tumors and lethal hemorrhage in mice. J Clin Invest. 2011; 121: 800-8.
    • (2011) J Clin Invest , vol.121 , pp. 800-808
    • Liu, Z.1    Turkoz, A.2    Jackson, E.N.3
  • 186
    • 84855869440 scopus 로고    scopus 로고
    • Therapeutic promise and challenges of targeting DLL4/NOTCH1
    • Yan M. Therapeutic promise and challenges of targeting DLL4/NOTCH1. Vasc Cell. 2011; 3: 17.
    • (2011) Vasc Cell , vol.3 , pp. 17
    • Yan, M.1
  • 187
    • 76749157186 scopus 로고    scopus 로고
    • Chronic DLL4 blockade induces vascular neoplasms
    • Yan M, Callahan CA, Beyer JC, et al. Chronic DLL4 blockade induces vascular neoplasms. Nature. 2010; 463: E6-7.
    • (2010) Nature , vol.463 , pp. E6-7
    • Yan, M.1    Callahan, C.A.2    Beyer, J.C.3
  • 188
    • 52949084316 scopus 로고    scopus 로고
    • A systematic methodology for proteome-wide identification of peptides inhibiting the proliferation and migration of endothelial cells
    • Karagiannis ED, Popel AS. A systematic methodology for proteome-wide identification of peptides inhibiting the proliferation and migration of endothelial cells. Proc Natl Acad Sci USA. 2008; 105: 13775-80.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 13775-13780
    • Karagiannis, E.D.1    Popel, A.S.2
  • 189
    • 84871611863 scopus 로고    scopus 로고
    • Synergy between a collagen IV mimetic peptide and a somatotropin-domain derived peptide as angiogenesis and lymphangiogenesis inhibitors
    • Koskimaki JE, Lee E, Chen W, et al. Synergy between a collagen IV mimetic peptide and a somatotropin-domain derived peptide as angiogenesis and lymphangiogenesis inhibitors. Angiogenesis. 2013; 16: 159-70.
    • (2013) Angiogenesis , vol.16 , pp. 159-170
    • Koskimaki, J.E.1    Lee, E.2    Chen, W.3
  • 190
    • 84859466236 scopus 로고    scopus 로고
    • Serpin-derived peptides are anti-angiogenic and suppress breast tumor xenograft growth
    • Koskimaki JE, Rosca EV, Rivera CG, et al. Serpin-derived peptides are anti-angiogenic and suppress breast tumor xenograft growth. Transl Oncol. 2012; 5: 92-7.
    • (2012) Transl Oncol , vol.5 , pp. 92-97
    • Koskimaki, J.E.1    Rosca, E.V.2    Rivera, C.G.3
  • 191
    • 84863577327 scopus 로고    scopus 로고
    • Collagen IV and CXC chemokine derived anti-angiogenic peptides suppress glioma xenograft growth
    • Rosca EV, Lal B, Koskimaki JE, et al. Collagen IV and CXC chemokine derived anti-angiogenic peptides suppress glioma xenograft growth. Anticancer Drugs. 2012; 23: 706-12.
    • (2012) Anticancer Drugs , vol.23 , pp. 706-712
    • Rosca, E.V.1    Lal, B.2    Koskimaki, J.E.3
  • 192
    • 72949109758 scopus 로고    scopus 로고
    • Peptides derived from type IV collagen, CXC chemokines, and thrombospondin-1 domain-containing proteins inhibit neovascularization and suppress tumor growth in MDA-MB-231 breast cancer xenografts
    • Koskimaki JE, Karagiannis ED, Rosca EV, et al. Peptides derived from type IV collagen, CXC chemokines, and thrombospondin-1 domain-containing proteins inhibit neovascularization and suppress tumor growth in MDA-MB-231 breast cancer xenografts. Neoplasia. 2009; 11: 1285-91.
    • (2009) Neoplasia , vol.11 , pp. 1285-1291
    • Koskimaki, J.E.1    Karagiannis, E.D.2    Rosca, E.V.3
  • 193
    • 77349108622 scopus 로고    scopus 로고
    • Pentastatin-1, a collagen IV derived 20-mer peptide, suppresses tumor growth in a small cell lung cancer xenograft model
    • Koskimaki JE, Karagiannis ED, Tang BC, et al. Pentastatin-1, a collagen IV derived 20-mer peptide, suppresses tumor growth in a small cell lung cancer xenograft model. BMC Cancer. 2010; 10: 29.
    • (2010) BMC Cancer , vol.10 , pp. 29
    • Koskimaki, J.E.1    Karagiannis, E.D.2    Tang, B.C.3
  • 194
    • 80255123840 scopus 로고    scopus 로고
    • Small peptides derived from somatotropin domain-containing proteins inhibit blood and lymphatic endothelial cell proliferation, migration, adhesion and tube formation
    • Lee E, Rosca EV, Pandey NB, et al. Small peptides derived from somatotropin domain-containing proteins inhibit blood and lymphatic endothelial cell proliferation, migration, adhesion and tube formation. Int J Biochem Cell Biol. 2011; 43: 1812-21.
    • (2011) Int J Biochem Cell Biol , vol.43 , pp. 1812-1821
    • Lee, E.1    Rosca, E.V.2    Pandey, N.B.3
  • 196
    • 80051547835 scopus 로고    scopus 로고
    • Angiogenesis- associated crosstalk between collagens, CXC chemokines, and thrombospondin domain-containing proteins
    • Rivera CG, Bader JS, Popel AS. Angiogenesis- associated crosstalk between collagens, CXC chemokines, and thrombospondin domain-containing proteins. Ann Biomed Eng. 2011; 39: 2213-22.
    • (2011) Ann Biomed Eng , vol.39 , pp. 2213-2222
    • Rivera, C.G.1    Bader, J.S.2    Popel, A.S.3
  • 197
    • 80052754504 scopus 로고    scopus 로고
    • Analysis of VEGF-A regulated gene expression in endothelial cells to identify genes linked to angiogenesis
    • Rivera CG, Mellberg S, Claesson-Welsh L, et al. Analysis of VEGF-A regulated gene expression in endothelial cells to identify genes linked to angiogenesis. PLoS ONE. 2011; 6: e24887.
    • (2011) PLoS ONE , vol.6
    • Rivera, C.G.1    Mellberg, S.2    Claesson-Welsh, L.3
  • 198
    • 84867177848 scopus 로고    scopus 로고
    • Constructing the angiome: a global angiogenesis protein interaction network
    • Chu LH, Rivera CG, Popel AS, et al. Constructing the angiome: a global angiogenesis protein interaction network. Physiol Genomics. 2012; 44: 915-24.
    • (2012) Physiol Genomics , vol.44 , pp. 915-924
    • Chu, L.H.1    Rivera, C.G.2    Popel, A.S.3
  • 199
    • 75749157368 scopus 로고    scopus 로고
    • Selective matrix metalloproteinase (MMP) inhibitors in cancer therapy: ready for prime time?
    • Zucker S, Cao J. Selective matrix metalloproteinase (MMP) inhibitors in cancer therapy: ready for prime time? Cancer Biol Ther. 2009; 8: 2371-3.
    • (2009) Cancer Biol Ther , vol.8 , pp. 2371-2373
    • Zucker, S.1    Cao, J.2
  • 200
    • 70349335653 scopus 로고    scopus 로고
    • Matrix metalloproteinase proteomics: substrates, targets, and therapy
    • Morrison CJ, Butler GS, Rodriguez D, et al. Matrix metalloproteinase proteomics: substrates, targets, and therapy. Curr Opin Cell Biol. 2009; 21: 645-53.
    • (2009) Curr Opin Cell Biol , vol.21 , pp. 645-653
    • Morrison, C.J.1    Butler, G.S.2    Rodriguez, D.3
  • 201
    • 79953746083 scopus 로고    scopus 로고
    • Proteolytic Activity Matrix Analysis (PrAMA) for simultaneous determination of multiple protease activities
    • Miller MA, Barkal L, Jeng K, et al. Proteolytic Activity Matrix Analysis (PrAMA) for simultaneous determination of multiple protease activities. Integr Biol. 2011; 3: 422-38.
    • (2011) Integr Biol , vol.3 , pp. 422-438
    • Miller, M.A.1    Barkal, L.2    Jeng, K.3
  • 202
    • 84873367817 scopus 로고    scopus 로고
    • Multiplexed protease activity assay for low-volume clinical samples using droplet-based microfluidics and its application to endometriosis
    • Chen CH, Miller MA, Sarkar A, et al. Multiplexed protease activity assay for low-volume clinical samples using droplet-based microfluidics and its application to endometriosis. J Am Chem Soc. 2013; 135: 1645-8.
    • (2013) J Am Chem Soc , vol.135 , pp. 1645-1648
    • Chen, C.H.1    Miller, M.A.2    Sarkar, A.3
  • 203
    • 33751226638 scopus 로고    scopus 로고
    • A multiscale mathematical model of avascular tumor growth to investigate the therapeutic benefit of anti-invasive agents
    • Ribba B, Saut O, Colin T, et al. A multiscale mathematical model of avascular tumor growth to investigate the therapeutic benefit of anti-invasive agents. J Theor Biol. 2006; 243: 532-41.
    • (2006) J Theor Biol , vol.243 , pp. 532-541
    • Ribba, B.1    Saut, O.2    Colin, T.3
  • 204
    • 79960414991 scopus 로고    scopus 로고
    • Smallmolecule anticancer compounds selectively target the hemopexin domain of matrix metalloproteinase-9
    • Dufour A, Sampson NS, Li J, et al. Smallmolecule anticancer compounds selectively target the hemopexin domain of matrix metalloproteinase-9. Cancer Res. 2011; 71: 4977-88.
    • (2011) Cancer Res , vol.71 , pp. 4977-4988
    • Dufour, A.1    Sampson, N.S.2    Li, J.3
  • 205
    • 70249113326 scopus 로고    scopus 로고
    • A pharmacologically based multiscale mathematical model of angiogenesis and its use in investigating the efficacy of a new cancer treatment strategy
    • Billy F, Ribba B, Saut O, et al. A pharmacologically based multiscale mathematical model of angiogenesis and its use in investigating the efficacy of a new cancer treatment strategy. J Theor Biol. 2009; 260: 545-62.
    • (2009) J Theor Biol , vol.260 , pp. 545-562
    • Billy, F.1    Ribba, B.2    Saut, O.3
  • 206
    • 0033731143 scopus 로고    scopus 로고
    • A mathematical model for the roles of pericytes and macrophages in the initiation of angiogenesis. I. The role of protease inhibitors in preventing angiogenesis
    • Levine HA, Sleeman BD, Nilsen-Hamilton M. A mathematical model for the roles of pericytes and macrophages in the initiation of angiogenesis. I. The role of protease inhibitors in preventing angiogenesis. Math Biosci. 2000; 168: 77-115.
    • (2000) Math Biosci , vol.168 , pp. 77-115
    • Levine, H.A.1    Sleeman, B.D.2    Nilsen-Hamilton, M.3
  • 207
    • 0036972290 scopus 로고    scopus 로고
    • A mathematical model for the role of cell signal transduction in the initiation and inhibition of angiogenesis
    • Levine HA, Tucker AL, Nilsen-Hamilton M. A mathematical model for the role of cell signal transduction in the initiation and inhibition of angiogenesis. Growth Factors. 2002; 20: 155-75.
    • (2002) Growth Factors , vol.20 , pp. 155-175
    • Levine, H.A.1    Tucker, A.L.2    Nilsen-Hamilton, M.3
  • 208
    • 0042863949 scopus 로고    scopus 로고
    • A reinforced random walk model of tumour angiogenesis and anti-angiogenic strategies
    • Plank MJ, Sleeman BD. A reinforced random walk model of tumour angiogenesis and anti-angiogenic strategies. Math Med Biol. 2003; 20: 135-81.
    • (2003) Math Med Biol , vol.20 , pp. 135-181
    • Plank, M.J.1    Sleeman, B.D.2
  • 209
    • 77951975169 scopus 로고    scopus 로고
    • High content screening: seeing is believing
    • Zanella F, Lorens JB, Link W. High content screening: seeing is believing. Trends Biotechnol. 2010; 28: 237-45.
    • (2010) Trends Biotechnol , vol.28 , pp. 237-245
    • Zanella, F.1    Lorens, J.B.2    Link, W.3
  • 210
    • 13744260837 scopus 로고    scopus 로고
    • A deterministic model of growth factorinduced angiogenesis
    • Sun S, Wheeler MF, Obeyeseker M, et al. A deterministic model of growth factorinduced angiogenesis. Bull Math Biol. 2005; 67: 313-37.
    • (2005) Bull Math Biol , vol.67 , pp. 313-337
    • Sun, S.1    Wheeler, M.F.2    Obeyeseker, M.3
  • 211
    • 84881623925 scopus 로고    scopus 로고
    • A computational model of in vitro angiogenesis based on extracellular matrix fibre orientation
    • Edgar LT, Sibole SC, Underwood CJ, et al. A computational model of in vitro angiogenesis based on extracellular matrix fibre orientation. Comput Methods Biomech Biomed Engin. 2013; 16: 790-801.
    • (2013) Comput Methods Biomech Biomed Engin , vol.16 , pp. 790-801
    • Edgar, L.T.1    Sibole, S.C.2    Underwood, C.J.3
  • 212
    • 71549122295 scopus 로고    scopus 로고
    • Computational flow dynamics in a geometric model of intussusceptive angiogenesis
    • Filipovic N, Tsuda A, Lee GS, et al. Computational flow dynamics in a geometric model of intussusceptive angiogenesis. Microvasc Res. 2009; 78: 286-93.
    • (2009) Microvasc Res , vol.78 , pp. 286-293
    • Filipovic, N.1    Tsuda, A.2    Lee, G.S.3
  • 213
    • 45049087009 scopus 로고    scopus 로고
    • RGS5 expression is a quantitative measure of pericyte coverage of blood vessels
    • Mitchell TS, Bradley J, Robinson GS, et al. RGS5 expression is a quantitative measure of pericyte coverage of blood vessels. Angiogenesis. 2008; 11: 141-51.
    • (2008) Angiogenesis , vol.11 , pp. 141-151
    • Mitchell, T.S.1    Bradley, J.2    Robinson, G.S.3
  • 214
    • 77953604802 scopus 로고    scopus 로고
    • Targeting pericytes with a PDGF-B aptamer in human ovarian carcinoma models
    • Lu C, Shahzad MMK, Moreno-Smith M, et al. Targeting pericytes with a PDGF-B aptamer in human ovarian carcinoma models. Cancer Biol Ther. 2010; 9: 176-82.
    • (2010) Cancer Biol Ther , vol.9 , pp. 176-182
    • Lu, C.1    Shahzad, M.M.K.2    Moreno-Smith, M.3
  • 215
    • 84874736686 scopus 로고    scopus 로고
    • A continuous model of angiogenesis: initiation, extension, and maturation of new blood vessels modulated by vascular endothelial growth factor, angiopoietins, platelet-derived growth factor-B, and pericytes
    • Zheng X, Koh GY, Jackson T. A continuous model of angiogenesis: initiation, extension, and maturation of new blood vessels modulated by vascular endothelial growth factor, angiopoietins, platelet-derived growth factor-B, and pericytes. Disc Cont Dyn Syst Ser B. 2013; 18: 1109-54.
    • (2013) Disc Cont Dyn Syst Ser B , vol.18 , pp. 1109-1154
    • Zheng, X.1    Koh, G.Y.2    Jackson, T.3
  • 216
    • 58349101505 scopus 로고    scopus 로고
    • Angiogenesis and vascular remodelling in normal and cancerous tissues
    • Owen MR, Alarcon T, Maini PK, et al. Angiogenesis and vascular remodelling in normal and cancerous tissues. J Math Biol. 2009; 58: 689-721.
    • (2009) J Math Biol , vol.58 , pp. 689-721
    • Owen, M.R.1    Alarcon, T.2    Maini, P.K.3
  • 217
    • 3042713269 scopus 로고    scopus 로고
    • A mathematical model of tumour angiogenesis, regulated by vascular endothelial growth factor and the angiopoietins
    • Plank MJ, Sleeman BD, Jones PF. A mathematical model of tumour angiogenesis, regulated by vascular endothelial growth factor and the angiopoietins. J Theor Biol. 2004; 229: 435-54.
    • (2004) J Theor Biol , vol.229 , pp. 435-454
    • Plank, M.J.1    Sleeman, B.D.2    Jones, P.F.3
  • 218
    • 79955030886 scopus 로고    scopus 로고
    • Multiscale modelling of vascular tumour growth in 3D: the roles of domain size and boundary conditions
    • Perfahl H, Byrne HM, Chen T, et al. Multiscale modelling of vascular tumour growth in 3D: the roles of domain size and boundary conditions. PLoS ONE. 2011; 6: e14790.
    • (2011) PLoS ONE , vol.6
    • Perfahl, H.1    Byrne, H.M.2    Chen, T.3
  • 219
    • 34547136198 scopus 로고    scopus 로고
    • Targeting tumour vasculature as a cancer treatment
    • Honstvet CA, Jones PF. Targeting tumour vasculature as a cancer treatment. Comput Math Methods Med. 2007; 8: 1-9.
    • (2007) Comput Math Methods Med , vol.8 , pp. 1-9
    • Honstvet, C.A.1    Jones, P.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.