메뉴 건너뛰기




Volumn 262, Issue 1, 2014, Pages 74-84

Transcriptomic analysis of mononuclear phagocyte differentiation and activation

Author keywords

CSF1; Dendritic cell; Macrophage; Transcriptome

Indexed keywords

TRANSCRIPTOME;

EID: 84911126794     PISSN: 01052896     EISSN: 1600065X     Source Type: Journal    
DOI: 10.1111/imr.12211     Document Type: Article
Times cited : (49)

References (108)
  • 2
    • 28544446111 scopus 로고    scopus 로고
    • Monocyte and macrophage heterogeneity
    • Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol 2005;5:953-964.
    • (2005) Nat Rev Immunol , vol.5 , pp. 953-964
    • Gordon, S.1    Taylor, P.R.2
  • 3
    • 30044434256 scopus 로고    scopus 로고
    • The mononuclear phagocyte system
    • Hume DA. The mononuclear phagocyte system. Curr Opin Immunol 2006;18:49-53.
    • (2006) Curr Opin Immunol , vol.18 , pp. 49-53
    • Hume, D.A.1
  • 4
    • 54449093241 scopus 로고    scopus 로고
    • Differentiation and heterogeneity in the mononuclear phagocyte system
    • Hume DA. Differentiation and heterogeneity in the mononuclear phagocyte system. Mucosal Immunol 2008;1:432-441.
    • (2008) Mucosal Immunol , vol.1 , pp. 432-441
    • Hume, D.A.1
  • 5
    • 84857618521 scopus 로고    scopus 로고
    • Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling
    • Hume DA, MacDonald KP. Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling. Blood 2012;119:1810-1820.
    • (2012) Blood , vol.119 , pp. 1810-1820
    • Hume, D.A.1    MacDonald, K.P.2
  • 6
    • 84876800337 scopus 로고    scopus 로고
    • Macrophage biology in development, homeostasis and disease
    • Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature 2013;496:445-455.
    • (2013) Nature , vol.496 , pp. 445-455
    • Wynn, T.A.1    Chawla, A.2    Pollard, J.W.3
  • 7
    • 84905093326 scopus 로고    scopus 로고
    • Homeostasis in the mononuclear phagocyte system
    • [Epub ahead of print].
    • Jenkins SJ, Hume DA. Homeostasis in the mononuclear phagocyte system. Trends Immunol 2014. doi: 10.1016/j.it.2014.06.006. [Epub ahead of print].
    • (2014) Trends Immunol
    • Jenkins, S.J.1    Hume, D.A.2
  • 8
    • 34347405754 scopus 로고    scopus 로고
    • Mouse neutrophilic granulocytes express mRNA encoding the macrophage colony-stimulating factor receptor (CSF-1R) as well as many other macrophage-specific transcripts and can transdifferentiate into macrophages in vitro in response to CSF-1
    • Sasmono RT, et al. Mouse neutrophilic granulocytes express mRNA encoding the macrophage colony-stimulating factor receptor (CSF-1R) as well as many other macrophage-specific transcripts and can transdifferentiate into macrophages in vitro in response to CSF-1. J Leukoc Biol 2007;82:111-123.
    • (2007) J Leukoc Biol , vol.82 , pp. 111-123
    • Sasmono, R.T.1
  • 9
    • 78149360132 scopus 로고    scopus 로고
    • Fate mapping analysis reveals that adult microglia derive from primitive macrophages
    • Ginhoux F, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010;330:841-845.
    • (2010) Science , vol.330 , pp. 841-845
    • Ginhoux, F.1
  • 10
    • 73949147392 scopus 로고    scopus 로고
    • Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network
    • Chorro L, et al. Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network. J Exp Med 2009;206:3089-3100.
    • (2009) J Exp Med , vol.206 , pp. 3089-3100
    • Chorro, L.1
  • 11
    • 84864298329 scopus 로고    scopus 로고
    • Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages
    • Hoeffel G, et al. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J Exp Med 2012;209:1167-1181.
    • (2012) J Exp Med , vol.209 , pp. 1167-1181
    • Hoeffel, G.1
  • 12
    • 84876775203 scopus 로고    scopus 로고
    • Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes
    • Hashimoto D, et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 2013;38:792-804.
    • (2013) Immunity , vol.38 , pp. 792-804
    • Hashimoto, D.1
  • 13
    • 84859508307 scopus 로고    scopus 로고
    • A lineage of myeloid cells independent of Myb and hematopoietic stem cells
    • Schulz C, et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 2012;336:86-90.
    • (2012) Science , vol.336 , pp. 86-90
    • Schulz, C.1
  • 14
    • 84872765982 scopus 로고    scopus 로고
    • Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis
    • Yona S, et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 2013;38:79-91.
    • (2013) Immunity , vol.38 , pp. 79-91
    • Yona, S.1
  • 15
    • 84886816349 scopus 로고    scopus 로고
    • IL-4 directly signals tissue-resident macrophages to proliferate beyond homeostatic levels controlled by CSF-1
    • Jenkins SJ, et al. IL-4 directly signals tissue-resident macrophages to proliferate beyond homeostatic levels controlled by CSF-1. J Exp Med 2013;210:2477-2491.
    • (2013) J Exp Med , vol.210 , pp. 2477-2491
    • Jenkins, S.J.1
  • 18
    • 77952524264 scopus 로고    scopus 로고
    • Pivotal advance: avian colony-stimulating factor 1 (CSF-1), interleukin-34 (IL-34), and CSF-1 receptor genes and gene products
    • Garceau V, et al. Pivotal advance: avian colony-stimulating factor 1 (CSF-1), interleukin-34 (IL-34), and CSF-1 receptor genes and gene products. J Leukoc Biol 2010;87:753-764.
    • (2010) J Leukoc Biol , vol.87 , pp. 753-764
    • Garceau, V.1
  • 19
    • 84861639667 scopus 로고    scopus 로고
    • The mechanism of shared but distinct CSF-1R signaling by the non-homologous cytokines IL-34 and CSF-1
    • Liu H, et al. The mechanism of shared but distinct CSF-1R signaling by the non-homologous cytokines IL-34 and CSF-1. Biochim Biophys Acta 2012;1824:938-945.
    • (2012) Biochim Biophys Acta , vol.1824 , pp. 938-945
    • Liu, H.1
  • 20
    • 84859407607 scopus 로고    scopus 로고
    • Structural basis for the dual recognition of helical cytokines IL-34 and CSF-1 by CSF-1R
    • Ma X, et al. Structural basis for the dual recognition of helical cytokines IL-34 and CSF-1 by CSF-1R. Structure 2012;20:676-687.
    • (2012) Structure , vol.20 , pp. 676-687
    • Ma, X.1
  • 21
    • 63149088164 scopus 로고    scopus 로고
    • Trophic macrophages in development and disease
    • Pollard JW. Trophic macrophages in development and disease. Nat Rev Immunol 2009;9:259-270.
    • (2009) Nat Rev Immunol , vol.9 , pp. 259-270
    • Pollard, J.W.1
  • 22
    • 84862122306 scopus 로고    scopus 로고
    • The CSF-1 receptor ligands IL-34 and CSF-1 exhibit distinct developmental brain expression patterns and regulate neural progenitor cell maintenance and maturation
    • Nandi S, et al. The CSF-1 receptor ligands IL-34 and CSF-1 exhibit distinct developmental brain expression patterns and regulate neural progenitor cell maintenance and maturation. Dev Biol 2012;367:100-113.
    • (2012) Dev Biol , vol.367 , pp. 100-113
    • Nandi, S.1
  • 23
    • 84886514444 scopus 로고    scopus 로고
    • CSF1R mutations in hereditary diffuse leukoencephalopathy with spheroids are loss of function
    • Pridans C, Sauter KA, Baer K, Kissel H, Hume DA. CSF1R mutations in hereditary diffuse leukoencephalopathy with spheroids are loss of function. Scientific Rep 2013;3:3013.
    • (2013) Scientific Rep , vol.3 , pp. 3013
    • Pridans, C.1    Sauter, K.A.2    Baer, K.3    Kissel, H.4    Hume, D.A.5
  • 24
    • 78149462163 scopus 로고    scopus 로고
    • An antibody against the colony-stimulating factor 1 receptor depletes the resident subset of monocytes and tissue- and tumor-associated macrophages but does not inhibit inflammation
    • MacDonald KP, et al. An antibody against the colony-stimulating factor 1 receptor depletes the resident subset of monocytes and tissue- and tumor-associated macrophages but does not inhibit inflammation. Blood 2010;116:3955-3963.
    • (2010) Blood , vol.116 , pp. 3955-3963
    • MacDonald, K.P.1
  • 25
    • 84905049757 scopus 로고    scopus 로고
    • Pleiotropic effects of extended blockade of CSF1R signaling in adult mice
    • Sauter KA, et al. Pleiotropic effects of extended blockade of CSF1R signaling in adult mice. J Leukoc Biol 2014; doi: jlb.2A0114-006R.
    • (2014) J Leukoc Biol
    • Sauter, K.A.1
  • 26
    • 0037307026 scopus 로고    scopus 로고
    • A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse
    • Sasmono RT, et al. A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood 2003;101:1155-1163.
    • (2003) Blood , vol.101 , pp. 1155-1163
    • Sasmono, R.T.1
  • 27
    • 79953729333 scopus 로고    scopus 로고
    • Applications of myeloid-specific promoters in transgenic mice support in vivo imaging and functional genomics but do not support the concept of distinct macrophage and dendritic cell lineages or roles in immunity
    • Hume DA. Applications of myeloid-specific promoters in transgenic mice support in vivo imaging and functional genomics but do not support the concept of distinct macrophage and dendritic cell lineages or roles in immunity. J Leukoc Biol 2010;89:525-538.
    • (2010) J Leukoc Biol , vol.89 , pp. 525-538
    • Hume, D.A.1
  • 28
    • 38949159104 scopus 로고    scopus 로고
    • Expression of Gal4-dependent transgenes in cells of the mononuclear phagocyte system labeled with enhanced cyan fluorescent protein using Csf1r-Gal4VP16/UAS-ECFP double-transgenic mice
    • Ovchinnikov DA, van Zuylen WJ, DeBats CE, Alexander KA, Kellie S, Hume DA. Expression of Gal4-dependent transgenes in cells of the mononuclear phagocyte system labeled with enhanced cyan fluorescent protein using Csf1r-Gal4VP16/UAS-ECFP double-transgenic mice. J Leukoc Biol 2008;83:430-433.
    • (2008) J Leukoc Biol , vol.83 , pp. 430-433
    • Ovchinnikov, D.A.1    van Zuylen, W.J.2    DeBats, C.E.3    Alexander, K.A.4    Kellie, S.5    Hume, D.A.6
  • 29
    • 79251561568 scopus 로고    scopus 로고
    • Macrophage activation and differentiation signals regulate schlafen-4 gene expression: evidence for Schlafen-4 as a modulator of myelopoiesis
    • van Zuylen WJ, et al. Macrophage activation and differentiation signals regulate schlafen-4 gene expression: evidence for Schlafen-4 as a modulator of myelopoiesis. PLoS ONE 2011;6:e15723.
    • (2011) PLoS ONE , vol.6 , pp. e15723
    • van Zuylen, W.J.1
  • 30
    • 84886435561 scopus 로고    scopus 로고
    • CX3CR1 reduces Ly6Chigh-monocyte motility within, and release from the bone marrow after chemotherapy in mice
    • Jacquelin S, et al. CX3CR1 reduces Ly6Chigh-monocyte motility within, and release from the bone marrow after chemotherapy in mice. Blood 2013;122:674-683.
    • (2013) Blood , vol.122 , pp. 674-683
    • Jacquelin, S.1
  • 31
    • 77952794397 scopus 로고    scopus 로고
    • Securing the immune tightrope: mononuclear phagocytes in the intestinal lamina propria
    • Varol C, Zigmond E, Jung S. Securing the immune tightrope: mononuclear phagocytes in the intestinal lamina propria. Nat Rev Immunol 2010;10:415-426.
    • (2010) Nat Rev Immunol , vol.10 , pp. 415-426
    • Varol, C.1    Zigmond, E.2    Jung, S.3
  • 32
    • 84905470556 scopus 로고    scopus 로고
    • Lentiviral vectors containing mouse Csf1r control elements direct macrophage-restricted expression in multiple species of birds and mammals
    • Pridans CE, Lillico S, Whitelaw CBA, Hume DA. Lentiviral vectors containing mouse Csf1r control elements direct macrophage-restricted expression in multiple species of birds and mammals. Mol Ther Methods Clin Dev 2014;1:14010.
    • (2014) Mol Ther Methods Clin Dev , vol.1 , pp. 14010
    • Pridans, C.E.1    Lillico, S.2    Whitelaw, C.B.A.3    Hume, D.A.4
  • 33
    • 84911060708 scopus 로고    scopus 로고
    • Visualisation of the avian mononuclear phagocyte system using novel transgenic reporter genes based upon conserved elements of the CSF1R locus
    • Epub ahead of print].
    • Balic A, et al. Visualisation of the avian mononuclear phagocyte system using novel transgenic reporter genes based upon conserved elements of the CSF1R locus. Development 2014. [Epub ahead of print].
    • (2014) Development
    • Balic, A.1
  • 34
    • 41849139980 scopus 로고    scopus 로고
    • Prediction of human disease genes by human-mouse conserved coexpression analysis
    • Ala U, et al. Prediction of human disease genes by human-mouse conserved coexpression analysis. PLoS Comput Biol 2008;4:e1000043.
    • (2008) PLoS Comput Biol , vol.4 , pp. e1000043
    • Ala, U.1
  • 35
    • 77952811111 scopus 로고    scopus 로고
    • Functional clustering and lineage markers: insights into cellular differentiation and gene function from large-scale microarray studies of purified primary cell populations
    • Hume DA, Summers KM, Raza S, Baillie JK, Freeman TC. Functional clustering and lineage markers: insights into cellular differentiation and gene function from large-scale microarray studies of purified primary cell populations. Genomics 2010;95:328-338.
    • (2010) Genomics , vol.95 , pp. 328-338
    • Hume, D.A.1    Summers, K.M.2    Raza, S.3    Baillie, J.K.4    Freeman, T.C.5
  • 36
    • 80054818700 scopus 로고    scopus 로고
    • An atlas of tissue-specific conserved coexpression for functional annotation and disease gene prediction
    • Piro RM, et al. An atlas of tissue-specific conserved coexpression for functional annotation and disease gene prediction. Eur J Hum Genet 2011;19:1173-1180.
    • (2011) Eur J Hum Genet , vol.19 , pp. 1173-1180
    • Piro, R.M.1
  • 37
    • 11144358198 scopus 로고    scopus 로고
    • A gene atlas of the mouse and human protein-encoding transcriptomes
    • Su AI, et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA 2004;101:6062-6067.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 6062-6067
    • Su, A.I.1
  • 38
    • 73349116606 scopus 로고    scopus 로고
    • Network visualization and analysis of gene expression data using BioLayout Express(3D)
    • Theocharidis A, van Dongen S, Enright AJ, Freeman TC. Network visualization and analysis of gene expression data using BioLayout Express(3D). Nat Protoc 2009;4:1535-1550.
    • (2009) Nat Protoc , vol.4 , pp. 1535-1550
    • Theocharidis, A.1    van Dongen, S.2    Enright, A.J.3    Freeman, T.C.4
  • 39
    • 35748937331 scopus 로고    scopus 로고
    • Construction, visualisation, and clustering of transcription networks from microarray expression data
    • Freeman TC, et al. Construction, visualisation, and clustering of transcription networks from microarray expression data. PLoS Comput Biol 2007;3:2032-2042.
    • (2007) PLoS Comput Biol , vol.3 , pp. 2032-2042
    • Freeman, T.C.1
  • 40
    • 77955412944 scopus 로고    scopus 로고
    • Meta-analysis of lineage-specific gene expression signatures in mouse leukocyte populations
    • Mabbott NA, Baillie JK, Hume DA, Freeman TC. Meta-analysis of lineage-specific gene expression signatures in mouse leukocyte populations. Immunobiology 2010;215:724-736.
    • (2010) Immunobiology , vol.215 , pp. 724-736
    • Mabbott, N.A.1    Baillie, J.K.2    Hume, D.A.3    Freeman, T.C.4
  • 41
    • 84884297351 scopus 로고    scopus 로고
    • An expression atlas of human primary cells: inference of gene function from coexpression networks
    • Mabbott NA, Baillie JK, Brown H, Freeman TC, Hume DA. An expression atlas of human primary cells: inference of gene function from coexpression networks. BMC Genomics 2013;14:632.
    • (2013) BMC Genomics , vol.14 , pp. 632
    • Mabbott, N.A.1    Baillie, J.K.2    Brown, H.3    Freeman, T.C.4    Hume, D.A.5
  • 42
    • 84868693721 scopus 로고    scopus 로고
    • A gene expression atlas of the domestic pig
    • Freeman TC, et al. A gene expression atlas of the domestic pig. BMC Biol 2012;10:90.
    • (2012) BMC Biol , vol.10 , pp. 90
    • Freeman, T.C.1
  • 43
    • 84897459814 scopus 로고    scopus 로고
    • Systematic in vivo characterization of the active enhancers across the human body
    • Andersson R, et al. Systematic in vivo characterization of the active enhancers across the human body. Nature 2014;507:455-461.
    • (2014) Nature , vol.507 , pp. 455-461
    • Andersson, R.1
  • 44
    • 84964383434 scopus 로고    scopus 로고
    • A human gene expression atlas based upon promoter activity
    • FANTOM Consortium and the RIKEN PMI and CLST (DGT), et al
    • FANTOM Consortium and the RIKEN PMI and CLST (DGT), et al. A human gene expression atlas based upon promoter activity. Nature 2014;507:462-470.
    • (2014) Nature , vol.507 , pp. 462-470
  • 45
    • 43149115856 scopus 로고    scopus 로고
    • PU.1 and C/EBPalpha/beta convert fibroblasts into macrophage-like cells
    • Feng R, et al. PU.1 and C/EBPalpha/beta convert fibroblasts into macrophage-like cells. Proc Natl Acad Sci USA 2008;105:6057-6062.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 6057-6062
    • Feng, R.1
  • 46
    • 80955177196 scopus 로고    scopus 로고
    • TFEB links autophagy to lysosomal biogenesis
    • Settembre C, et al. TFEB links autophagy to lysosomal biogenesis. Science 2011;332:1429-1433.
    • (2011) Science , vol.332 , pp. 1429-1433
    • Settembre, C.1
  • 47
    • 0033082496 scopus 로고    scopus 로고
    • TFEC is a macrophage-restricted member of the microphthalmia-TFE subfamily of basic helix-loop-helix leucine zipper transcription factors
    • Rehli M, Lichanska A, Cassady AI, Ostrowski MC, Hume DA. TFEC is a macrophage-restricted member of the microphthalmia-TFE subfamily of basic helix-loop-helix leucine zipper transcription factors. J Immunol 1999;162:1559-1565.
    • (1999) J Immunol , vol.162 , pp. 1559-1565
    • Rehli, M.1    Lichanska, A.2    Cassady, A.I.3    Ostrowski, M.C.4    Hume, D.A.5
  • 48
    • 0035965217 scopus 로고    scopus 로고
    • Genetic and physical interactions between Microphthalmia transcription factor and PU.1 are necessary for osteoclast gene expression and differentiation
    • Luchin A, et al. Genetic and physical interactions between Microphthalmia transcription factor and PU.1 are necessary for osteoclast gene expression and differentiation. J Biol Chem 2011;276:36703-36710.
    • (2011) J Biol Chem , vol.276 , pp. 36703-36710
    • Luchin, A.1
  • 49
    • 84875528275 scopus 로고    scopus 로고
    • The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting
    • Merad M, Sathe P, Helft J, Miller J, Mortha A. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol 2013;31:563-604.
    • (2013) Annu Rev Immunol , vol.31 , pp. 563-604
    • Merad, M.1    Sathe, P.2    Helft, J.3    Miller, J.4    Mortha, A.5
  • 50
    • 77349124883 scopus 로고    scopus 로고
    • Origin and development of dendritic cells
    • Liu K, Nussenzweig MC. Origin and development of dendritic cells. Immunol Rev 2010;234:45-54.
    • (2010) Immunol Rev , vol.234 , pp. 45-54
    • Liu, K.1    Nussenzweig, M.C.2
  • 51
    • 84900461408 scopus 로고    scopus 로고
    • Development and function of dendritic cell subsets
    • Mildner A, Jung S. Development and function of dendritic cell subsets. Immunity 2014;40:642-656.
    • (2014) Immunity , vol.40 , pp. 642-656
    • Mildner, A.1    Jung, S.2
  • 52
    • 58749083404 scopus 로고    scopus 로고
    • Macrophages as APC and the dendritic cell myth
    • Hume DA. Macrophages as APC and the dendritic cell myth. J Immunol 2008;181:5829-5835.
    • (2008) J Immunol , vol.181 , pp. 5829-5835
    • Hume, D.A.1
  • 53
    • 84874038349 scopus 로고    scopus 로고
    • Can DCs be distinguished from macrophages by molecular signatures?
    • Hume DA, Mabbott N, Raza S, Freeman TC. Can DCs be distinguished from macrophages by molecular signatures? Nat Immunol 2013;14:187-189.
    • (2013) Nat Immunol , vol.14 , pp. 187-189
    • Hume, D.A.1    Mabbott, N.2    Raza, S.3    Freeman, T.C.4
  • 54
    • 84865418665 scopus 로고    scopus 로고
    • Deciphering the transcriptional network of the dendritic cell lineage
    • Miller JC, et al. Deciphering the transcriptional network of the dendritic cell lineage. Nat Immunol 2012;13:888-899.
    • (2012) Nat Immunol , vol.13 , pp. 888-899
    • Miller, J.C.1
  • 55
    • 84867740805 scopus 로고    scopus 로고
    • Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages
    • Gautier EL, et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol 2012;13:1118-1128.
    • (2012) Nat Immunol , vol.13 , pp. 1118-1128
    • Gautier, E.L.1
  • 57
    • 0015619335 scopus 로고
    • Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution
    • Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 1973;137:1142-1162.
    • (1973) J Exp Med , vol.137 , pp. 1142-1162
    • Steinman, R.M.1    Cohn, Z.A.2
  • 58
    • 84856159067 scopus 로고    scopus 로고
    • Transcriptional programming of the dendritic cell network
    • Belz GT, Nutt SL. Transcriptional programming of the dendritic cell network. Nat Rev Immunol 2012;12:101-113.
    • (2012) Nat Rev Immunol , vol.12 , pp. 101-113
    • Belz, G.T.1    Nutt, S.L.2
  • 59
    • 84865447381 scopus 로고    scopus 로고
    • Plenary perspective: the complexity of constitutive and inducible gene expression in mononuclear phagocytes
    • Hume DA. Plenary perspective: the complexity of constitutive and inducible gene expression in mononuclear phagocytes. J Leukoc Biol 2012;92:433-444.
    • (2012) J Leukoc Biol , vol.92 , pp. 433-444
    • Hume, D.A.1
  • 60
    • 84904993091 scopus 로고    scopus 로고
    • Analysis of the transcriptional networks underpinning the activation of murine macrophages by inflammatory mediators
    • Raza S, Barnett MW, Barnett-Itzhaki Z, Amit I, Hume DA, Freeman TC. Analysis of the transcriptional networks underpinning the activation of murine macrophages by inflammatory mediators. J Leukoc Biol 2014; doi:jlb.6HI0313-169R.
    • (2014) J Leukoc Biol
    • Raza, S.1    Barnett, M.W.2    Barnett-Itzhaki, Z.3    Amit, I.4    Hume, D.A.5    Freeman, T.C.6
  • 61
    • 84893745524 scopus 로고    scopus 로고
    • Identification of a unique TGF-beta-dependent molecular and functional signature in microglia
    • Butovsky O, et al. Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nat Neurosci 2014;17:131-143.
    • (2014) Nat Neurosci , vol.17 , pp. 131-143
    • Butovsky, O.1
  • 62
    • 0037963473 scopus 로고    scopus 로고
    • Blood monocytes consist of two principal subsets with distinct migratory properties
    • Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 2003;19:71-82.
    • (2003) Immunity , vol.19 , pp. 71-82
    • Geissmann, F.1    Jung, S.2    Littman, D.R.3
  • 63
    • 84899851440 scopus 로고    scopus 로고
    • Monocyte subsets in man and other species
    • Ziegler-Heitbrock L. Monocyte subsets in man and other species. Cell Immunol 2014;289:135-139.
    • (2014) Cell Immunol , vol.289 , pp. 135-139
    • Ziegler-Heitbrock, L.1
  • 64
    • 84875830139 scopus 로고    scopus 로고
    • Intestinal macrophages: well educated exceptions from the rule
    • Zigmond E, Jung S. Intestinal macrophages: well educated exceptions from the rule. Trends Immunol 2013;34:162-168.
    • (2013) Trends Immunol , vol.34 , pp. 162-168
    • Zigmond, E.1    Jung, S.2
  • 65
    • 77957020717 scopus 로고    scopus 로고
    • Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors
    • Cros J, et al. Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity 2010;33:375-386.
    • (2010) Immunity , vol.33 , pp. 375-386
    • Cros, J.1
  • 66
    • 77449102329 scopus 로고    scopus 로고
    • Comparison of gene expression profiles between human and mouse monocyte subsets
    • Ingersoll MA, et al. Comparison of gene expression profiles between human and mouse monocyte subsets. Blood 2010;115:e10-e19.
    • (2010) Blood , vol.115 , pp. e10-e19
    • Ingersoll, M.A.1
  • 67
    • 84879071979 scopus 로고    scopus 로고
    • Comparative analysis of monocyte subsets in the pig
    • Fairbairn L, et al. Comparative analysis of monocyte subsets in the pig. J Immunol 2013;190:6389-6396.
    • (2013) J Immunol , vol.190 , pp. 6389-6396
    • Fairbairn, L.1
  • 68
    • 84899634847 scopus 로고    scopus 로고
    • Transcription and enhancer profiling in human monocyte subsets
    • Schmidl C, et al. Transcription and enhancer profiling in human monocyte subsets. Blood 2014;123:e90-e99.
    • (2014) Blood , vol.123 , pp. e90-e99
    • Schmidl, C.1
  • 69
    • 84876207357 scopus 로고    scopus 로고
    • Nr4a1-dependent Ly6C(low) monocytes monitor endothelial cells and orchestrate their disposal
    • Carlin LM, et al. Nr4a1-dependent Ly6C(low) monocytes monitor endothelial cells and orchestrate their disposal. Cell 2013;153:362-375.
    • (2013) Cell , vol.153 , pp. 362-375
    • Carlin, L.M.1
  • 70
    • 77953268611 scopus 로고    scopus 로고
    • Alternative activation of macrophages: mechanism and functions
    • Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity 2010;32:593-604.
    • (2010) Immunity , vol.32 , pp. 593-604
    • Gordon, S.1    Martinez, F.O.2
  • 71
    • 0037769059 scopus 로고    scopus 로고
    • Monocyte heterogeneity and innate immunity
    • Taylor PR, Gordon S. Monocyte heterogeneity and innate immunity. Immunity 2003;19:2-4.
    • (2003) Immunity , vol.19 , pp. 2-4
    • Taylor, P.R.1    Gordon, S.2
  • 72
    • 84857883847 scopus 로고    scopus 로고
    • Macrophage plasticity and polarization: in vivo veritas
    • Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 2012;122:787-795.
    • (2012) J Clin Invest , vol.122 , pp. 787-795
    • Sica, A.1    Mantovani, A.2
  • 73
    • 0842266786 scopus 로고    scopus 로고
    • Interferon-gamma: an overview of signals, mechanisms and functions
    • Schroder K, Hertzog PJ, Ravasi T, Hume DA. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 2004;75:163-189.
    • (2004) J Leukoc Biol , vol.75 , pp. 163-189
    • Schroder, K.1    Hertzog, P.J.2    Ravasi, T.3    Hume, D.A.4
  • 74
    • 80355146399 scopus 로고    scopus 로고
    • Transcriptional regulation of macrophage polarization: enabling diversity with identity
    • Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol 2011;11:750-761.
    • (2011) Nat Rev Immunol , vol.11 , pp. 750-761
    • Lawrence, T.1    Natoli, G.2
  • 76
    • 84864251757 scopus 로고    scopus 로고
    • Transcript dynamics of proinflammatory genes revealed by sequence analysis of subcellular RNA fractions
    • Bhatt DM, et al. Transcript dynamics of proinflammatory genes revealed by sequence analysis of subcellular RNA fractions. Cell 2012;150:279-290.
    • (2012) Cell , vol.150 , pp. 279-290
    • Bhatt, D.M.1
  • 77
    • 77949977555 scopus 로고    scopus 로고
    • Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages
    • Ghisletti S, et al. Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. Immunity 2010;32:317-328.
    • (2010) Immunity , vol.32 , pp. 317-328
    • Ghisletti, S.1
  • 78
    • 33646547951 scopus 로고    scopus 로고
    • Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4
    • Gilchrist M, et al. Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature 2006;441:173-178.
    • (2006) Nature , vol.441 , pp. 173-178
    • Gilchrist, M.1
  • 79
    • 84881526410 scopus 로고    scopus 로고
    • Remodeling of the enhancer landscape during macrophage activation is coupled to enhancer transcription
    • Kaikkonen MU, et al. Remodeling of the enhancer landscape during macrophage activation is coupled to enhancer transcription. Mol Cell 2013;51:310-325.
    • (2013) Mol Cell , vol.51 , pp. 310-325
    • Kaikkonen, M.U.1
  • 80
    • 33646484899 scopus 로고    scopus 로고
    • Transcriptional network dynamics in macrophage activation
    • Nilsson R, et al. Transcriptional network dynamics in macrophage activation. Genomics 2006;88:133-142.
    • (2006) Genomics , vol.88 , pp. 133-142
    • Nilsson, R.1
  • 81
    • 84872522528 scopus 로고    scopus 로고
    • Latent enhancers activated by stimulation in differentiated cells
    • Ostuni R, et al. Latent enhancers activated by stimulation in differentiated cells. Cell 2013;152:157-171.
    • (2013) Cell , vol.152 , pp. 157-171
    • Ostuni, R.1
  • 82
    • 22144464423 scopus 로고    scopus 로고
    • Inflammation suppressor genes: please switch out all the lights
    • Wells CA, Ravasi T, Hume DA. Inflammation suppressor genes: please switch out all the lights. J Leukoc Biol 2005;78:9-13.
    • (2005) J Leukoc Biol , vol.78 , pp. 9-13
    • Wells, C.A.1    Ravasi, T.2    Hume, D.A.3
  • 83
    • 82555186955 scopus 로고    scopus 로고
    • Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis
    • Nguyen KD, et al. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 2012;480:104-108.
    • (2012) Nature , vol.480 , pp. 104-108
    • Nguyen, K.D.1
  • 84
    • 21044457085 scopus 로고    scopus 로고
    • Transcription factor Tfec contributes to the IL-4-inducible expression of a small group of genes in mouse macrophages including the granulocyte colony-stimulating factor receptor
    • Rehli M, et al. Transcription factor Tfec contributes to the IL-4-inducible expression of a small group of genes in mouse macrophages including the granulocyte colony-stimulating factor receptor. J Immunol 2005;174:7111-7122.
    • (2005) J Immunol , vol.174 , pp. 7111-7122
    • Rehli, M.1
  • 85
    • 84859993180 scopus 로고    scopus 로고
    • Conservation and divergence in toll-like receptor 4-regulated gene expression in primary human versus mouse macrophages
    • Schroder K, et al. Conservation and divergence in toll-like receptor 4-regulated gene expression in primary human versus mouse macrophages. Proc Natl Acad Sci USA 2012;109:E944-E953.
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. E944-E953
    • Schroder, K.1
  • 86
    • 84859404700 scopus 로고    scopus 로고
    • Pig bone marrow-derived macrophages resemble human macrophages in their response to bacterial lipopolysaccharide
    • Kapetanovic R, et al. Pig bone marrow-derived macrophages resemble human macrophages in their response to bacterial lipopolysaccharide. J Immunol 2012;188:3382-3394.
    • (2012) J Immunol , vol.188 , pp. 3382-3394
    • Kapetanovic, R.1
  • 87
    • 56749174940 scopus 로고    scopus 로고
    • Exploring the full spectrum of macrophage activation
    • Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol 2008;8:958-969.
    • (2008) Nat Rev Immunol , vol.8 , pp. 958-969
    • Mosser, D.M.1    Edwards, J.P.2
  • 88
    • 84894102230 scopus 로고    scopus 로고
    • Transcriptome-based network analysis reveals a spectrum model of human macrophage activation
    • Xue J, et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 2014;40:274-288.
    • (2014) Immunity , vol.40 , pp. 274-288
    • Xue, J.1
  • 89
    • 77950950894 scopus 로고    scopus 로고
    • Macrophage diversity enhances tumor progression and metastasis
    • Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell 2010;141:39-51.
    • (2010) Cell , vol.141 , pp. 39-51
    • Qian, B.Z.1    Pollard, J.W.2
  • 90
    • 84880014085 scopus 로고    scopus 로고
    • Coexpression analysis of large cancer datasets provides insight into the cellular phenotypes of the tumour microenvironment
    • Doig TN, Hume DA, Theocharidis T, Goodlad JR, Gregory CD, Freeman TC. Coexpression analysis of large cancer datasets provides insight into the cellular phenotypes of the tumour microenvironment. BMC Genomics 2013;14:469.
    • (2013) BMC Genomics , vol.14 , pp. 469
    • Doig, T.N.1    Hume, D.A.2    Theocharidis, T.3    Goodlad, J.R.4    Gregory, C.D.5    Freeman, T.C.6
  • 91
    • 84883087751 scopus 로고    scopus 로고
    • The impact of breed and tissue compartment on the response of pig macrophages to lipopolysaccharide
    • Kapetanovic R, et al. The impact of breed and tissue compartment on the response of pig macrophages to lipopolysaccharide. BMC Genomics 2013;14:581.
    • (2013) BMC Genomics , vol.14 , pp. 581
    • Kapetanovic, R.1
  • 92
    • 84896742056 scopus 로고    scopus 로고
    • Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression
    • Fairfax BP, et al. Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression. Science 2014;343:1246949.
    • (2014) Science , vol.343 , pp. 1246949
    • Fairfax, B.P.1
  • 93
    • 84862777209 scopus 로고    scopus 로고
    • IFITM3 restricts the morbidity and mortality associated with influenza
    • Everitt AR, et al. IFITM3 restricts the morbidity and mortality associated with influenza. Nature 2012;484:519-523.
    • (2012) Nature , vol.484 , pp. 519-523
    • Everitt, A.R.1
  • 94
    • 33847408050 scopus 로고    scopus 로고
    • Gene expression patterns in blood leukocytes discriminate patients with acute infections
    • Ramilo O, et al. Gene expression patterns in blood leukocytes discriminate patients with acute infections. Blood 2007;109:2066-2077.
    • (2007) Blood , vol.109 , pp. 2066-2077
    • Ramilo, O.1
  • 95
    • 84896921824 scopus 로고    scopus 로고
    • Democratizing systems immunology with modular transcription repertoire analysis
    • Chaussabel D, Baldwin N. Democratizing systems immunology with modular transcription repertoire analysis. Nat Rev Immunol 2014;14:271-280.
    • (2014) Nat Rev Immunol , vol.14 , pp. 271-280
    • Chaussabel, D.1    Baldwin, N.2
  • 96
    • 84886057701 scopus 로고    scopus 로고
    • Interferons in Sjogren's syndrome: genes, mechanisms, and effects
    • Li H, Ice JA, Lessard CJ, Sivils KL. Interferons in Sjogren's syndrome: genes, mechanisms, and effects. Front Immunol 2013;4:290.
    • (2013) Front Immunol , vol.4 , pp. 290
    • Li, H.1    Ice, J.A.2    Lessard, C.J.3    Sivils, K.L.4
  • 97
    • 84873404949 scopus 로고    scopus 로고
    • The interferon signature in autoimmune diseases
    • Ronnblom L, Eloranta ML. The interferon signature in autoimmune diseases. Curr Opin Rheumatol 2013;25:248-253.
    • (2013) Curr Opin Rheumatol , vol.25 , pp. 248-253
    • Ronnblom, L.1    Eloranta, M.L.2
  • 98
    • 70349443224 scopus 로고    scopus 로고
    • Transcriptional control of the inflammatory response
    • Medzhitov R, Horng T. Transcriptional control of the inflammatory response. Nat Rev Immunol 2009;9:692-703.
    • (2009) Nat Rev Immunol , vol.9 , pp. 692-703
    • Medzhitov, R.1    Horng, T.2
  • 99
    • 67649648237 scopus 로고    scopus 로고
    • Control of inducible gene expression by signal-dependent transcriptional elongation
    • Hargreaves DC, Horng T, Medzhitov R. Control of inducible gene expression by signal-dependent transcriptional elongation. Cell 2009;138:129-145.
    • (2009) Cell , vol.138 , pp. 129-145
    • Hargreaves, D.C.1    Horng, T.2    Medzhitov, R.3
  • 100
    • 24644519490 scopus 로고    scopus 로고
    • The transcriptional landscape of the mammalian genome
    • Carninci P, et al. The transcriptional landscape of the mammalian genome. Science 2005;309:1559-1563.
    • (2005) Science , vol.309 , pp. 1559-1563
    • Carninci, P.1
  • 101
    • 33744805985 scopus 로고    scopus 로고
    • Genome-wide analysis of mammalian promoter architecture and evolution
    • Carninci P, et al. Genome-wide analysis of mammalian promoter architecture and evolution. Nat Genet 2006;38:626-635.
    • (2006) Nat Genet , vol.38 , pp. 626-635
    • Carninci, P.1
  • 102
    • 68849123047 scopus 로고    scopus 로고
    • Methods for analyzing deep sequencing expression data: constructing the human and mouse promoterome with deepCAGE data
    • Balwierz PJ, et al. Methods for analyzing deep sequencing expression data: constructing the human and mouse promoterome with deepCAGE data. Genome Biol 2009;10:R79.
    • (2009) Genome Biol , vol.10 , pp. R79
    • Balwierz, P.J.1
  • 103
    • 77950343791 scopus 로고    scopus 로고
    • Pattern recognition receptors and inflammation
    • Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell 2010;140:805-820.
    • (2010) Cell , vol.140 , pp. 805-820
    • Takeuchi, O.1    Akira, S.2
  • 104
    • 70349882120 scopus 로고    scopus 로고
    • Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses
    • Amit I, et al. Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses. Science 2009;326:257-263.
    • (2009) Science , vol.326 , pp. 257-263
    • Amit, I.1
  • 105
    • 0034307684 scopus 로고    scopus 로고
    • Probability in transcriptional regulation and its implications for leukocyte differentiation and inducible gene expression
    • Hume DA. Probability in transcriptional regulation and its implications for leukocyte differentiation and inducible gene expression. Blood 2000;96:2323-2328.
    • (2000) Blood , vol.96 , pp. 2323-2328
    • Hume, D.A.1
  • 106
    • 65149083962 scopus 로고    scopus 로고
    • The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line
    • Suzuki H, et al. The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nat Genet 2009;41:553-562.
    • (2009) Nat Genet , vol.41 , pp. 553-562
    • Suzuki, H.1
  • 107
    • 0028114205 scopus 로고
    • Opposing actions of c-ets/PU.1 and c-myb protooncogene products in regulating the macrophage-specific promoters of the human and mouse colony-stimulating factor-1 receptor (c-fms) genes
    • Reddy MA, et al. Opposing actions of c-ets/PU.1 and c-myb protooncogene products in regulating the macrophage-specific promoters of the human and mouse colony-stimulating factor-1 receptor (c-fms) genes. J Exp Med 1994;180:2309-2319.
    • (1994) J Exp Med , vol.180 , pp. 2309-2319
    • Reddy, M.A.1
  • 108
    • 80053239657 scopus 로고    scopus 로고
    • Macrophages.com: an on-line community resource for innate immunity research
    • Robert C, Lu X, Law A, Freeman TC, Hume DA. Macrophages.com: an on-line community resource for innate immunity research. Immunobiology 2011;216:1203-1211.
    • (2011) Immunobiology , vol.216 , pp. 1203-1211
    • Robert, C.1    Lu, X.2    Law, A.3    Freeman, T.C.4    Hume, D.A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.