메뉴 건너뛰기




Volumn 22, Issue 4, 2012, Pages 778-788

A particle filter driven dynamic Gaussian mixture model approach for complex process monitoring and fault diagnosis

Author keywords

Dynamic Gaussian mixture model; Dynamic mode shifts; Fault detection; Fault diagnosis; Non Gaussian process; Particle filter

Indexed keywords

BAYESIAN INFERENCE; CONVENTIONAL MONITORING; DYNAMIC MODE SHIFTS; DYNAMIC MODES; DYNAMIC OPERATIONS; DYNAMIC PRINCIPAL COMPONENT ANALYSIS; FAULT DETECTION AND DIAGNOSIS; GAUSSIAN MIXTURE MODEL; MIXTURE MODEL; MONITORING APPROACH; NON-GAUSSIAN PROCESS; PARTICLE FILTER; PROBABILITY INDEX; PROCESS FAULT DETECTION; PROCESS VARIABLES; RESAMPLING METHOD; TENNESSEE EASTMAN;

EID: 84862799924     PISSN: 09591524     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jprocont.2012.02.012     Document Type: Article
Times cited : (100)

References (32)
  • 1
    • 56949099324 scopus 로고    scopus 로고
    • Performance assessment of a novel fault diagnosis system based on support vector machines
    • Yélamos I., Escudero G., Graells M., and Puigjaner L. Performance assessment of a novel fault diagnosis system based on support vector machines Comput. Chem. Eng. 33 2009 244 255
    • (2009) Comput. Chem. Eng. , vol.33 , pp. 244-255
    • Yélamos, I.1    Escudero, G.2    Graells, M.3    Puigjaner, L.4
  • 2
    • 58249086340 scopus 로고    scopus 로고
    • Cause-and-effect analysis in chemical processes utilizing XML, plant connectivity and quantitative process history
    • Thambirajah J., Benabbas L., Bauer M., and Thornhill N.F. Cause-and-effect analysis in chemical processes utilizing XML, plant connectivity and quantitative process history Comput. Chem. Eng. 33 2009 503 512
    • (2009) Comput. Chem. Eng. , vol.33 , pp. 503-512
    • Thambirajah, J.1    Benabbas, L.2    Bauer, M.3    Thornhill, N.F.4
  • 3
    • 70749091622 scopus 로고    scopus 로고
    • Variance component analysis based fault diagnosis of multi-layer overlay lithography processes
    • Yu J., and Qin S.J. Variance component analysis based fault diagnosis of multi-layer overlay lithography processes IIE Trans. 41 2009 764 775
    • (2009) IIE Trans. , vol.41 , pp. 764-775
    • Yu, J.1    Qin, S.J.2
  • 4
    • 0028483476 scopus 로고
    • Monitoring of batch processes using multi-way principal component analysis
    • Nomikos P., and MacGregor J.F. Monitoring of batch processes using multi-way principal component analysis AIChE J. 40 1994 1361 1375
    • (1994) AIChE J. , vol.40 , pp. 1361-1375
    • Nomikos, P.1    MacGregor, J.F.2
  • 5
    • 0028905904 scopus 로고
    • Process analysis, monitoring and diagnosis, using multivariate projection methods
    • Kourti T., and MacGregor J.F. Process analysis, monitoring and diagnosis, using multivariate projection methods Chemom. Intell. Lab. Syst. 28 1995 3 21
    • (1995) Chemom. Intell. Lab. Syst. , vol.28 , pp. 3-21
    • Kourti, T.1    MacGregor, J.F.2
  • 6
    • 0032118892 scopus 로고    scopus 로고
    • Multiscale PCA with application to multivariate statistical process monitoring
    • Bakshi B.R. Multiscale PCA with application to multivariate statistical process monitoring AIChE J. 44 7 1998 1596 1610 (Pubitemid 128768960)
    • (1998) AIChE Journal , vol.44 , Issue.7 , pp. 1596-1610
    • Bakshi, B.R.1
  • 8
    • 0036805179 scopus 로고    scopus 로고
    • Statistical monitoring of multistage, multiphase batch processes
    • DOI 10.1109/MCS.2002.1035216
    • Ündey C., and inar A. Statistical monitoring of multistage, multiphase batch processes IEEE Control Syst. Mag. 10 2002 40 52 (Pubitemid 35298308)
    • (2002) IEEE Control Systems Magazine , vol.22 , Issue.5 , pp. 40-52
    • Undey, C.1    Cinar, A.2
  • 10
    • 0242354134 scopus 로고    scopus 로고
    • Statistical process monitoring: Basics and beyond
    • Qin S.J. Statistical process monitoring: basics and beyond J. Chemom. 17 2003 480 502
    • (2003) J. Chemom. , vol.17 , pp. 480-502
    • Qin, S.J.1
  • 11
    • 0037443770 scopus 로고    scopus 로고
    • A review of process fault detection and diagnosis part I: Quantitative model-based methods
    • DOI 10.1016/S0098-1354(02)00160-6, PII S0098135402001606
    • Venkatasubramanian V., Rengaswamy R., Yin K., and Kavuri S.N. A review of process fault detection and diagnosis: Part I: Quantitative model-based methods Comput. Chem. Eng. 27 2003 293 311 (Pubitemid 36285962)
    • (2003) Computers and Chemical Engineering , vol.27 , Issue.3 , pp. 293-311
    • Venkatasubramanian, V.1    Rengaswamy, R.2    Yin, K.3    Kavuri, S.N.4
  • 12
    • 34547141675 scopus 로고    scopus 로고
    • Advances and new directions in plant-wide disturbance detection and diagnosis
    • DOI 10.1016/j.conengprac.2006.10.011, PII S0967066106001791
    • Thornhill N.F., and Horch A. Advances and new directions in plant-wide disturbance detection and diagnosis Control Eng. Pract. 15 2007 1196 1206 (Pubitemid 47109106)
    • (2007) Control Engineering Practice , vol.15 , pp. 1196-1206
    • Thornhill, N.F.1    Horch, A.2
  • 13
    • 79952591121 scopus 로고    scopus 로고
    • Nonlinear bioprocess monitoring using multiway kernel localized Fisher discriminant analysis
    • Yu J. Nonlinear bioprocess monitoring using multiway kernel localized Fisher discriminant analysis Ind. Eng. Chem. Res. 50 2011 3390 3402
    • (2011) Ind. Eng. Chem. Res. , vol.50 , pp. 3390-3402
    • Yu, J.1
  • 14
    • 84947841031 scopus 로고
    • Applications of multivariate statistical methods to process monitoring and controller design
    • Piovoso M.J., and Kosanovich K.A. Applications of multivariate statistical methods to process monitoring and controller design Int. J. Cont. 59 1994 743 765
    • (1994) Int. J. Cont. , vol.59 , pp. 743-765
    • Piovoso, M.J.1    Kosanovich, K.A.2
  • 15
    • 0029267381 scopus 로고
    • Statistical process control of multivariate processes
    • MacGregor J.F., and Kourti T. Statistical process control of multivariate processes Control Eng. Pract. 3 3 1995 403 414
    • (1995) Control Eng. Pract. , vol.3 , Issue.3 , pp. 403-414
    • MacGregor, J.F.1    Kourti, T.2
  • 16
    • 0028892168 scopus 로고
    • Disturbance detection and isolation by dynamic principal component analysis
    • Ku W., Storer R.H., and Georgakis C. Disturbance detection and isolation by dynamic principal component analysis Chemom. Intell. Lab. Syst. 30 1995 179
    • (1995) Chemom. Intell. Lab. Syst. , vol.30 , pp. 179
    • Ku, W.1    Storer, R.H.2    Georgakis, C.3
  • 17
    • 0344944150 scopus 로고    scopus 로고
    • Dynamic multivariate statistical process control using subspace identification
    • Treasure R.J., Kruger U., and Cooper J.E. Dynamic multivariate statistical process control using subspace identification J. Proc. Cont. 14 2004 279 292
    • (2004) J. Proc. Cont. , vol.14 , pp. 279-292
    • Treasure, R.J.1    Kruger, U.2    Cooper, J.E.3
  • 18
    • 77954386508 scopus 로고    scopus 로고
    • Fault detection of non-Gaussian processes based on modified independent component analysis
    • Zhang Y., and Zhang Y. Fault detection of non-Gaussian processes based on modified independent component analysis Chem. Eng. Sci. 65 2010 4630 4639
    • (2010) Chem. Eng. Sci. , vol.65 , pp. 4630-4639
    • Zhang, Y.1    Zhang, Y.2
  • 19
    • 79958703777 scopus 로고    scopus 로고
    • Localized Fisher discriminant analysis based complex chemical process monitoring
    • Yu J. Localized Fisher discriminant analysis based complex chemical process monitoring AIChE J. 57 2011 1817 1828
    • (2011) AIChE J. , vol.57 , pp. 1817-1828
    • Yu, J.1
  • 20
    • 0037394190 scopus 로고    scopus 로고
    • Monitoring independent components for fault detection
    • DOI 10.1002/aic.690490414
    • Kano M., Tanaka S., Hasebe S., Hashimoto I., and Ohno H. Monitoring independent components for fault detection AIChE J. 49 4 2003 969 976 (Pubitemid 36504561)
    • (2003) AIChE Journal , vol.49 , Issue.4 , pp. 969-976
    • Kano, M.1    Tanaka, S.2    Hasebe, S.3    Hashimoto, I.4    Ohno, H.5
  • 21
    • 1342285571 scopus 로고    scopus 로고
    • Statistical process monitoring with independent component analysis
    • Lee J.M., Yoo C.K., and Lee I.B. Statistical process monitoring with independent component analysis J. Proc. Cont. 14 2004 467 485
    • (2004) J. Proc. Cont. , vol.14 , pp. 467-485
    • Lee, J.M.1    Yoo, C.K.2    Lee, I.B.3
  • 22
    • 2342615505 scopus 로고    scopus 로고
    • On-line monitoring of batch processes using multiway independent component analysis
    • DOI 10.1016/j.chemolab.2004.02.002, PII S0169743904000474
    • Yoo C.K., Lee J.M., Vanrolleghem P.A., and Lee I.B. On-line monitoring of batch processes using multiway independent component analysis Chemom. Intell. Lab. Syst. 71 2004 151 163 (Pubitemid 38591486)
    • (2004) Chemometrics and Intelligent Laboratory Systems , vol.71 , Issue.2 , pp. 151-163
    • Yoo, C.K.1    Lee, J.-M.2    Vanrolleghem, P.A.3    Lee, I.-B.4
  • 23
    • 47549099484 scopus 로고    scopus 로고
    • Multimode process monitoring with bayesian inference-based finite Gaussian mixture models
    • DOI 10.1002/aic.11515
    • Yu J., and Qin S.J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models AIChE J. 54 2008 1811 1829 (Pubitemid 352006869)
    • (2008) AIChE Journal , vol.54 , Issue.7 , pp. 1811-1829
    • Yu, J.1    Qin, S.J.2
  • 24
    • 78149285529 scopus 로고    scopus 로고
    • Multivariate statistical monitoring of two-dimensional dynamic batch processes utilizing non-Gaussian information
    • Yao Y., Chen T., and Gao F. Multivariate statistical monitoring of two-dimensional dynamic batch processes utilizing non-Gaussian information J. Proc. Cont. 20 2010 1188 1197
    • (2010) J. Proc. Cont. , vol.20 , pp. 1188-1197
    • Yao, Y.1    Chen, T.2    Gao, F.3
  • 25
    • 79960836522 scopus 로고    scopus 로고
    • Integrating independent component analysis and local outlier factor for plant-wide process monitoring
    • Lee J., Kang B., and Kang S. Integrating independent component analysis and local outlier factor for plant-wide process monitoring J. Proc. Cont. 21 2011 1011 1021
    • (2011) J. Proc. Cont. , vol.21 , pp. 1011-1021
    • Lee, J.1    Kang, B.2    Kang, S.3
  • 26
    • 81055156706 scopus 로고    scopus 로고
    • A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes
    • Yu J. A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes Chem. Eng. Sci. 68 2012 506 519
    • (2012) Chem. Eng. Sci. , vol.68 , pp. 506-519
    • Yu, J.1
  • 27
    • 70349329819 scopus 로고    scopus 로고
    • Multiway Gaussian mixture model based multiphase batch process monitoring
    • Yu J., and Qin S.J. Multiway Gaussian mixture model based multiphase batch process monitoring Ind. Eng. Chem. Res. 48 2009 8585 8594
    • (2009) Ind. Eng. Chem. Res. , vol.48 , pp. 8585-8594
    • Yu, J.1    Qin, S.J.2
  • 30
    • 0036475447 scopus 로고    scopus 로고
    • A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
    • DOI 10.1109/78.978374, PII S1053587X0200569X
    • Arulampalam M.S., Maskell S., Gordon N., and Clapp T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking IEEE Trans. Signal Process. 50 2002 174 188 (Pubitemid 34291500)
    • (2002) IEEE Transactions on Signal Processing , vol.50 , Issue.2 , pp. 174-188
    • Arulampalam, M.S.1    Maskell, S.2    Gordon, N.3    Clapp, T.4
  • 32
    • 0027561446 scopus 로고
    • Plant-wide industrial process control problem
    • Downs J.J., and Vogel E.F. Plant-wide industrial process control problem Comput. Chem. Eng. 17 1993 245 255
    • (1993) Comput. Chem. Eng. , vol.17 , pp. 245-255
    • Downs, J.J.1    Vogel, E.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.