메뉴 건너뛰기




Volumn 59, Issue 5, 2013, Pages 1557-1569

Modeling and performance monitoring of multivariate multimodal processes

Author keywords

Component wise identification; Gaussian mixture models; Maximum likelihood principal component analysis; Multimodal processes; Within and between cluster variation

Indexed keywords

BETWEEN-CLUSTER VARIATION; CHEMICAL REACTION PROCESS; COMPONENTWISE; CONTINUOUS STIRRED TANK REACTOR; EXPECTATION - MAXIMIZATIONS; GAUSSIAN MIXTURE MODEL; MULTI-MODAL; WITHIN-CLUSTER VARIATION;

EID: 84876305649     PISSN: 00011541     EISSN: 15475905     Source Type: Journal    
DOI: 10.1002/aic.13953     Document Type: Article
Times cited : (64)

References (32)
  • 1
    • 0002400707 scopus 로고
    • Adequately address abnormal situation management
    • Nimmo I. Adequately address abnormal situation management. Chem Eng Progress. 1995;91:36-45.
    • (1995) Chem Eng Progress , vol.91 , pp. 36-45
    • Nimmo, I.1
  • 3
    • 0003011311 scopus 로고
    • Multivariate statistical methods in process analysis and control
    • AIChE Symposium Proceedings of the 4th International Conference on Chemical Process Control, New York, USA
    • MacGregor JF, Marlin TE, Kresta J, Skagerberg B. Multivariate statistical methods in process analysis and control. In:AIChE Symposium Proceedings of the 4th International Conference on Chemical Process Control, New York, USA, 1991: P-67:79-99.
    • (1991) , vol.67 P , pp. 79-99
    • MacGregor, J.F.1    Marlin, T.E.2    Kresta, J.3    Skagerberg, B.4
  • 4
    • 0030530039 scopus 로고    scopus 로고
    • The process chemometrics approach to process monitoring and fault detection
    • Wise BM, Gallagher NB. The process chemometrics approach to process monitoring and fault detection. J Process Control. 1996; 6:329-348.
    • (1996) J Process Control , vol.6 , pp. 329-348
    • Wise, B.M.1    Gallagher, N.B.2
  • 5
    • 0038198780 scopus 로고    scopus 로고
    • Recursive partial least squares algorithms for monitoring complex industrial processes
    • Wang X, Kruger U, Lennox B. Recursive partial least squares algorithms for monitoring complex industrial processes. Control Eng Pract. 2003;11:613-632.
    • (2003) Control Eng Pract , vol.11 , pp. 613-632
    • Wang, X.1    Kruger, U.2    Lennox, B.3
  • 6
    • 0033083952 scopus 로고    scopus 로고
    • Isolation enhanced principal component analysis
    • Gertler J, Li WH, Huang YB, McAvoy T. Isolation enhanced principal component analysis. AIChE J. 1999;45:323-334.
    • (1999) AIChE J , vol.45 , pp. 323-334
    • Gertler, J.1    Li, W.H.2    Huang, Y.B.3    McAvoy, T.4
  • 7
    • 18244408225 scopus 로고    scopus 로고
    • Data-based latent variable methods for process analysis, monitoring and control
    • MacGregor JF, Yu H, Muñoz SG, Flores-Cerrillo J. Data-based latent variable methods for process analysis, monitoring and control. Comput Chem Eng. 2005;29:1217-1223.
    • (2005) Comput Chem Eng , vol.29 , pp. 1217-1223
    • MacGregor, J.F.1    Yu, H.2    Muñoz, S.G.3    Flores-Cerrillo, J.4
  • 8
    • 36749052831 scopus 로고    scopus 로고
    • Monitoring a complex refining process using multivariate statistics
    • AlGhazzawi A, Lennox B. Monitoring a complex refining process using multivariate statistics. Control Eng Pract. 2008;16:294-307.
    • (2008) Control Eng Pract , vol.16 , pp. 294-307
    • AlGhazzawi, A.1    Lennox, B.2
  • 9
    • 47549099484 scopus 로고    scopus 로고
    • Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
    • Yu J, Qin J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models. AIChE J. 2008;54:1811-1829.
    • (2008) AIChE J , vol.54 , pp. 1811-1829
    • Yu, J.1    Qin, J.2
  • 11
    • 0032898793 scopus 로고    scopus 로고
    • Mixture principal component analysis models for process monitoring
    • Chen J, Liu J. Mixture principal component analysis models for process monitoring. Ind Eng Chem Res. 1999;38:1478-1488.
    • (1999) Ind Eng Chem Res , vol.38 , pp. 1478-1488
    • Chen, J.1    Liu, J.2
  • 12
    • 33646178973 scopus 로고    scopus 로고
    • Performance monitoring of processes with multiple operating modes through multiple PLS models
    • Zhao SJ, Zhang J, Xu YM. Performance monitoring of processes with multiple operating modes through multiple PLS models. J Process Control. 2006;16:763-772.
    • (2006) J Process Control , vol.16 , pp. 763-772
    • Zhao, S.J.1    Zhang, J.2    Xu, Y.M.3
  • 13
    • 67349090576 scopus 로고    scopus 로고
    • An adjoined multimodel approach for monitoring batch and transient operations
    • Ng YS, Srinivasan R. An adjoined multimodel approach for monitoring batch and transient operations. Comput Chem Eng. 2009; 33:887-902.
    • (2009) Comput Chem Eng , vol.33 , pp. 887-902
    • Ng, Y.S.1    Srinivasan, R.2
  • 14
    • 77953535805 scopus 로고    scopus 로고
    • Multimodel based process condition monitoring of offshore oil and gas production process
    • Natarajana S, Srinivasan R. Multimodel based process condition monitoring of offshore oil and gas production process. Chem Eng Res Design. 2010;88:572-591.
    • (2010) Chem Eng Res Design , vol.88 , pp. 572-591
    • Natarajana, S.1    Srinivasan, R.2
  • 15
    • 0033556788 scopus 로고    scopus 로고
    • Mixtures of probabilistic principal component analyses
    • Tipping ME, Bishop CM. Mixtures of probabilistic principal component analyses. Neural Comput. 1999;11:443-482.
    • (1999) Neural Comput , vol.11 , pp. 443-482
    • Tipping, M.E.1    Bishop, C.M.2
  • 16
    • 15944370634 scopus 로고    scopus 로고
    • Fault detection based on a maximum-likelihood principal component analysis (PCA) mixture
    • Choi SW, Martin EB, Morris AJ, Lee IB. Fault detection based on a maximum-likelihood principal component analysis (PCA) mixture. Ind Eng Chem Res. 2005;44:2316-2327.
    • (2005) Ind Eng Chem Res , vol.44 , pp. 2316-2327
    • Choi, S.W.1    Martin, E.B.2    Morris, A.J.3    Lee, I.B.4
  • 17
    • 77953121551 scopus 로고    scopus 로고
    • Maximum-likelihood mixture factor analysis model and its application for process monitoring
    • Ge Z, Song Z. Maximum-likelihood mixture factor analysis model and its application for process monitoring. Chemom Intell Lab Syst. 2010;102:53-61.
    • (2010) Chemom Intell Lab Syst , vol.102 , pp. 53-61
    • Ge, Z.1    Song, Z.2
  • 18
    • 73749084616 scopus 로고    scopus 로고
    • A robust clustering method for detection of abnormal situations in a process with multiple steady-state operation modes
    • Maestri M, Farall A, Groisman P, Cassanello M, Horowitz G. A robust clustering method for detection of abnormal situations in a process with multiple steady-state operation modes. Comput Chem Eng. 2010;34:223-231.
    • (2010) Comput Chem Eng , vol.34 , pp. 223-231
    • Maestri, M.1    Farall, A.2    Groisman, P.3    Cassanello, M.4    Horowitz, G.5
  • 19
    • 2342521341 scopus 로고    scopus 로고
    • Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis
    • Choi SW, Park JH, Lee IB. Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis. Comput Chem Eng. 2004;28:1377-1387.
    • (2004) Comput Chem Eng , vol.28 , pp. 1377-1387
    • Choi, S.W.1    Park, J.H.2    Lee, I.B.3
  • 20
    • 77649189520 scopus 로고    scopus 로고
    • On-line multivariate statistical monitoring of batch processes using Gaussian mixture model
    • Chen T, Zhang J. On-line multivariate statistical monitoring of batch processes using Gaussian mixture model. Comput Chem Eng. 2010;34:500-507.
    • (2010) Comput Chem Eng , vol.34 , pp. 500-507
    • Chen, T.1    Zhang, J.2
  • 21
    • 75149115338 scopus 로고    scopus 로고
    • Hidden Markov models combining local and global information for nonlinear and multimodal process monitoring
    • Yu J. Hidden Markov models combining local and global information for nonlinear and multimodal process monitoring. J Process Control. 2010;20:344-359.
    • (2010) J Process Control , vol.20 , pp. 344-359
    • Yu, J.1
  • 22
    • 49249127452 scopus 로고    scopus 로고
    • Robust online monitoring for multimode processes based on nonlinear external analysis
    • Ge Z, Yang C, Song Z, Wang H. Robust online monitoring for multimode processes based on nonlinear external analysis. Ind Eng Chem Res. 2008;47:4775-4783.
    • (2008) Ind Eng Chem Res , vol.47 , pp. 4775-4783
    • Ge, Z.1    Yang, C.2    Song, Z.3    Wang, H.4
  • 23
    • 50649095932 scopus 로고    scopus 로고
    • Online monitoring of nonlinear multiple mode processes based on adaptive local model approach
    • Ge Z, Song Z. Online monitoring of nonlinear multiple mode processes based on adaptive local model approach. Control Eng Pract. 2008;16:1427-1437.
    • (2008) Control Eng Pract , vol.16 , pp. 1427-1437
    • Ge, Z.1    Song, Z.2
  • 24
    • 72249099895 scopus 로고    scopus 로고
    • Multimode process monitoring based on Bayesian method
    • Ge Z, Song Z. Multimode process monitoring based on Bayesian method. J Chemometrics. 2009;23:636-650.
    • (2009) J Chemometrics , vol.23 , pp. 636-650
    • Ge, Z.1    Song, Z.2
  • 25
    • 71549150279 scopus 로고    scopus 로고
    • data understanding with PCA: structural and variance information plots
    • Camacho J, Pico J, Ferrer A. data understanding with PCA: structural and variance information plots. Chemom Intell Lab Syst. 2010;100:48-56.
    • (2010) Chemom Intell Lab Syst , vol.100 , pp. 48-56
    • Camacho, J.1    Pico, J.2    Ferrer, A.3
  • 26
    • 78650303983 scopus 로고    scopus 로고
    • A unified statistical framework for monitoring multivariate systems with unknown source and error signals
    • Feital TS, Kruger U, Xie L, Schubert U, Lima EL, Pinto JC. A unified statistical framework for monitoring multivariate systems with unknown source and error signals. Chemom Intell Lab Syst. 2010;104:223-232.
    • (2010) Chemom Intell Lab Syst , vol.104 , pp. 223-232
    • Feital, T.S.1    Kruger, U.2    Xie, L.3    Schubert, U.4    Lima, E.L.5    Pinto, J.C.6
  • 29
    • 0037282647 scopus 로고    scopus 로고
    • Multivariate dynamic data modeling for analysis and statistical process control of batch processes, start-ups and grade transitions
    • Kourti T. Multivariate dynamic data modeling for analysis and statistical process control of batch processes, start-ups and grade transitions. J Chemometrics. 2003;17:93-109.
    • (2003) J Chemometrics , vol.17 , pp. 93-109
    • Kourti, T.1
  • 30
    • 22944436794 scopus 로고    scopus 로고
    • Process monitoring approach using fast moving window PCA
    • Wang X, Kruger U, Lennox B. Process monitoring approach using fast moving window PCA. Ind Eng Chem Res. 2005;44:5691-5702.
    • (2005) Ind Eng Chem Res , vol.44 , pp. 5691-5702
    • Wang, X.1    Kruger, U.2    Lennox, B.3
  • 31
    • 0018503842 scopus 로고
    • Control procedures for residuals associated with principal component analysis
    • Jackson JE, Mudholkar GS. Control procedures for residuals associated with principal component analysis. Technometrics. 1979;21: 341-349.
    • (1979) Technometrics , vol.21 , pp. 341-349
    • Jackson, J.E.1    Mudholkar, G.S.2
  • 32
    • 0029252734 scopus 로고
    • Multivariate SPC charts for monitoring batch processes
    • Nomikos P, MacGregor JF. Multivariate SPC charts for monitoring batch processes. Technometrics. 1995;37:41-59.
    • (1995) Technometrics , vol.37 , pp. 41-59
    • Nomikos, P.1    MacGregor, J.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.