메뉴 건너뛰기




Volumn 102, Issue 1, 2010, Pages 53-61

Maximum-likelihood mixture factor analysis model and its application for process monitoring

Author keywords

Bayesian inference; Maximum likelihood; Mixture factor analysis model; Process monitoring

Indexed keywords

ANALYTIC METHOD; ARTICLE; BAYES THEOREM; CASE STUDY; CONTROLLED STUDY; FACTORIAL ANALYSIS; FEASIBILITY STUDY; INTERMETHOD COMPARISON; MATHEMATICAL MODEL; MAXIMUM LIKELIHOOD METHOD; PRIORITY JOURNAL; PROCESS MONITORING; UNITED STATES;

EID: 77953121551     PISSN: 01697439     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.chemolab.2010.04.002     Document Type: Article
Times cited : (52)

References (34)
  • 2
    • 0242354134 scopus 로고    scopus 로고
    • Statistical process monitoring: basics and beyond
    • Qin S.J. Statistical process monitoring: basics and beyond. J. Chemometrics 2003, 17:480-520.
    • (2003) J. Chemometrics , vol.17 , pp. 480-520
    • Qin, S.J.1
  • 3
    • 0038198780 scopus 로고    scopus 로고
    • Recursive partial least squares algorithms for monitoring complex industrial processes
    • Wang X., Kruger U., Lennox B. Recursive partial least squares algorithms for monitoring complex industrial processes. Cont. Eng. Prac. 2003, 11:613-632.
    • (2003) Cont. Eng. Prac. , vol.11 , pp. 613-632
    • Wang, X.1    Kruger, U.2    Lennox, B.3
  • 4
    • 54949117106 scopus 로고    scopus 로고
    • Diagnosis of process faults in chemical systems using a local partial least squares approach
    • Kruger U., Dimitriadis G. Diagnosis of process faults in chemical systems using a local partial least squares approach. AIChE J. 2008, 54:2581-2596.
    • (2008) AIChE J. , vol.54 , pp. 2581-2596
    • Kruger, U.1    Dimitriadis, G.2
  • 5
    • 42149134815 scopus 로고    scopus 로고
    • Quality prediction based on phase-specific average trajectory for batch processes
    • Zhao C.H., Wang F.L., Mao Z.H., Lu N.Y., Jia M.X. Quality prediction based on phase-specific average trajectory for batch processes. AIChE J. 2008, 54:693-705.
    • (2008) AIChE J. , vol.54 , pp. 693-705
    • Zhao, C.H.1    Wang, F.L.2    Mao, Z.H.3    Lu, N.Y.4    Jia, M.X.5
  • 6
    • 57049177632 scopus 로고    scopus 로고
    • Improved nonlinear fault detection technique and statistical analysis
    • Zhang Y.W., Qin S.J. Improved nonlinear fault detection technique and statistical analysis. AIChE J. 2008, 54:3207-3220.
    • (2008) AIChE J. , vol.54 , pp. 3207-3220
    • Zhang, Y.W.1    Qin, S.J.2
  • 7
    • 0030525683 scopus 로고    scopus 로고
    • Non-parametric confidence bounds for process performance monitoring
    • Martin E.B., Morris A.J. Non-parametric confidence bounds for process performance monitoring. J. Proc. Cont. 1996, 6:349-358.
    • (1996) J. Proc. Cont. , vol.6 , pp. 349-358
    • Martin, E.B.1    Morris, A.J.2
  • 8
    • 1142268899 scopus 로고    scopus 로고
    • Regularised kernel density estimation for clustered process data
    • Chen Q., Kruger U., Leung A.Y.T. Regularised kernel density estimation for clustered process data. Cont. Eng. Prac. 2004, 12:267-274.
    • (2004) Cont. Eng. Prac. , vol.12 , pp. 267-274
    • Chen, Q.1    Kruger, U.2    Leung, A.Y.T.3
  • 9
    • 2342531746 scopus 로고    scopus 로고
    • Synthesis of T2 and Q statistics for process monitoring
    • Chen Q., Kruger U., Meronk M., Leung A.Y.T. Synthesis of T2 and Q statistics for process monitoring. Cont. Eng. Prac. 2004, 12:745-755.
    • (2004) Cont. Eng. Prac. , vol.12 , pp. 745-755
    • Chen, Q.1    Kruger, U.2    Meronk, M.3    Leung, A.Y.T.4
  • 10
    • 33750172858 scopus 로고    scopus 로고
    • Probability density estimation via an infinite Gaussian mixture model: application to statistical process monitoring.
    • Chen T., Martin E.B., Morris A.J. Probability density estimation via an infinite Gaussian mixture model: application to statistical process monitoring. J. Roy. Stat. Soc.: Series C-Applied Statistics 2006, 55:699-715.
    • (2006) J. Roy. Stat. Soc.: Series C-Applied Statistics , vol.55 , pp. 699-715
    • Chen, T.1    Martin, E.B.2    Morris, A.J.3
  • 11
    • 0037086546 scopus 로고    scopus 로고
    • Dimension reduction of process dynamic trends using independent component analysis
    • Li R.F., Wang X.Z. Dimension reduction of process dynamic trends using independent component analysis. Comput. Chem. Eng. 2002, 26:467-473.
    • (2002) Comput. Chem. Eng. , vol.26 , pp. 467-473
    • Li, R.F.1    Wang, X.Z.2
  • 12
    • 0037394190 scopus 로고    scopus 로고
    • Monitoring independent components for fault detection
    • Kano M., Tanaka S., Hasebe S., Hashimoto I., Ohno H. Monitoring independent components for fault detection. AIChE J. 2003, 49:969-976.
    • (2003) AIChE J. , vol.49 , pp. 969-976
    • Kano, M.1    Tanaka, S.2    Hasebe, S.3    Hashimoto, I.4    Ohno, H.5
  • 13
    • 1342285571 scopus 로고    scopus 로고
    • Statistical process monitoring with independent component analysis
    • Lee J.M., Yoo C.K., Lee I.B. Statistical process monitoring with independent component analysis. J. Proc. Cont. 2004, 14:467-485.
    • (2004) J. Proc. Cont. , vol.14 , pp. 467-485
    • Lee, J.M.1    Yoo, C.K.2    Lee, I.B.3
  • 14
    • 4944253785 scopus 로고    scopus 로고
    • Statistical process control charts for batch operations based on independent component analysis
    • Albazzaz H., Wang X.Z. Statistical process control charts for batch operations based on independent component analysis. Ind. Eng. Chem. Res. 2004, 43:6731-6741.
    • (2004) Ind. Eng. Chem. Res. , vol.43 , pp. 6731-6741
    • Albazzaz, H.1    Wang, X.Z.2
  • 15
    • 33749473097 scopus 로고    scopus 로고
    • Fault detection and diagnosis based on modified independent component analysis
    • Lee J.M., Qin S.J., Lee I.B. Fault detection and diagnosis based on modified independent component analysis. AIChE J. 2006, 52:3501-3514.
    • (2006) AIChE J. , vol.52 , pp. 3501-3514
    • Lee, J.M.1    Qin, S.J.2    Lee, I.B.3
  • 16
    • 52649119206 scopus 로고    scopus 로고
    • Statistical monitoring of multivariate non-Gaussian systems
    • Liu X.Q., Xie L., Kruger U., Littler T., Wang S.Q. Statistical monitoring of multivariate non-Gaussian systems. AIChE J. 2008, 54:2379-2391.
    • (2008) AIChE J. , vol.54 , pp. 2379-2391
    • Liu, X.Q.1    Xie, L.2    Kruger, U.3    Littler, T.4    Wang, S.Q.5
  • 17
    • 0032898793 scopus 로고    scopus 로고
    • Mixture principal component analysis models for process monitoring
    • Chen J.H., Liu J.L. Mixture principal component analysis models for process monitoring. Ind. Eng. Chem. Res. 1999, 38:1478-1488.
    • (1999) Ind. Eng. Chem. Res. , vol.38 , pp. 1478-1488
    • Chen, J.H.1    Liu, J.L.2
  • 18
    • 0034235548 scopus 로고    scopus 로고
    • Using mixture principal component analysis networks to extract fuzzy rules from data
    • Chen J.H., Liu J.L. Using mixture principal component analysis networks to extract fuzzy rules from data. Ind. Eng. Chem. Res. 2000, 39:2355-2367.
    • (2000) Ind. Eng. Chem. Res. , vol.39 , pp. 2355-2367
    • Chen, J.H.1    Liu, J.L.2
  • 19
    • 2342521341 scopus 로고    scopus 로고
    • Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis
    • Choi S.W., Park J.H., Lee I.B. Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis. Comput. Chem. Eng. 2004, 28:1377-1387.
    • (2004) Comput. Chem. Eng. , vol.28 , pp. 1377-1387
    • Choi, S.W.1    Park, J.H.2    Lee, I.B.3
  • 21
    • 47549099484 scopus 로고    scopus 로고
    • Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
    • Yu J., Qin S.J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models. AIChE J. 2008, 54:1811-1829.
    • (2008) AIChE J. , vol.54 , pp. 1811-1829
    • Yu, J.1    Qin, S.J.2
  • 22
    • 0032686509 scopus 로고    scopus 로고
    • Real-time monitoring for a process with multiple operating modes
    • Hwang D.H., Han C. Real-time monitoring for a process with multiple operating modes. Cont. Eng. Prac. 1999, 7:891-902.
    • (1999) Cont. Eng. Prac. , vol.7 , pp. 891-902
    • Hwang, D.H.1    Han, C.2
  • 23
    • 6344249065 scopus 로고    scopus 로고
    • Monitoring of processes with multiple operation modes through multiple principle component analysis models
    • Zhao S.J., Zhang J., Xu Y.M. Monitoring of processes with multiple operation modes through multiple principle component analysis models. Ind. Eng. Chem. Res. 2004, 43:7025-7035.
    • (2004) Ind. Eng. Chem. Res. , vol.43 , pp. 7025-7035
    • Zhao, S.J.1    Zhang, J.2    Xu, Y.M.3
  • 24
    • 33645389475 scopus 로고    scopus 로고
    • Evaluation of a pattern matching method for the Tennessee Eastman challenge process
    • Singhai A., Seborg D.E. Evaluation of a pattern matching method for the Tennessee Eastman challenge process. J. Proc. Cont. 2006, 16:601-613.
    • (2006) J. Proc. Cont. , vol.16 , pp. 601-613
    • Singhai, A.1    Seborg, D.E.2
  • 25
    • 22944436794 scopus 로고    scopus 로고
    • Process monitoring approach using fast moving window PCA
    • Wang X., Kruger U., Irwin G.W. Process monitoring approach using fast moving window PCA. Ind. Eng. Chem. Res. 2005, 44:5691-5702.
    • (2005) Ind. Eng. Chem. Res. , vol.44 , pp. 5691-5702
    • Wang, X.1    Kruger, U.2    Irwin, G.W.3
  • 26
    • 31544440191 scopus 로고    scopus 로고
    • Robust recursive principal component analysis modeling for adaptive monitoring
    • Jin H.D., Lee Y.H., Lee G., Han C.H. Robust recursive principal component analysis modeling for adaptive monitoring. Ind. Eng. Chem. Res. 2006, 45:696-703.
    • (2006) Ind. Eng. Chem. Res. , vol.45 , pp. 696-703
    • Jin, H.D.1    Lee, Y.H.2    Lee, G.3    Han, C.H.4
  • 27
    • 50649095932 scopus 로고    scopus 로고
    • Online monitoring of nonlinear multiple mode processes based on adaptive local model approach
    • Ge Z.Q., Song Z.H. Online monitoring of nonlinear multiple mode processes based on adaptive local model approach. Cont. Eng. Prac. 2008, 16:1427-1437.
    • (2008) Cont. Eng. Prac. , vol.16 , pp. 1427-1437
    • Ge, Z.Q.1    Song, Z.H.2
  • 28
    • 1942468131 scopus 로고    scopus 로고
    • Evolution of multivariate statistical process control: application of independent component analysis and external analysis
    • Kano M., Hasebe S., Hashimoto I., Ohno H. Evolution of multivariate statistical process control: application of independent component analysis and external analysis. Comput. Chem. Eng. 2004, 28:1157-1166.
    • (2004) Comput. Chem. Eng. , vol.28 , pp. 1157-1166
    • Kano, M.1    Hasebe, S.2    Hashimoto, I.3    Ohno, H.4
  • 29
    • 49249127452 scopus 로고    scopus 로고
    • Robust online monitoring for multimode processes based on nonlinear external analysis
    • Ge Z.Q., Yang C.J., Song Z.H., Wang H.Q. Robust online monitoring for multimode processes based on nonlinear external analysis. Ind. Eng. Chem. Res. 2008, 47:4775-4783.
    • (2008) Ind. Eng. Chem. Res. , vol.47 , pp. 4775-4783
    • Ge, Z.Q.1    Yang, C.J.2    Song, Z.H.3    Wang, H.Q.4
  • 30
    • 0038959172 scopus 로고    scopus 로고
    • Probabilistic principal component analysis
    • Tipping M.E., Bishop C.M. Probabilistic principal component analysis. J. Roy. Stat. Soc. 1999, 61:611-622.
    • (1999) J. Roy. Stat. Soc. , vol.61 , pp. 611-622
    • Tipping, M.E.1    Bishop, C.M.2
  • 31
    • 0041530045 scopus 로고    scopus 로고
    • Process monitoring based on probabilistic PCA
    • Kim D.S., Lee I.B. Process monitoring based on probabilistic PCA. Chem. Intel. Lab. Syst. 2003, 67:109-123.
    • (2003) Chem. Intel. Lab. Syst. , vol.67 , pp. 109-123
    • Kim, D.S.1    Lee, I.B.2
  • 32
    • 0033556788 scopus 로고    scopus 로고
    • Mixtures of probabilistic principal component analysis
    • Tipping M.E., Bishop C.M. Mixtures of probabilistic principal component analysis. Neural Comput. 1999, 11:443-482.
    • (1999) Neural Comput. , vol.11 , pp. 443-482
    • Tipping, M.E.1    Bishop, C.M.2
  • 33
    • 15944370634 scopus 로고    scopus 로고
    • Fault detection based on a maximum-likelihood principal component analysis (PCA) mixture
    • Choi S.W., Martin E.B., Morris A.J. Fault detection based on a maximum-likelihood principal component analysis (PCA) mixture. Ind. Eng. Chem. Res. 2005, 44:2316-2327.
    • (2005) Ind. Eng. Chem. Res. , vol.44 , pp. 2316-2327
    • Choi, S.W.1    Martin, E.B.2    Morris, A.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.