-
2
-
-
0242354134
-
Statistical process monitoring: basics and beyond
-
Qin S.J. Statistical process monitoring: basics and beyond. J. Chemometrics 2003, 17:480-520.
-
(2003)
J. Chemometrics
, vol.17
, pp. 480-520
-
-
Qin, S.J.1
-
3
-
-
0038198780
-
Recursive partial least squares algorithms for monitoring complex industrial processes
-
Wang X., Kruger U., Lennox B. Recursive partial least squares algorithms for monitoring complex industrial processes. Cont. Eng. Prac. 2003, 11:613-632.
-
(2003)
Cont. Eng. Prac.
, vol.11
, pp. 613-632
-
-
Wang, X.1
Kruger, U.2
Lennox, B.3
-
4
-
-
54949117106
-
Diagnosis of process faults in chemical systems using a local partial least squares approach
-
Kruger U., Dimitriadis G. Diagnosis of process faults in chemical systems using a local partial least squares approach. AIChE J. 2008, 54:2581-2596.
-
(2008)
AIChE J.
, vol.54
, pp. 2581-2596
-
-
Kruger, U.1
Dimitriadis, G.2
-
5
-
-
42149134815
-
Quality prediction based on phase-specific average trajectory for batch processes
-
Zhao C.H., Wang F.L., Mao Z.H., Lu N.Y., Jia M.X. Quality prediction based on phase-specific average trajectory for batch processes. AIChE J. 2008, 54:693-705.
-
(2008)
AIChE J.
, vol.54
, pp. 693-705
-
-
Zhao, C.H.1
Wang, F.L.2
Mao, Z.H.3
Lu, N.Y.4
Jia, M.X.5
-
6
-
-
57049177632
-
Improved nonlinear fault detection technique and statistical analysis
-
Zhang Y.W., Qin S.J. Improved nonlinear fault detection technique and statistical analysis. AIChE J. 2008, 54:3207-3220.
-
(2008)
AIChE J.
, vol.54
, pp. 3207-3220
-
-
Zhang, Y.W.1
Qin, S.J.2
-
7
-
-
0030525683
-
Non-parametric confidence bounds for process performance monitoring
-
Martin E.B., Morris A.J. Non-parametric confidence bounds for process performance monitoring. J. Proc. Cont. 1996, 6:349-358.
-
(1996)
J. Proc. Cont.
, vol.6
, pp. 349-358
-
-
Martin, E.B.1
Morris, A.J.2
-
8
-
-
1142268899
-
Regularised kernel density estimation for clustered process data
-
Chen Q., Kruger U., Leung A.Y.T. Regularised kernel density estimation for clustered process data. Cont. Eng. Prac. 2004, 12:267-274.
-
(2004)
Cont. Eng. Prac.
, vol.12
, pp. 267-274
-
-
Chen, Q.1
Kruger, U.2
Leung, A.Y.T.3
-
9
-
-
2342531746
-
Synthesis of T2 and Q statistics for process monitoring
-
Chen Q., Kruger U., Meronk M., Leung A.Y.T. Synthesis of T2 and Q statistics for process monitoring. Cont. Eng. Prac. 2004, 12:745-755.
-
(2004)
Cont. Eng. Prac.
, vol.12
, pp. 745-755
-
-
Chen, Q.1
Kruger, U.2
Meronk, M.3
Leung, A.Y.T.4
-
10
-
-
33750172858
-
Probability density estimation via an infinite Gaussian mixture model: application to statistical process monitoring.
-
Chen T., Martin E.B., Morris A.J. Probability density estimation via an infinite Gaussian mixture model: application to statistical process monitoring. J. Roy. Stat. Soc.: Series C-Applied Statistics 2006, 55:699-715.
-
(2006)
J. Roy. Stat. Soc.: Series C-Applied Statistics
, vol.55
, pp. 699-715
-
-
Chen, T.1
Martin, E.B.2
Morris, A.J.3
-
11
-
-
0037086546
-
Dimension reduction of process dynamic trends using independent component analysis
-
Li R.F., Wang X.Z. Dimension reduction of process dynamic trends using independent component analysis. Comput. Chem. Eng. 2002, 26:467-473.
-
(2002)
Comput. Chem. Eng.
, vol.26
, pp. 467-473
-
-
Li, R.F.1
Wang, X.Z.2
-
12
-
-
0037394190
-
Monitoring independent components for fault detection
-
Kano M., Tanaka S., Hasebe S., Hashimoto I., Ohno H. Monitoring independent components for fault detection. AIChE J. 2003, 49:969-976.
-
(2003)
AIChE J.
, vol.49
, pp. 969-976
-
-
Kano, M.1
Tanaka, S.2
Hasebe, S.3
Hashimoto, I.4
Ohno, H.5
-
13
-
-
1342285571
-
Statistical process monitoring with independent component analysis
-
Lee J.M., Yoo C.K., Lee I.B. Statistical process monitoring with independent component analysis. J. Proc. Cont. 2004, 14:467-485.
-
(2004)
J. Proc. Cont.
, vol.14
, pp. 467-485
-
-
Lee, J.M.1
Yoo, C.K.2
Lee, I.B.3
-
14
-
-
4944253785
-
Statistical process control charts for batch operations based on independent component analysis
-
Albazzaz H., Wang X.Z. Statistical process control charts for batch operations based on independent component analysis. Ind. Eng. Chem. Res. 2004, 43:6731-6741.
-
(2004)
Ind. Eng. Chem. Res.
, vol.43
, pp. 6731-6741
-
-
Albazzaz, H.1
Wang, X.Z.2
-
15
-
-
33749473097
-
Fault detection and diagnosis based on modified independent component analysis
-
Lee J.M., Qin S.J., Lee I.B. Fault detection and diagnosis based on modified independent component analysis. AIChE J. 2006, 52:3501-3514.
-
(2006)
AIChE J.
, vol.52
, pp. 3501-3514
-
-
Lee, J.M.1
Qin, S.J.2
Lee, I.B.3
-
16
-
-
52649119206
-
Statistical monitoring of multivariate non-Gaussian systems
-
Liu X.Q., Xie L., Kruger U., Littler T., Wang S.Q. Statistical monitoring of multivariate non-Gaussian systems. AIChE J. 2008, 54:2379-2391.
-
(2008)
AIChE J.
, vol.54
, pp. 2379-2391
-
-
Liu, X.Q.1
Xie, L.2
Kruger, U.3
Littler, T.4
Wang, S.Q.5
-
17
-
-
0032898793
-
Mixture principal component analysis models for process monitoring
-
Chen J.H., Liu J.L. Mixture principal component analysis models for process monitoring. Ind. Eng. Chem. Res. 1999, 38:1478-1488.
-
(1999)
Ind. Eng. Chem. Res.
, vol.38
, pp. 1478-1488
-
-
Chen, J.H.1
Liu, J.L.2
-
18
-
-
0034235548
-
Using mixture principal component analysis networks to extract fuzzy rules from data
-
Chen J.H., Liu J.L. Using mixture principal component analysis networks to extract fuzzy rules from data. Ind. Eng. Chem. Res. 2000, 39:2355-2367.
-
(2000)
Ind. Eng. Chem. Res.
, vol.39
, pp. 2355-2367
-
-
Chen, J.H.1
Liu, J.L.2
-
19
-
-
2342521341
-
Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis
-
Choi S.W., Park J.H., Lee I.B. Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis. Comput. Chem. Eng. 2004, 28:1377-1387.
-
(2004)
Comput. Chem. Eng.
, vol.28
, pp. 1377-1387
-
-
Choi, S.W.1
Park, J.H.2
Lee, I.B.3
-
20
-
-
23044496829
-
Multivariate statistical process control using mixture modeling
-
Thissen U., Swierenga H., deWeijer A.P., Wehrens R., Melssen W.J., Buydens L.M.C. Multivariate statistical process control using mixture modeling. J. Chemometrics 2005, 19:23-31.
-
(2005)
J. Chemometrics
, vol.19
, pp. 23-31
-
-
Thissen, U.1
Swierenga, H.2
deWeijer, A.P.3
Wehrens, R.4
Melssen, W.J.5
Buydens, L.M.C.6
-
21
-
-
47549099484
-
Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
-
Yu J., Qin S.J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models. AIChE J. 2008, 54:1811-1829.
-
(2008)
AIChE J.
, vol.54
, pp. 1811-1829
-
-
Yu, J.1
Qin, S.J.2
-
22
-
-
0032686509
-
Real-time monitoring for a process with multiple operating modes
-
Hwang D.H., Han C. Real-time monitoring for a process with multiple operating modes. Cont. Eng. Prac. 1999, 7:891-902.
-
(1999)
Cont. Eng. Prac.
, vol.7
, pp. 891-902
-
-
Hwang, D.H.1
Han, C.2
-
23
-
-
6344249065
-
Monitoring of processes with multiple operation modes through multiple principle component analysis models
-
Zhao S.J., Zhang J., Xu Y.M. Monitoring of processes with multiple operation modes through multiple principle component analysis models. Ind. Eng. Chem. Res. 2004, 43:7025-7035.
-
(2004)
Ind. Eng. Chem. Res.
, vol.43
, pp. 7025-7035
-
-
Zhao, S.J.1
Zhang, J.2
Xu, Y.M.3
-
24
-
-
33645389475
-
Evaluation of a pattern matching method for the Tennessee Eastman challenge process
-
Singhai A., Seborg D.E. Evaluation of a pattern matching method for the Tennessee Eastman challenge process. J. Proc. Cont. 2006, 16:601-613.
-
(2006)
J. Proc. Cont.
, vol.16
, pp. 601-613
-
-
Singhai, A.1
Seborg, D.E.2
-
25
-
-
22944436794
-
Process monitoring approach using fast moving window PCA
-
Wang X., Kruger U., Irwin G.W. Process monitoring approach using fast moving window PCA. Ind. Eng. Chem. Res. 2005, 44:5691-5702.
-
(2005)
Ind. Eng. Chem. Res.
, vol.44
, pp. 5691-5702
-
-
Wang, X.1
Kruger, U.2
Irwin, G.W.3
-
26
-
-
31544440191
-
Robust recursive principal component analysis modeling for adaptive monitoring
-
Jin H.D., Lee Y.H., Lee G., Han C.H. Robust recursive principal component analysis modeling for adaptive monitoring. Ind. Eng. Chem. Res. 2006, 45:696-703.
-
(2006)
Ind. Eng. Chem. Res.
, vol.45
, pp. 696-703
-
-
Jin, H.D.1
Lee, Y.H.2
Lee, G.3
Han, C.H.4
-
27
-
-
50649095932
-
Online monitoring of nonlinear multiple mode processes based on adaptive local model approach
-
Ge Z.Q., Song Z.H. Online monitoring of nonlinear multiple mode processes based on adaptive local model approach. Cont. Eng. Prac. 2008, 16:1427-1437.
-
(2008)
Cont. Eng. Prac.
, vol.16
, pp. 1427-1437
-
-
Ge, Z.Q.1
Song, Z.H.2
-
28
-
-
1942468131
-
Evolution of multivariate statistical process control: application of independent component analysis and external analysis
-
Kano M., Hasebe S., Hashimoto I., Ohno H. Evolution of multivariate statistical process control: application of independent component analysis and external analysis. Comput. Chem. Eng. 2004, 28:1157-1166.
-
(2004)
Comput. Chem. Eng.
, vol.28
, pp. 1157-1166
-
-
Kano, M.1
Hasebe, S.2
Hashimoto, I.3
Ohno, H.4
-
29
-
-
49249127452
-
Robust online monitoring for multimode processes based on nonlinear external analysis
-
Ge Z.Q., Yang C.J., Song Z.H., Wang H.Q. Robust online monitoring for multimode processes based on nonlinear external analysis. Ind. Eng. Chem. Res. 2008, 47:4775-4783.
-
(2008)
Ind. Eng. Chem. Res.
, vol.47
, pp. 4775-4783
-
-
Ge, Z.Q.1
Yang, C.J.2
Song, Z.H.3
Wang, H.Q.4
-
30
-
-
0038959172
-
Probabilistic principal component analysis
-
Tipping M.E., Bishop C.M. Probabilistic principal component analysis. J. Roy. Stat. Soc. 1999, 61:611-622.
-
(1999)
J. Roy. Stat. Soc.
, vol.61
, pp. 611-622
-
-
Tipping, M.E.1
Bishop, C.M.2
-
31
-
-
0041530045
-
Process monitoring based on probabilistic PCA
-
Kim D.S., Lee I.B. Process monitoring based on probabilistic PCA. Chem. Intel. Lab. Syst. 2003, 67:109-123.
-
(2003)
Chem. Intel. Lab. Syst.
, vol.67
, pp. 109-123
-
-
Kim, D.S.1
Lee, I.B.2
-
32
-
-
0033556788
-
Mixtures of probabilistic principal component analysis
-
Tipping M.E., Bishop C.M. Mixtures of probabilistic principal component analysis. Neural Comput. 1999, 11:443-482.
-
(1999)
Neural Comput.
, vol.11
, pp. 443-482
-
-
Tipping, M.E.1
Bishop, C.M.2
-
33
-
-
15944370634
-
Fault detection based on a maximum-likelihood principal component analysis (PCA) mixture
-
Choi S.W., Martin E.B., Morris A.J. Fault detection based on a maximum-likelihood principal component analysis (PCA) mixture. Ind. Eng. Chem. Res. 2005, 44:2316-2327.
-
(2005)
Ind. Eng. Chem. Res.
, vol.44
, pp. 2316-2327
-
-
Choi, S.W.1
Martin, E.B.2
Morris, A.J.3
|